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 Abstract 
This paper presents a literature review about Particle Swarm 
Optimization (PSO), Firework, Firefly, Clonal Selection, and 
Cuckoo Search algorithms, which are among the most common 
natural-inspired optimization algorithms. These algorithms were 
tried on different benchmark functions. The obtained results were 
analyzed, and the performance was compared. The results 
showed that PSO and Firefly Search algorithms provided the 
best performance in the studied cases. 

1 Introduction  

In the last decades, the complexity of the real-world problems has significantly increased and 
the use of the traditional algorithms became ineffective. In this context, the nature-inspired 
computational methodologies have attracted the attention and interest of the researchers in different 
areas due to their simplicity, leverage and efficiency. Many algorithms have been developed and 
presented such as Particle Swarm Optimization, Firework, Firefly algorithms, etc. This type of 
algorithm has been used to address a variety of optimization problems where the traditional 
algorithms don’t provide satisfactory performance.  

This paper was organized as follows: after a brief introduction in the first section, the Particle 
Swarm Optimization algorithm was presented in the second section. Firework, Clonal, Firefly and 
Cuckoo Search were presented in sections three, four, five and six respectively. In section seven, 
the experiments and the obtained results are discussed. The conclusions of the paper are presented 
in section eight. 

2 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization is a metaheuristic global optimization algorithm proposed by 
Kennedy and Eberhart in 1995 [12]. It is robust stochastic optimization technique based on the 
movements of and intelligence of swarms. PSO was inspired by social behavior of the organism’s 
groups where the information can be share between the members. Swarms of n particles (individual 
agents) communicate with one another using search directions (gradients) and each particle is a 
candidate solution of the optimization problem. PSO performs searching in the space of the fitness 
function or objective function f(xi) using a swarm of particles that updates from iteration to iteration. 
The goal is to find the global best among all the current best solution. In other words, the goal is to 
find the best solution among the possible solutions in the search space [1] [15] [20]. 

Each particle can be characterized by its position vector Xi
t = (xi(1), xi(2), . . , xi(n) )T and its 

velocity vector Vi
t =(vi(1), vi(2), . . , vi(n) )T, here i denotes the number of the particle, while n is the 

number of the dimensions of the search space. The velocity vector contains the gradient (direction) 
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of which particles travel, so it describes the movements of the particle in the sense of direction. 
These vectors are updated in each iteration based on equations (1) and (2). 

Vi
t+1 = wVi

t + c1r1
t  (pbesti −  Xi

t) + c2r2
t  (gbesti −  Xi

t) (1) 

Xi
t+1 =  Xi

t +  Vi
t+1 (2) 

where: 𝑐1, 𝑐2  are self-confidence coefficient and social coefficient, respectively; 𝑟1, 𝑟2  are 

random numbers uniformly distributed in the [0, 1] interval, and 𝑤 is the inertial weight, pbesti denotes 
the best position of the ith particle so far (personal best), while gbesti stands for the overall best 
position identified so far (global best). Figure 1 and Figure 2 show the update of the particle’s velocity 

and its position at 𝑡𝑡ℎ iteration [10]. 

 

Figure 1. The velocity vector 

 

Figure 2. The updated velocity vector at (t) iteration 

The PSO algorithm’s flowchart can be represented as follow [10]: 
 
1. Initialization: For each particle 𝑖 in a swarm population size P: 

1.1 Initialize 𝑋𝑖 randomly. 

1.2 Initialize 𝑉𝑖 randomly. 

1.3 Initialize the current 𝑏𝑒𝑠𝑡𝑖 

1.4 Initialize the global pest 𝑔𝑏𝑒𝑠𝑡. 

2. Repeat until stopping criterion is satisfied  

2.1 For particle 𝑖 

2.1.1 Update 𝑉𝑖
𝑡  and 𝑋𝑖

𝑡 according to the equations 1 and 2. 

2.1.2 Evaluate the objective function 𝑓 (𝑋𝑖)  at the new position. 

2.1.3 𝑝𝑏𝑒𝑠𝑡𝑖 ←  𝑋𝑖
𝑡 If  𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) >𝑓 (𝑋𝑖

𝑡). 

