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Since the tire pressure has a significant influence on driving safety, even self-driving vehicles need to be aware of their
current tire pressures. Two major types of methods for estimating tire pressures exist: direct and indirect methods. In spite
of recent advancements in direct Tire Pressure Monitoring Systems (TPMSs), indirect pressure monitoring systems still
play a significant role due to their low costs. Indirect systems rely on the processing of signals from wheel speed sensors.
In most cases, a transformation is applied to generate a frequency spectrum from which the tire pressure-dependent
eigenfrequency can be extracted. The most accurate methods apply the Fourier transform, but these require the highest
computational power. After the spectrum of signals from the wheel speed sensor is created, the eigenfrequency must be
extracted. Several methods are available to extract significant frequency components. One of the easiest methods is peak
searching, however, it is susceptible to noise. On the other hand, more accurate methods that are less sensitive to noise
require more computational power. If a transform that consumes less computational power can be applied, then the freed
resources can be used by a better eigenfrequency identification method. In this paper, a Hybrid Wavelet-Fourier Transform
and Convolutional Neural Network-based method is presented, which exhibits a promising level of noise tolerance.
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1. Introduction

The development and spread of autonomous and elec-
tric vehicles is about to change everything with regard
to the internal structure and operation of cars. However,
vehicles will always make contact with the road through
tires so tires will continue to play an important role in
terms of vehicle safety. The condition of tires is not only
dependent on abrasion but on current tire pressures as
well. Furthermore, tire pressures influence abrasion in
addition to fuel or power consumption [1]. As a result,
both the EU and USA have legislated that all new vehi-
cles are equipped with Tire Pressure Monitoring Systems
(TPMS) as standard. To achieve safe autonomous driving,
the performance parameters of the vehicles must be in
accordance with the conditions of the tires, e.g. the driv-
ing logic needs to know the current pressure of each tire.
Nowadays, research is being done with regard to active
tires which are capable of adapting to weather and road
conditions by changing their own tire pressures according
to the requirements [2]. On the other hand, active tires
are extortionate compared to their passive counterparts,
even those equipped with TPMS. An active tire must also
include a compressor and be able to transmit the com-
pressed air into the tires, which increases not only their

*Correspondence: marton.zoltan@mk.uni-pannon.hu

cost but also their energy requirements. Active tire sys-
tems will only be available for high-end vehicles or mili-
tary applications. Mainstream and more cost-effective ve-
hicles will continue to use regular tires and be equipped
with TPMS.

Two major types of TPMS are available: direct
TPMS, which includes a pressure sensor in the tires them-
selves, and indirect TPMS, which uses Wheel Speed
Sensors (WSS) required by the Anti-lock Braking Sys-
tem (ABS), Electronic Stability Program (ESP) and other
driving safety systems. The indirect TPMS (iTPMS) can
be accomplished by following two techniques. The sim-
plest way is to compare the wheel speed signals from
three different pairs, the bigger the tire pressure the big-
ger the radius of the tire will be. These systems are ca-
pable of detecting relative pressure changes and require
the results to be filtered in such a way that the driving
conditions and maneuvers do not affect the system. Since
tires have different radii, these systems require a learn-
ing process to be implemented should any of the tires
be changed [3]. Nowadays, comparable systems were re-
placed by signal processing-based systems and research
is being done on model-based systems. Both approaches
are based on the fact that a tire is like a complex system
made of springs and masses, where each spring-mass pair
has its own eigenfrequencies. One of the springs corre-
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Figure 1: The system architecture of iTPMS

sponds to the air pressure inside the tire, therefore, one
eigenfrequency is dependent on the tire pressure [3]. Sig-
nal processing-based iTPMSs consist of two major well-
separated steps (Fig. 1).

