
Ensemble noisy label detection on MNIST∗

István Fazekasa, Attila Bartab, László Fóriánb

aUniversity of Debrecen, Department of Applied Mathematics and Probability Theory
fazekas.istvan@inf.unideb.hu

bUniversity of Debrecen, Doctoral School of Informatics
barta.attila@inf.unideb.hu
forian.laszlo@inf.unideb.hu

Submitted: January 18, 2021
Accepted: March 29, 2021

Published online: May 18, 2021

Abstract

In this paper machine learning methods are studied for classification data
containing some misleading items. We use ensembles of known noise correc-
tion methods for preprocessing the training set. Preprocessing can be either
relabeling or deleting items detected to have noisy labels. After preprocess-
ing, usual convolutional networks are applied to the data. With preprocess-
ing, the performance of very accurate convolutional networks can be further
improved.

Keywords: Label noise, deep learning, classification

AMS Subject Classification: 68T07

1. Introduction

In recent years, deep neural networks have reached very impressive performance in
the task of image classification. However, these models require very large datasets
with labeled training examples, and such datasets are not always available. The
labeling process is often very expensive, or it is very difficult even for experts in
a particular field. That is what can lead to the use of databases with label noise,
which contain incorrectly labeled instances. Therefore, it is important to examine

∗This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The
project was supported by the European Union, co-financed by the European Social Fund.

Annales Mathematicae et Informaticae
53 (2021) pp. 125–137
doi: https://doi.org/10.33039/ami.2021.03.015
url: https://ami.uni-eszterhazy.hu

125

training on this kind of datasets. According to a widely accepted assumption, deep
networks learn consistent, simple patterns in the beginning, and then it is followed
by the learning of the harder examples with possibly incorrect labels [2]. So treating
the label noise in the training set can lead to a better generalization ability instead
of its overfitting to the wrong examples. A lot of studies address the noisy label
problems, for example, [1] is an extensive survey of a broad range of the existing
methods.

In this work we investigate the possibilities of improving a classifier (which is
an ensemble of deep neural networks) by handling the label noise in the training
dataset. We classify with an ensemble of convolutional neural networks (CNNs).
At the start, we train that ensemble on the original training dataset. Then we
are going to apply a label noise cleansing technique on the training data. Finally,
we take a CNN ensemble with the same structure as our original CNN ensemble,
and train it on the new dataset gained after treating the label noise. We evaluate
and compare the performance of the ensemble classifiers and draw conclusions.
As our main goal is to study label correcting neural networks for preprocessing
purpose, so here we use only simple ensemble building methods. The effect of more
sophisticated voting systems (see, e.g. [7]) on our two-phase classification method
can be studied later.

We conduct experiments on the MNIST dataset [6]. MNIST is a database of
handwritten digits, it consists of images with 28× 28 grayscale pixels. The size of
the training set is 60 000 examples and the test set has 10 000 samples. However,
MNIST contains some misleading items. To support it, some examples that might
be considered as mislabeled images can be seen on Figure 1.

Label: 3 Label: 5 Label: 9 Label: 5

Figure 1. Some misleading images in the MNIST dataset.

We shall consider the misleading items as inaccurately labelled ones so we can
apply some known methods elaborated to handle noisy labels.

2. Methods to detect and correct label noise

In the beginning, let us define some notations. We denote vectors with bold (e.g. x)
letters and matrices with capital (e.g. 𝑋) letters. Specifically, 1 corresponds to a
vector of all-ones. In the 𝑐-dimensional space, the term of hard-label and soft-

126 I. Fazekas, A. Barta, L. Fórián

label spaces are used, they are denoted by ℋ = {y : y ∈ {0, 1}𝑐,1ᵀy = 1} and
𝒮 = {y : y ∈ [0, 1]𝑐,1ᵀy = 1}, respectively. It is easy to see that ℋ contains
one-hot vectors, and the elements of 𝒮 are discrete probability distributions.

In an image classification problem with 𝑐 classes, we have a training set of 𝑛
images: 𝑋 = {x1,x2, . . . ,x𝑛} with the corresponding ground-truth

𝑌 𝐺𝑇 = {y𝐺𝑇1 ,y𝐺𝑇2 , . . . ,y𝐺𝑇𝑛 }

labels. y𝐺𝑇𝑖 ∈ ℋ represents the class of x𝑖 with a 1 in the coordinate corresponding
to that class.

Using a neural network with the cross entropy loss function, the model can be
trained by minimizing

ℒ = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

y𝐺𝑇𝑖𝑗 log 𝑠𝑗(𝜃,x𝑖),

where 𝜃 is the set of the network parameters, y𝐺𝑇𝑖𝑗 is the 𝑗-th element of y𝐺𝑇𝑖 and
𝑠𝑗 is the 𝑗-th element of the network’s softmax output. If the clean labels are given,
we only have to minimize this function with respect to 𝜃.

However, in this noisy label setting, the ground-truth labels are not known,
only

𝑌 = {y1,y2, . . . ,y𝑛}

is given, which is the set of noisy labels. But the goal is the same: our task is to
train the model to predict the true labels.