2.1.4 𝑔𝑏𝑒𝑠𝑡 ←  𝑋𝑖
𝑡 If  𝑓 (𝑔𝑏𝑒𝑠𝑡 ) >𝑓 (𝑋𝑖

𝑡). 
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3 Firework Optimization Algorithm 

In the last years, Swarm Intelligence (SI) Algorithms such as Swarm Optimization (PSO) and 
Clonal Selection Algorithm have gained a significant attention and become very popular optimization 
algorithms among the researchers [4]. A new Swarm Intelligence algorithm called Firework Algorithm 
was developed by Tan and Zhu. It was inspired by the emergent swarm behavior of fireworks and it 
uses the stochastic search technique. The search technique used in Firework algorithm bases on 
creating explosion around specific points, and the sparks of the explosion is considered as a local 
search space around the point. The success of the Firework algorithms mainly based on two factors, 
the selected locations and the good design of the explosions [8].  

Based on the nature of the firework explosions, two main behaviors can be observed, the 
number and distribution areas of the generated sparks. In a good firework explosion, it can be noticed 
that the number of the sparks is quite large, and they are located in the explosion center [16]. 

By comparing the two types of firework explosion, it is clear that the more generated sparks 
with less amplitude the best firework we get. Meaning that, for Firework algorithm it is better to use 
more sparks to search in the local areas. The firework algorithms can be described as follows. 

1. Select n locations ( nixi ..1|  ). 

2. Evaluate each location (yi=f(xi)). 
3. Calculate the number of sparks for each location (si). 
4. Calculate the amplitude of each explosion (Ai). 
5. Calculate the number of dimensions in which sparks will move away from the original 

location (z). 
6. For each location and for each spark calculate the displacement (new position) of 

the spark. 
7. Evaluate each spark. 
8. Keep the best spark location and select n-1 locations from the positions of the 

sparks. These will serve as the locations for the fireworks in the next cycle. 
9. Go to step 2. 

By considering the following general optimization problem: 

 Minimize f(x)  ∈  ℝ, xmin  ≤  x  ≤  xmax (3) 

where f(x) an objective function is  x = x1, x2, … . . , xd is a location in the potential space, and 
( x min , x max ) are the bounds of the space, the number of the generated sparks for each explosion 

x i can be determined as follows:  

 si = m.
ymax−f(xi)+ξ 

∑ (ymax−f(xi))+ξn
i=1

 (4) 

where m is a parameter used to control the total number of the generated sparks,  ymax is the 
maximum (worst) value of the objective function among the n fireworks, where  
ymax = max(f(x i)), (i = 1, 2, … . , n), and (ξ) is a very small constant to avoid zero division error. The 
number of spark is limited by lower and upper bounds as follows 

 

    ,1,,min,max  basmbmas ii  (5) 

 
where a and b are constant parameters of the method, and   denotes a rounding operation. 

The Amplitude of explosion for each firework can be defined as it is shown in equation 6, where Â is 
the maximum explosion amplitude, 𝑦𝑚𝑖𝑛 = min  (𝑓(𝑥 𝑖)), (𝑖 = 1, 2, … . , 𝑛) is the minimum of the 
objective function among current set of locations. 

 𝐴𝑖 = 𝐴̂.
𝑓(𝑥𝑖)−𝑦𝑚𝑖𝑛+ξ 

∑ (𝑓(𝑥𝑖)−𝑦𝑚𝑖𝑛)+ξ𝑛
𝑖=1

 (6) 
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The number of affected directions of the explosion is obtained as follows   ,1,0randomNz   

where  𝑟𝑎𝑛𝑑𝑜𝑚(0,1) is uniformly distributed random number over [0,1], N is the dimensionality of the 
location (𝑥).  

The final (after the firework explosion) position (Step 6) of the spark j is determined by 
calculating a displacement from the location of the firework (xi) by applying the following calculation 
steps. 

a. Randomly select z dimensions 

  ,..1,1| zkNddD kkj   (7) 

b. Calculate the displacement in a dimension 

   ,1,1 randomAh ij  (8) 

c. For each selected dimension move the spark from the original firework location by applying 
the calculated displacement. 

 zkhxx jdi

j

d kk
..1,,   (9) 

d. Apply eventual lower and upper bounds for the coordinates. 