The first step is to transform the signal from the time
domain into the frequency or a frequency-related domain.
These transforms can be Fourier [4], Cosine [5] or Hy-
brid Wavelet-Fourier (HWFT). The received frequency
spectrum of the signal from the wheel speed sensor con-
tains different eigenfrequencies as well as noises orig-
inating from the road surface, combustion engine and
transmission. The second step is to detect and isolate
the pressure-dependent eigenfrequency. Different algo-
rithms are available to identify a specific eigenfrequency.
Each algorithm is only performed on a given bandwidth.
The simplest and fastest is the Peak Search (PS) algo-
rithm. Another method is the so-called Center of Grav-
ity (COG) algorithm which can virtually increase the fre-
quency resolution. Although it is more resilient towards
noise, noise still may cause the detected eigenfrequency
to be shifted. This was subsequently observed in the re-
sults presented in Table 1. Since each eigenfrequency
found in the spectrum of the WSS exhibits a unique pat-
tern, a pattern-recognition method can also be applied to
identify the eigenfrequency in a given bandwidth. One of
the most popular and reliable pattern-recognition meth-
ods are the deep Convolutional Neural Networks (CNNs).
Deep CNNs can learn to recognize and classify patterns
through a process called Deep Learning.

In this paper, a novel iTPMS algorithm is proposed
which consists of the HWFT and, as an alternative to the
COG algorithm, a CNN is used to detect the eigenfre-
quency.

2. Transforms related to iTPMS

The first major step in signal processing-based iTPMS is
always a transform of the WSS or other sensor signals
from a time into a frequency or frequency-equivalent do-
main. Since one of the major aims of this paper is to com-
pare different transforms and eigenfrequency-detecting
methods, a short description will be given of the Fourier,
Cosine and Hybrid Wavelet-Fourier transforms. For the
iTPMS, a “new” HWFT will be proposed in this paper.

2.1 Fourier Transform

One of the most mainstream transforms in frequency
analysis is the Fourier transform, which transforms the
time-domain signals directly into the frequency domain
[6]. The signals in the frequency domain contain infor-
mation concerning frequencies, amplitudes and phases.
Three major varieties of the Fourier transform exist de-
pending on the nature of the signal and the number of
samples. The Continuous Fourier Transform (CFT) is
predominantly used in stability and control theory, sig-
nal processing theory, symbolic mathematics, electrical
engineering, etc.

If a continuous signal is sampled, i.e. a discrete sig-
nal, by using the integral approximation to the sum, the
Discrete Fourier Transform (DFT) can be obtained as

X [k] =
1√
N

N−1∑
n=0

x [n] e−i2πkn/N , (1)

where k represents the discrete frequency, x[n] denotes
the sampled signal, N stands for the number of samples,
X[k] refers to the transformed discrete signal and i is the
imaginary unit. Unlike the CFT, the DFT has many prac-
tical applications.

A special case of DFT is when the number of samples
can be expressed as a power of two. In this case, DFT can
be factorized using a divide and conquer approach. Hence
the factorization of this transform requires less computa-
tional power and is referred to as the Fast Fourier Trans-
form (FFT), it is the most widespread in signal processing
and computer science.

2.2 Cosine Transform

The Cosine Transform (CT) originates from the Fourier
transform by removing the imaginary components. Un-
like the Fourier transform, where the phases are encoded
in the complex amplitudes, the CT stores the phase infor-
mation over the entire frequency spectrum if the signal
cannot be synthesized entirely from a finite set of co-
sine functions [7]. CT also consists of three major vari-
ants: Continuous (CCT), Discrete (DCT) and Fast (FCT).
In practice, FCT is predominantly used in the compres-
sion of lossy audio, images and motion pictures. DCT and
FCT consist of four different variations, in our case, the
so-called DCT or FCT II was implemented:

X [k] =

N−1∑
n=0

x [n] cos

[
π

(
k +

1

2

)
n

N

]
. (2)

In this paper, FCT was examined as an alternative to FFT.

2.3 Wavelet Transform

The Wavelet Transform (WT) can be seen as a trans-
form which transforms a given signal from the time do-
main into the frequency-time domain. Like FT and CT,
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Table 1: Test results of different combinations of transform- and eigenfrequency detection methods.

Test type Ref. Freq. [Hz] Transform Eigenf. Det. Average [Hz] Deviation [Hz] Correctness [%]

Sim. 47

FFT
Peak Search

46.181 3.808 75.475
FCT 46.41 2.515 48.636
HWFT-64 46.359 2.493 66.182
FFT

CoG
46.682 0.828 79.986

FCT 46.78 0.835 78.616
HWFT-64 46.613 0.84 78.029
FFT

CNN
46.995 0.132 99.853

FCT 46.94 0.606 95.724
HWFT-64 46.994 0.174 99.347

Sim. 43

FFT
Peak Search

42.997 4.717 99.539
FCT 43.255 0.865 57.852
HWFT-64 43.174 0.438 82.529
FFT

CoG
43.73 0.144 99.214

FCT 43.806 0.424 89.367
HWFT-64 43.886 0.2 79.345
FFT

CNN
43.011 0.18 99.414

FCT 43.446 1.19 82.38
HWFT-64 43.092 0.322 91.363

Real 45.58

FFT
Peak Search

45.21 7.224
The reference
frequency was
given in the
metadata
provided by the
measurements
and it was
calculated by
a closed source
software in
off-line
processing.
Hence, there is
no guarantee that
the reference
frequency is
always correct.
The correctness
values are
omitted.

FCT 46.013 5.172
HWFT-64 45.775 4.29
FFT

CoG
46.59 1.387

FCT 46.671 1.394
HWFT-64 47.225 1.407
FFT

CNN
45.202 3.186

FCT 45.254 3.249
HWFT-64 45.487 2.831

Real 47.03

FFT
Peak Search

46.949 3.814
FCT 47.374 4.897
HWFT-64 46.901 4.53
FFT

CoG
47.339 1.683

FCT 47.259 1.584
HWFT-64 47.695 1.521
FFT

CNN
46.711 2.571

FCT 46.817 2.406
HWFT-64 47.103 2.194

WT also consists of three variants, namely continuous
(CWT):

X (t, s) =
1√
s

∫ ∞
−∞

x (t)ψ

(
τ − t
s

)
dt, (3)

discrete (DWT):

X [m, k] =
1√
ck0

N−1∑
n=0

x [n]ψ

[(
n

ck0
−m

)
T

]
, (4)

and fast (FWT), but unlike the aforementioned trans-
forms, WT is not just a transformation, it resembles a
whole family of transformations. In the above equations,
where ψ(t) is the so-called Mother Wavelet function,
x(t) denotes the continuous input signal or function, and
X(t, s) represents the WT.

CWT can be discretized. This process requires a scal-
ing base c0 and a time unit of the Mother Wavelet, T , to

be defined:

X [m, k] =
1√
ck0

N−1∑
n=0

x [n]ψ

[(
n

ck0
−m

)
T

]
(5)

If the scaling base is two and the total number of samples
can be expressed as a power of two, the previously ob-
tained DWT can be factorized. The obtained FWT can be
implemented as a cascade of low pass filters (LPF), high
pass filters (HPF) and downsampler banks [8].

Depending on the Mother Wavelet function, different
WTs can be defined. These WTs share common proper-
ties, e.g. the frequency and time resolutions of the trans-
form are dependent on each other, they can be viewed
as bands where both resolutions are in logarithmic steps.
Their other properties depend on which Mother Wavelet
is selected. The most widespread WTs are the Mexi-
can hat Wavelet, Haar (Wavelet) Transform and Cohen-
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Daubechies-Feauveau (CDF) Wavelets. WTs are applied
in data compression, e.g. JPEG2000, DjVu, CineForm,
etc., and transient analysis.