   ,,min,max max,min,

j

ddd

j

d kkkk
xxxx   (10) 

where 
kdxmin,   and 

kdxmax,   are the lower and the upper bounds in the dk dimension. 

 
In course of the preparation for the next iteration (Step 8) the location with the best object 

function value is always kept. The remaining n-1 locations for the fireworks of the next iteration are 
selected from a collection of positions (K) that contains all the firework and spark locations of the 
current iteration excluding the previously mentioned best location. In course of the selection the 
objective function values of the candidates are not taken into consideration, only their distances from 
other locations are used. Here the key idea is to ensure a diversity of the locations. The selection 
process can be described by the following steps: 

 
a. For all candidates determine their so-called general distance from other locations 

    ,,



Kx

jii

j

xxdxR  (11) 

where 𝐾 is the set of current locations and d(.) is an arbitrary distance measure.  
b. Assign a selection probability to all candidate locations 

 𝑃(𝑥𝑖) =  
𝑅(𝑥𝑖)

∑ 𝑅(𝑥𝑖)𝐽∈k
 (12) 

c. Sort the candidate locations in descending order by their selection probability. 
d. Select the first n-1 locations from the list. 
 

4 Clonal Selection Based Optimization 

In 2002, De Castro and Von Zuben were inspired by the biological and artificial immunology 
and they proposed clonal selection algorithm. In immunology, each unique molecule (antigen) is 
detected and recognized by an antibody, where the antibody is a protein that is used by the immune 
system to detect and neutralize the foreign objects. In this context, the Artificial Immune System 
algorithms imitate the principles of immune systems. In the recent years, the clonal selection theory 
has gained great attention from scholars and inspired them to provide algorithms which based on 
creating different candidate solutions through cloning, selection and mutation procedures. Clonal 
Selection Based Algorithm is used to solve several types of problems including problems of 
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multimodal optimization based on clonal selection principle [2] [5]. Comparing to the heuristics 
algorithms such as neural networks and genetic algorithms, the clonal selection was reported to 
provide a better performance in different applications such as pattern recognition [11] [17]. The Steps 
of the Clonal Selection Based algorithm by De Castro and Von Zuben is mainly proposed for the 
pattern recognition applications which are as follows: 

1. Initialize all relevant parameters (antibody size, number of iterations..., etc.), chose the 
antigen randomly and create the set of the candidate antibodies.  

2. For each candidate antibody, the affinity between the antigen and the antibody is calculated 
and the first (n) highest affinity antibodies are selected. 

3. The selected (n) antibodies are cloned and the number (n) is related positively with the affinity 
factor. 

4. A treatment of mutation on the antibodies that are generated after cloning is performed, 
taking into consideration that the probability of mutation is decreased with the increase of the 
affinity factor. 

5. After the mutation, the affinity of the antibody is calculated, and the antibody highest affinity 
antibody is selected. 

6. The selected antibody in the previous step is compared with the one in the current memory 
set and the highest affinity antibody is selected to be moved into the memory set. 

7. The worst (d) remaining antibodies (have the worst affinity to the remaining antigen) are 
replaced with (d) new randomly selected antibodies 

8. Next iteration is performed starting from the step 2, and the algorithm is terminated when the 
termination condition is achieved (maximum number of iterations). 

From the algorithm steps it can be noted that the algorithm chose the first n antibodies that 
have the highest affinity of the candidate antibodies in step2.  The other steps are about cloning and 
mutation processes of these antibodies [5]. The main problem types that are studied and solved by 
clone selection algorithm [17] are in general function optimization, Pattern Recognition (PR), 
scheduling, Industrial Engineering (IE) related problems and others such as classification, machine 
learning and time series prediction. 

5 Firefly Algorithm 

Firefly Algorithm (FA) is metaheuristic algorithms and one of the swarm-based algorithms that 
was developed by Yang [24]. FA bases on the behavior and flashing patterns of the fireflies. Fireflies 
communicate with each other by means of flashing patterns which are unique in most cases.  In this 
context and in other words, the Firefly Algorithm emulate the way that the fireflies are communicate 
using their flashing lights. Two main factors have the essential role, the light intensity and 
attractiveness. For simplicity, the fact of that the attractiveness is determined by the brightness can 
be stated. Metaheuristic Algorithms based on approximation solutions to deal with the optimization 
problem which it may be good for some applications [21]. The Algorithms taking in account the 
following facts: 

 All fireflies are attracted to each other (unisex) regardless their sex. 