2.4 Hybrid Wavelet-Fourier Transform

While WT was applied in signal processing for transient
and Fourier transforms in frequency spectrum analysis,
demand for both grew simultaneously. One of the solu-
tions to meet this requirement was HWFT. The basic idea
behind it was that the WT decomposes the signal of the
time domain into bandwidths. Inside a bandwidth, char-
acteristic information concerning the time domain in the
given bandwidth can be found. Therefore, it is possible to
perform FTs on each bandwidth [9].

Unlike the Continuous HWFT:

X (f, s) =
1√
s

∫ ∞
−∞

x (t)π

(
τ − t
s

)
dt, (6)

which is scarcely applied, the Discrete HWFT:

X [f, k] =

N−1∑
m=0

e−i2πfm/N√
Nck0

N−1∑
n=0

x [n]ψ

[(
n

ck0
−m

)
T

]
(7)

has some applications in biometry [10]. Fast HWFT (FH-
WFT) can be synthesised by applying FFT to the output
of each bandwidth of the FWT.

From the perspective of our research, FHWFT is suit-
able to calculate a frequency spectrum of a WSS sig-
nal for iTPMS applications. Furthermore, FHWFT has
a special property which can be exploited to reduce the
computational complexity by only performing the FFT
on those bandwidths that are significant with regard to
the given application. This property allows it to be used
as a lightweight alternative to the traditional FFT. How-
ever, since the filter banks of the FWT are imperfect,
a phenomenon known as spectral leakage can be ob-
served (Fig. 2). Spectral leakage essentially means that
frequency components from one bandwidth also appear
in the neighboring bandwidths [9]. This causes additional
disturbances in the spectrum necessitating further inves-
tigation into how much the detection of eigenfrequencies
in an iTPMS is affected. For this reason, FHWFT is com-
pared with FFT and FCT using different eigenfrequency
detection methods in this paper.

3. Eigenfrequency Detection Methods

The most important step in an iTPMS is eigenfrequency
detection because this identifies the frequency component
inner pressure dependent. Several methods are capable of
identifying or detecting peaks in a given frequency spec-
trum. The sensitivity, ability to handle multiple peaks,
noise susceptibility, etc. of these methods differ.

Figure 2: Spectral leakage of the HWFT demonstrated on
a 100 Hz signal

3.1 Peak Search Algorithm

One of the simplest methods is the Peak Search (PS) algo-
rithm. In the first step, a bandwidth must be determined in
which the interesting and/or important eigenfrequencies
can be present. In this bandwidth, a search is performed
to identify the frequency which exhibits the maximum
amplitude. This simple algorithm is presented in

Fp =
{
f ∈ I

∣∣∣max
i
|S(i)| = |S(f)|

}
, (8)

where Fp denotes the set of peaks, I represents the inter-
val of interest, and S(f) stands for the frequency spec-
trum of a signal. Under certain circumstances, multiple
frequency components can be found. Depending on the
application, mostly vibration analysis, error detection as
well as searching for local maxima and multiple peaks is
required. In such applications, usually a minimum value
ε is also defined to restrict the number of possible peaks:

Fp = {f ∈ I ||S(f)| >ε and ||S(f)| is local max} (9)

If noise or disturbances are present, the PS algorithm
might identify the wrong peaks. To reduce the impact of
the noise, a Sliding-Window Median Filter might be ap-
plied. If the PS algorithm in Eq. 9 is used, then it is more
resilient to noise than the global maximum method (Eq.
8), but a priori information is required to identify the cor-
rect eigenfrequency.

Neither of the PS methods are as accurate in such sys-
tems as the iTPMS because pressures about 30 % lower
than the optimum shift the pressure-dependent eigenfre-
quency by only approximately 3 − 4 Hz. Due to distur-
bances originating from the road surface and transmis-
sion, multiple peaks might be present in the interval of
interest.