 The brightness determines the attractiveness of a firefly meaning that attractiveness is 
proportional to the brightness 

 The brighter fireflies attract the less bright ones, and it moves randomly in the case of no 
difference in brightness.  

 Brightness is depending objective function. 

 Light intensity is affected by distance and light observation coefficient of the medium that it 
passes through. 

Generally speaking, and based on the facts above, the Firefly Algorithm can be descried with 
the following steps: 

Set algorithms parameters (α: step length of the random movement, γ light absorption) 
Set Max Generation: maximum number of iterations 

Objective function 𝑓(𝑥) ,      𝑥 = (𝑥1, 𝑥2 … . 𝑥𝑑)𝑇 
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Light intensity 𝐼𝑖 at xi is determined by 𝑓(𝑥𝑖) 

Generate initial populations of  𝑛 firlyies. 
For iteration =1: MaxGeneration 
 Calculate the brightness, 𝐼 

 Sort the solutions in such away : 𝐼𝑖 ≥  𝐼𝑖−1  
 For 𝑖 = 1 ∶ 𝑛 − 1 
  For 𝑗 = 𝑖 + 1 ∶ 𝑛 
   If  𝐼𝑗 ≥  𝐼𝑖− 

    Move firefly 𝑖 towords firefly 𝑗 
   End if 
  End for 
 End for 
Move firefly randomly.  
End for 
Report the best solution. 

As we mentioned earlier, the brightness (light intensity) is directly related to the distance, where 
the brightness decreases as the distance increases [6]. Light intensity is subject to inverse square 
law as it is shown equation 13, where(Is): is the source light intensity and (Ir) is the light intensity at 
distance (r). 

 Ir <  
Is

r2 (13) 

The light intensity can be described by equation 14 when it passes through medium light 
absorption coefficient (γ), Where (Io) is the light intensity at distancer = 0. 

 𝐼 =  𝐼𝑜𝑒− γr (14) 

The attractiveness β of the firefly can be described based on the light intensity of the 
neighboring firefly as equation 15 shows, where βo is the attractiveness at is r = 0. 

 β =  βoe− γr2
 (15) 

The generalized function of light intensity for (m > 1) is described by equation 16. It is worth 
to point out that any other monotonically decreasing function can be used. 

 β𝑟 =  β𝑜𝑒− γ𝑟𝑚
 (16) 

Cartesian distance is used to determine the distance between two fireflies xi and xj as equation 

17 shows, where xi ,k  is the part of the spatial coordinate  xi . 

 rij =  ‖xi −  xj‖ =  √∑ (xi ,k − xj ,k  )
2d

k=1

2
 (17) 

For two fireflies, in the case of firefly at j is brighter than firefly at i, firefly i will be attracted to 

firefly j and will move in its direction using the formula described in (18), where the second term of 
the equation represents the attraction, and the third term represents the randomization where (α) is 

an algorithm parameter describes the length of the step for the random movement and (∈) is a 
random vector from uniform distribution in range [0,1]. 

 xi
t+1 =  xi

t + βoe− γr2
(xj

t − xi
t) + αx ∈i

t (18) 

Generally speaking, the distance ( r ) is not only about Euclidean distance, it may represent 
any essential measure based on the optimization problem itself. For example (r) can be defined as 
time interval. Firefly Algorithm is suitable for parallel computing since different FA algorithms can 
work almost independently [23]. The attraction mechanism inspired other researchers to develop 
other algorithms based on this concept, for example Charged System search which uses Coulomb’s 
law and search algorithm which uses Newton’s law of gravitation. 
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6 Cuckoo Search Algorithm 

Cuckoo Search (CS) is metaheuristic algorithm which inspired by some cuckoo species laying 
their eggs in the nest of individuals of other species birds that increase their survival and productivity. 
It was developed by Xin-She Yang and Suash Deb in 2009 [22]. Consequently, in this algorithm 
there are two different species of birds which are the Cuckoo birds and the host birds. The Cuckoo 
eggs can be discovered by the host bird and in this case, there are two possibilities:  