3.2 Center of Gravity algorithm

A more noise-resistant method is the Center of Gravity
(CoG) algorithm since it involves weighted averaging.
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Figure 3: The pressure-dependent eigenfrequency of a tire
in the spectrum of the WSS signal

Unlike the PS, COG always yields only one frequency,
therefore, this eliminates the problems that originate from
multiple peaks present in the Interval of Interest. Further-
more, the eigenfrequency theoretically has a higher res-
olution than would have resulted from the sampling fre-
quency and sampling time. This theoretically increased
frequency resolution can only be achieved in the pres-
ence of an error and only in that case when exactly one
frequency component is present in the Interval of Interest.
The COG can be calculated by

fc =

∫
I
f |S(f)|p df∫
I
|S(f)|p df

, (10)

where fc denotes the center frequency and p represents
an exponent whose value, depending on the application,
is usually between 2 and 3. Although this method is more
robust than PS, it is still susceptible to noise.

3.3 Convolutional Neural Networks

The eigenfrequency of the tire exhibits a very distinct pat-
tern in the frequency spectrum of the WSS signal (Fig. 3)
which facilitates its detection using pattern-matching al-
gorithms. One of the most popular pattern-matching algo-
rithms involves deep (multilayered) CNNs. Our research
focused on developing an algorithm for eigenfrequency
detection using CNN. On the downside, CNNs demand
much more computational power and memory than PS
or COG. To compensate for the higher computational
power, a FHWFT was strictly developed to carry out
the transform in the bandwidth where the tire pressure-
dependent eigenfrequency is located (HWFT-64).

The Artificial Neural Networks (ANNs), e.g., CNN,
mimic the structure and supposed operation of neurons
and neural systems found in living beings. The differ-
ences concern the actual operation of neurons and, unlike
the central nervous system of a living being, ANNs often
structure Artificial Neurons (ANs) into layers. Since in
most cases one layer of neurons is insufficient for most

Figure 4: The structure of a simple image classification
CNN [12].

applications, multilayer ANNs are often constructed.
ANs often have multiple inputs, each of which has a
unique weight assigned to it. Unlike living neurons, the
inputs and outputs of ANs can be vector-valued. ANNs
store the recognizable patterns in the weight values of
their ANs. The analytical determination of the correct
weight values is taxing but like the central nervous sys-
tem of a living being, ANNs can learn the desired pat-
terns. The layers of an ANN can have different functions.
In the case of CNNs, at least one of those layers imple-
ment spatial discrete convolution, hence the name Con-
volutional Neural Networks. The structure of a layer de-
pends on its function as well as the connection between
the given layers and the previous layer. Each AN in the
layer has a layer-specific Activation Function (AF) which
acts as the output function of the AN. Depending on the
function of the layer, the following types of layers can
be distinguished: input, convolutional, polling and fully
connected layer. Since ANs can have vector output val-
ues, each layer can be regarded as if each component
of the output vector has its own parallel layer with its
own weights, which are grouped together as matrices.
The only thing in common would be the AF associated
with these virtual parallel layers [11].

Pattern recognition that applies CNNs usually con-
sists of four different types of AN layers: input, convo-
lutional, polling and fully connected (Fig. 4) [12]. The
simplest layer is the Input Layer. It has no input weights,
moreover, its AF is the identity function and serves as a
buffer layer. In the case of Convolutional Layers, each
AN shares the same input weights matrices which are
referred to as convolution kernels. These layers are ap-
plied for noise reduction, filtered downsampling, upsam-
pling and feature extraction. The Polling Layer is used
for downsampling or dimension reduction of data. Like
the Input Layer, it has no input weights but a kernel ra-
dius and step distance. Its specific AFs are average, mini-
mum and maximum functions. The Fully Connected (FC)
Layer is the most important part of an ANN-based classi-
fier. The number of ANs must be identical to the number
of classes the ANN has to distinguish. Its name originates
from the fact that each of its neurons are connected to
each of the neurons in the previous layer and each con-
nection has a unique weight assigned to it. The ANs in
this layer also have a so-called class index attached to
them. During the classification, the neurons contain the
possibility of their attached classes. This decision can be
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Figure 5: The frequency spectrum of a WSS signal pro-
duced by FFT (a) and FHWFT (b) after reordering

influenced by the chosen AF, from which different func-
tions are available. The most commonly used is the so-
called softmax function [11].