1. The host bird will throw the egg away. 
2. The host bird will abandon the nest and build a new one. 

The probability of discovering the alien eggs by the host bird (Pa) can be determined asPa ∈
(0,1), and for the simplicity of the implementations, three main rules are suggested: 

1. One egg can be laid by the cuckoo bird at a time and it is placed in a randomly selected nest. 
Mathematically speaking: each egg represents a solution and it is stored in nest: 
Cuckoo egg = New solution 
Eggs in nest = Set of solutions 

2. The nest that will be passed to the next generation is the one with the higher quality of eggs. 
Mathematically speaking: 
High quality egg = Best solution near optimal value. Meaning that the eggs which are more 
similar to the eggs of the host bird have more opportunity to survive and to a new mature 
cuckoo.  

3. The number of available host nest is defined and fixed. The probability of discovering the 
cuckoo eggs by the host bird is Pa ∈ (0,1) and the discovered egg can be thrown away or the 
host bird leaves the nest and builds a new nest. Mathematically speaking: 
Number of host nest = Fixed (i.e., Population). 
Host bird discovers cuckoo eggs = Worse solution. 

The new solution of the cuckoo search algorithm can be determined based on equation 19 

which is stochastic equation for global random walk (based on Lévy flights) [18], [3], Where xi
t is the 

current location,i = (1, 2, 3, … . , n), a is step size, λ is levy exponential and ⊕ is entry wise 
multiplication. 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑎 ⊕ 𝐿𝑒𝑣𝑦(𝜆) (19) 

The Cuckoo Search algorithm is a simulation of Random Search Walk Process. On the other 
hand, CS algorithm uses a combination of the global and local random walk which can be described 

based on equation 20, Where xi
t and  xk

t  are represents two solutions that are selected randomly, H  

is Heaviside function, ε is a random number and s is a step size. 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑎𝑠 ⊕ 𝐻( 𝑃𝑎 −  𝜀) ⊕ (𝑥𝐽
𝑡 − 𝑥𝐾

𝑡 ) (20) 

The flow chart of the Cuckoo Search algorithm can be described as (figure 3) shows [13]: 
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Figure 3. Workflow of Cuckoo search algorithm 

The parameters of the CS algorithm need to be chosen, where the probability  𝑃𝑎 and the 

population size 𝑛 are the essential parameters as we can set the Levy exponent 𝜆 and the step 
size (a ) as a constants. The parameters can be chosen based on the following recommendations 

which are sufficient for most of the optimization problems: λ = 1.5, a = 0.01, n = 15 to 40 and Pa =
0.25. The implementations of the Cuckoo Search algorithm in a variety of optimization problems have 
shown a promising performance [7], [25]. In addition to the simplicity of implementations of the 
Cuckoo Search algorithm, it has several advantages such as the ability to deal with multi-criteria 
optimizations problems and it can be still hybridized with other swarm-based algorithms.  

7 Experiments and Results 

The performance of the investigated PSO, Firework, Firefly, Clonal Selection, and Cuckoo 
Search optimization algorithms were compared by conducting experiments on five benchmark 
functions. The used benchmark functions, their global minimum values, the corresponding x vectors 
as well as the lower and upper boundaries of the search space are presented in Table 1. Here d 
denotes the number of dimensions of the search space.  

 

Table1. Benchmark Functions 

Function 
Name 

Formula xi min xi max x* f(x*) 

Griewank 
Function 𝑓(𝑥) =  ∑

𝑥𝑖
2

4000  

𝑑

𝑖=1

 −  ∏ cos (
𝑥𝑖

√𝑖
)

𝑑

𝑖=1

+ 1 

-100 100 (0,0,…,0) 0 

Rastrigin 
Function 

𝑓(𝑥) = 10𝑑 +  ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 
-5.12 5.12 (0,0,…,0) 0 

Schwefel 
Function 𝑓(𝑥) =  (∑ 𝑥𝑖

2

𝑑

𝑖=1

)

10

 

-10 10 (0,0,…,0) 0 
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Function 
Name 

Formula xi min xi max x* f(x*) 

Rosenbrock 
Function 

𝑓(𝑥) =  ∑[(1 − 𝑥𝑖)2 + 100(𝑥𝑖+1 − 𝑥2)2 ]

𝑑−1

𝑖=1

 

-5 5 (1,1,…,1) 0 

Sphere 
Function 

 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝐷

𝑖=1

 

-5 5 (0,0,…,0) 0 

 

The obtained results are shown in Table 2. The initial parameters of the optimization algorithms 
were set as follows. The starting point was determined randomly and the number of dimensions was 
10. The random number generator was initialized using the same seed, which ensured the 
repeatability of the experiments.  

In case of Particle Swarm Optimization, the population size = 50, self-confidence 
coefficient=0.2, social coefficient =0.2, inertial weight coefficient = 0.6, maximum number of allowed 
iterations=100.  

In case of Firework Optimization Algorithm, the number of locations = 50, the constant 
influencing the number of sparks=40, constant for the maximum value of the explosion 
amplitude=10, constant for the lower bound of number of sparks = 0.5, constant for the upper bound 
of sparks = 0.9, and constant for the minimum value of the explosion amplitude = 1.  

In case of Firefly optimization algorithm, the population size (number of fireflies) = 50, 
randomness strength coefficient = 1, attractiveness constant = 1, absorption coefficient = 0.01, 
randomness reduction factor = 0.97.  

In case of Clonal Selection based optimization the number of antibodies in the repertoire = 50, 
number of antibodies selected for hypermutation in the first generation = 13, the initial hypermutation 
rate = 0.5, the number of antibodies selected for cloning = 14, the coefficient that determines the 
number of clones that are created for each selected antibody = 0.4, hypermutation coefficient = 0.8, 
number of random antibodies created at the end of each iteration cycle = 15.  

In case of Cuckoo Search Algorithm population size = 50, discovery rate of alien eggs = 0.25. 

Table 2. Minimum/average cost function values obtained over runs  

Evaluation 
Function 

Best Cost/Average Cost  

PSO Firework Firefly 
Clonal 

Selection 
Cuckoo Search 

Griewank 0.1588/0.4123 1.3655/2.9063 2.2482/3.4903 1.3784/1.5336 0.6261/07781 

Rastrigin 6.6862/17.6243 30.6396/59.6454 11.2885/19.5941 44.1714/62.7618 23.8862/32.2878 

Schwefel 0.00003/33.1325 0.0001/0.0110 1e-6/1.7982e-5 694.5651/565940 0.2398/13.6949 

Rosenbrock 16.8345/85.6232 52.9212/182.5048 9.7122/14.8007 839.9228/1761.3 39.2572/76.9222 

Sphere 0.0661/0.5381 0.3149/0.8866 0.0427/0.0821 6.1113/9.2779 0.1763/0.3336 

The goal of the search algorithms was to find the minima of the benchmark functions. 
Therefore, the performance of the algorithms was measured by the actual lowest function value they 
found after the allowed number of generations/iterations. In case of each algorithm the search 
process was carried out 20 times and two performance indicators were taken into considerations, 
i.e. the result of the best run (the lowest function value found) and the average of the lowest function 
values found at the end of the individual runs. The results are presented in Table 2. By taking into 
consideration the fact that some algorithms provide better performance based on the problem itself, 
the obtained results show that in case of the Griewank and the Rastrigin functions PSO provided the 
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best results regarding both performance indicators, while in case of the Schwefel, Rosenbrock and 
Sphere functions the Firefly algorithm ensured the best results. 

8 Conclusions 

In this paper, an overview of five Nature-Inspired Optimization Algorithms (PSO, Firework, 
Firefly, Clonal Selection, and Cuckoo Search) was presented. The performance of these algorithms 
was compared based on conducting several experiments on five benchmark functions. The 
experiments showed that PSO and Firefly algorithms provided better performance compared to the 
other algorithms, meaning that both are considered as a promising algorithm to be used with a variety 
of real-life applications. On the other hand, it is worth to point out that the results and the accuracy 
of the algorithms are directly affected by the chosen values for their parameters. Thus, this study 
provides a good reference in order to choose the suitable parameters, but generally speaking, 
choosing the values of the parameters is still considered as a challenge which will be taken in 
consideration with more details in the future works. 

Further research planes include the application and comparison of the different optimization 
algorithms in case of fuzzy models (e.g. [9] [14] [19]). 
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