4. Our New iTPMS Algorithm

4.1 CNN-based Determination of Eigenfre-
quencies

Since similar results can be achieved to FFT using FH-
WFT, it can be concluded that FHWFT can be safely used
as an alternative to FFT in iTPMSs (Fig. 5). The eigen-
frequency, depending on the tire pressure, is between 42
and 48 Hz. Using this information, a FHWFT can be op-
timized which only calculates the FFT within the band-
width of 32–63 Hz. If the sampling rate is 1024 samples
per second, the FFT has to be performed on only 64 sam-
ples. This FHWFT optimized for TPMS was labeled by
us as HWFT-64. The computational power requirements
of HWFT-64 are about four times less than in the case of
a FFT with a sampling rate of 1024 (Fig. 6). The freed up
resources make it possible to use more advanced eigen-
frequency detection methods than PS or COG algorithms.
Since the CNN can learn different patterns, it is possible
to construct such learning patterns which include various
frequency disturbances. Naturally, the CNN must also be
constructed in such a way that such patterns could be
learnt correctly. Furthermore, the CNN should be as sim-
ple as possible.

As the first step of the design using the a priori infor-
mation and by taking the available free and open-source
CNN software tool into consideration, an interval of 16
Hz was selected as the interval of interest with 47 Hz (the

Figure 6: Computational complexity of FFT and HWFT-
64

eigenfrequency of the non-deflated tire) at the center. One
of the goals of this research was to create a better eigen-
frequency detection method than PS. This meant that 16
classes had to be and were specified, thus the last layer of
the CNN had to be a fully connected layer that consisted
of 16 neurons with a softmax function. Since the input
interval is comprised of 16 elements, the input layer also
had to consist of 16 neurons. The structure of the pattern
recognition-based eigenfrequency-detecting CNN can be
even simpler than the simple image classifier shown in
Fig. 4 since much less input data is used.

The first attempt just applied a two-layer approach,
with an Input and an FC Layer. This design could not
be validated during the learning process. To enhance the
capabilities of the CNN, an additional layer had to be in-
serted. The new layer was a Convolutional Layer consist-
ing of four neurons and a 3x3 convolution kernel. The
outputs were 16D vectors (Fig. 7). The resulting CNN
was capable of passing the validation tests and robust
against the simulated disturbances. Implementation of the
CNN had to be capable of running on an ECU which
meant no OpenCL, Compute Unified Device Architecture
(CUDA), Compute Shaders or multiprocessor-based im-
plementation could be used. The MOJO-CNN was cho-
sen, which is an open-source implementation with dif-
ferent built in solving algorithms such as Adam, SGD
and AdaGrad [13]. Only the Adam solving algorithm was
used.

The learning samples were created by frequency shift-
ing of the spectrum of a non-deflated tire (Fig. 3). Addi-
tional learning samples were created by injecting a spike
at 54 Hz because, in most cases, disturbances would oc-
cur at this frequency. To prevent overfitting, data augmen-
tation was used. The validation samples were slightly al-
tered versions of learning samples. The amplitude was al-
tered to such a degree of different frequency components
that the location of the peaks remained unchanged.
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Figure 7: Structure of eigenfrequency-detecting CNN

After the design of the CNN, the new algorithm was
tested. For the tests, FFT, FCT and HWFT-64 were se-
lected as the transforms. The eigenfrequency identifica-
tion algorithms were PS, COG and our new CNN-based
pattern recognition. The test data used consisted of both
artificial, referred to as “simulated”, and real measure-
ment data.

4.2 Simulations and Measurements

The first sample tests were conducted in such a way to fa-
cilitate a known eigenfrequency. This was accomplished
by taking real measurement data, which were filtered by
a non-ideal Band-Stop Filter (BSF). The BSF being non-
ideal makes it possible for the original frequency compo-
nents to be still present but attenuated and, therefore, act
as disturbances. Following filtration by the BSF, known
frequency components were injected (47 Hz and 43 Hz
for the non-deflated and deflated tires, respectively).

As previously stated, the other set of test data were
unmodified measurement data. The data was provided
by Continental AG and the expected eigenfrequency was
used as a reference frequency. Two “simulated” and two
unmodified measurement sets of test data were used for
the tests. During the tests, the average frequency devia-
tion and accuracy were evaluated. The accuracy was de-
fined as how many times the algorithm would yield the
reference frequency compared to the number of times the
algorithm was executed. This could only be determined
on the “simulated” data set, since on real measurements,
the eigenfrequency cannot be guaranteed to be always the
same as given in the metadata sheet. The noises and dis-
turbances were uncontrolled and originated from the road
surface, transmission and combustion engine.

5. Results and Discussion

The results can be seen in Table 1. As can be observed,
the CNN yields better results with regard to approach-
ing the reference frequency more appropriately and with
less deviation than PS and comparable results to COG in
the case of both “simulated” and real measurement data.

Figure 8: Computational complexity of different combi-
nations of transform- and eigenfrequency-detecting meth-
ods, when the number of samples was 1024 and the inter-
val of interest consisted of 16 frequency spectral ampli-
tudes

The most significant improvement of the CNN-based pat-
tern recognition method can be observed in the results
from the FCT during the “simulated” data tests. How-
ever, except for the first test on the 47 Hz “simulated”
data, the COG yielded the smallest deviations, the dif-
ferences between the average frequencies of COG and
reference frequencies are bigger than in the case of PS
or CNN-based pattern recognition methods. In the case
of the CNN-based method, the deviation was about 50
% greater than in the case of COG. This is most likely
due to the fact that the output of the CNN-based method
yielded a lower frequency resolution than COG. On the
other hand, the HWFT-64 with CNN shows promising
and comparable results using just less than half of the
computational power required by FFT and COG.

6. Conclusion

In this paper, a new pattern recognition-based eigenfre-
quency detection algorithm for iTPMS was presented.
By combining this new algorithm with an optimized FH-
WFT, the resulting system is of lower computational
complexity, moreover, the reliability and accuracy is al-
most the same as that of the currently industrial main-
stream FFT and COG combination (Fig. 8). The com-
putational complexity was calculated by how often sim-
ple mathematical operations supported natively by the
CPU/FPU were used in the implementation and how
those embedded in iterations were affected by the input
data size. In this case, the input data size was 1024 sam-
ples. The COG can also work with the HWFT-64 but is
slightly less reliable (Table 1). Since more free resources
are still available, when using this new transform opti-
mized for iTPMS, further improvements or more com-
plex eigenfrequency detection methods can be used with-
out exceeding the computational complexity of the FFT.

48(1) pp. 123–130 (2020)



130 MÁRTON AND FODOR

Acknowledgements

The research was supported by EFOP-3.6.2-16-2017-
00002 programme of the Hungarian National Govern-
ment.

REFERENCES

[1] National Highway Traffic Safety Admin-
istration, Federal Motor Vehicle Safety
Standards, Tire Pressure Monitoring Sys-
tems, Controls and Displays, March 2009,
http://www.nhtsa.dot.gov/cars/rules/

rulings/tirepresfinal/TPMSfinalrule.pdf

[2] Schoettle, B.; Sivak, M.: The Importance of Ac-
tive and Intelligent Tires for Autonomous Ve-
hicles, The University of Michigan Sustainable
Worldwide Transportation Report, 2017, Report
No. SWT-2017-2 http://umich.edu/~umtriswt/

PDF/SWT-2017-2.pdf

[3] Silva, A.; Sánchez, J. R.; Granados, G. E.; Tudon-
Martinez, J. C.; Lozoya-Santos, J. J.: Comparative
Analysis in Indirect Tire Pressure Monitoring Sys-
tems in Vehicles, IFAC-PapersOnLine, 2019, 52(5),
54–59 DOI: 10.1016/j.ifacol.2019.09.009

[4] Gustafsson, F.; Drevo, M.; Forssell, U.; Lofgrën,
M.; Persson, N.; Quicklund, H.: Virtual Sensors of
Tire Pressure and Road Friction, SAE Technical Pa-
per Series, 2001. DOI: 10.4271/2001-01-0796

[5] Márton, Z.; Fodor, D.; Enisz, K.; Nagy, K.: Fre-
quency Analysis Based Tire Pressure Monitoring,

2014 IEEE International Electric Vehicle Confer-
ence (IEVC) DOI: 10.1109/IEVC.2014.7056187

[6] Oberst, U.: The Fast Fourier Transform, SIAM Jour-
nal on Control and Optimization, 2007, 46(2), 496–
540 DOI: 10.1137/060658242

[7] Strang, G.: The Discrete Cosine Transform,
SIAM Review, 1999, 41(1), 135–147 DOI:
10.1137/S0036144598336745

[8] Goswami, J. C.; Chan, A. K.: Fundamentals of
Wavelets, John Wiley & Sons, Inc., 2011 DOI:
10.1002/9780470926994

[9] Tarasiuk, T.: Hybrid Wavelet-Fourier Spectrum
Analysis, IEEE Transactions on Power Delivery,
2004, 19(3), 957–964 DOI: 10.1109/TPWRD.2004.824398

[10] Ziółko, B.; Kozłowski, W.; Ziółko, M.; Samborski,
R.; Sierra, D.; Gałka, J.: Hybrid Wavelet-Fourier-
HMM Speaker Recognition, International Journal
of Hybrid Information Technology, 2011, 4(4), 25–
41

[11] Albawi, S.; Mohammed, T. A.; Al-Zawi, S.: Un-
derstanding of a Convolutional Neural Network,
2017 International Conference on Engineering and
Technology (ICET), 2017. DOI: 10.1109/ICEngTech-
nol.2017.8308186

[12] Hijazi, S.; Kumar, R.; Rowen, C.: Using Convolu-
tional Neural Networks for Image Recognition, IP
Group, Cadence, 2015. https://ip.cadence.com/
uploads/901/cnn/

[13] https://github.com/gnawice/mojo-cnn/wiki

Hungarian Journal of Industry and Chemistry

http://www.nhtsa.dot.gov/cars/rules/rulings/tirepresfinal/TPMSfinalrule.pdf
http://www.nhtsa.dot.gov/cars/rules/rulings/tirepresfinal/TPMSfinalrule.pdf
http://umich.edu/~umtriswt/PDF/SWT-2017-2.pdf
http://umich.edu/~umtriswt/PDF/SWT-2017-2.pdf
https://doi.org/10.1016/j.ifacol.2019.09.009
https://doi.org/10.4271/2001-01-0796
https://doi.org/10.1109/IEVC.2014.7056187
https://doi.org/10.1137/060658242
https://doi.org/10.1137/S0036144598336745
https://doi.org/10.1137/S0036144598336745
https://doi.org/10.1002/9780470926994
https://doi.org/10.1002/9780470926994
https://doi.org/10.1109/TPWRD.2004.824398
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://ip.cadence.com/uploads/901/cnn/
https://ip.cadence.com/uploads/901/cnn/
https://github.com/gnawice/mojo-cnn/wiki

	Introduction
	 Transforms related to iTPMS
	Fourier Transform
	Cosine Transform
	Wavelet Transform
	Hybrid Wavelet-Fourier Transform

	Eigenfrequency Detection Methods
	Peak Search Algorithm
	Center of Gravity algorithm
	Convolutional Neural Networks

	Our New iTPMS Algorithm
	CNN-based Determination of Eigenfrequencies
	Simulations and Measurements

	Results and Discussion
	 Conclusion 