2.1. A joint optimization framework

The first technique we have used is the framework in Tanaka et al. [8]. The authors
of that paper suggest a two-stage approach. The noise correction is made in the
first phase by jointly optimizing the weights of a neural network and the labels
of the training data. During this joint optimization process they train a classifier
and correct the wrong labels at the same time. It is made possible by repeating
alternating steps of updating the network parameters and the training labels. In
the early stages, the training goes in the usual way, but a high learning rate is
used, because it prevents the learning of noisy labels. When the classifier has
achieved a reasonable accuracy, they start the repetition of the two alternating
steps mentioned before. The first is the well known update of the network weights
by the stochastic gradient descent method. In the other step, they update the
labels. And from now on, a more complex loss function is used, two regularization
terms are added to the classification loss to prevent certain anomalies. Once this
label correction is done, the authors start the training over in the second step with
the recently obtained new labels and without the two regularization terms of the
loss function. The new labels are considered as clean and the trained network is
considered as accurate.

Ensemble noisy label detection on MNIST 127

In [8] the noisy label problem is formulated as the joint optimization of the
network parameters and the labels:

min
𝜃,𝑌
ℒ(𝜃, 𝑌 |𝑋).

The loss function is

ℒ(𝜃, 𝑌 |𝑋) = ℒ𝑐(𝜃, 𝑌 |𝑋) + 𝛼ℒ𝑝(𝜃|𝑋) + 𝛽ℒ𝑒(𝜃|𝑋), (2.1)

where ℒ𝑝(𝜃|𝑋), ℒ𝑒(𝜃|𝑋) are the regularization losses, and 𝛼, 𝛽 are hyper-param-
eters. The ℒ𝑐(𝜃, 𝑌 |𝑋) classification loss is made with the Kullback-Leibler diver-
gence of the labels and the softmax outputs:

ℒ𝑐(𝜃, 𝑌 |𝑋) =
1

𝑛

𝑛∑︁

𝑖=1

𝐷𝐾𝐿(y𝑖||s(𝜃,x𝑖)),

where

𝐷𝐾𝐿(y𝑖||s(𝜃,x𝑖)) =

𝑐∑︁

𝑗=1

𝑦𝑖𝑗 log

(︂
𝑦𝑖𝑗

𝑠𝑗(𝜃,x𝑖)

)︂
.

[8] introduces two possible ways to update the labels at the end of the epochs:
the hard-label method and the soft-label method. In the first case, the new labels
are one-hot vectors, too. A 𝑦 ∈ ℋ is updated in the following way:

𝑦𝑖𝑗 =

{︃
1, if 𝑗 = arg max𝑘 𝑠𝑘(𝜃,x𝑖),

0, otherwise.

In the second case, the new labels are the softmax outputs:

y𝑖 = 𝑠(𝜃,x𝑖).

Tanaka et al. [8] experienced that the soft-label method performed better than the
hard-label method. In experiments, sudden changes in the labels were prevented
by the use of a relatively high momentum (0.9), and the new soft labels were not
single softmax outputs, but the average of softmax outputs in the last 10 epochs.

Finally, we describe regularization terms in the loss function of [8]. The regu-
larization loss ℒ𝑝(𝜃|𝑋) is needed to prevent the assignment of all labels to a single
class. If we only minimize ℒ𝑐(𝜃, 𝑌 |𝑋) with respect to 𝜃 and 𝑌 , this is a trivial
solution. To solve this issue, we use the prior distribution 𝑝 of the classes in the
entire training set. We do not let the distribution of the updated labels be much
different from 𝑝, so we introduce the Kullback-Leibler divergence of 𝑝 and 𝑠(𝜃,𝑋)
as a loss function term:

ℒ𝑝 =

𝑐∑︁

𝑗=1

𝑝𝑗 log
𝑝𝑗

𝑠𝑗(𝜃,𝑋)
.

𝑠(𝜃,𝑋) is approximated by calculating the mean of softmax outputs over each
mini-batch.

128 I. Fazekas, A. Barta, L. Fórián

After the start of label updating in the case of soft labels, it might happen that
the network output is the same as the soft label for most of the training examples,
and it stops the learning process. That is why the entropy loss ℒ𝑒(𝜃|𝑋) is needed.

ℒ𝑒(𝜃|𝑋) = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

𝑠𝑗(𝜃,x𝑖) log 𝑠𝑗(𝜃,x𝑖)

This entropy term forces the probability distribution of the soft labels to concen-
trate to a single class.

This noise correcting and training process needs a background network. To this
end, the PreAct ResNet [5] was used in [8]. It is a modification of the famous ResNet
network [4]. Residual Networks give a simple yet groundbreaking solution to the
vanishing gradient problem. They use identity shortcuts, which let the data skip
one or more layers. Obviously, the error back-propagation is the point where these
models can really take advantage of these shortcuts. The pre-activation residual
blocks [5] let the gradients flow throughout the PreAct ResNet even more easily.
Such networks may have hundreds of layers and researchers consider them more
accurate than ResNets.

It is important to note that this framework does not depend on the background
network structure, it can be used with any background network. From now on,
this technique will be referred to as Tanaka’s method.

2.2. Probabilistic end-to-end noise correction

The second method we have used is introduced in [10]. This framework is called
PENCIL (probabilistic end-to-end noise correction in labels). This technique uses
soft labels, too. So the labels of the images are not fixed categorical values, but
distributions among all possible labels. Similarly to [8], the labels are updated
iteratively during the training of a classifier. But those updates are made with
back-propagation instead of the moving average of softmax outputs.

For every image x𝑖, a label distribution y𝑑𝑖 ∈ 𝒮 is maintained and updated.
These distributions are the estimations of the y𝐺𝑇𝑖 clean labels. The y𝑑𝑖 ∈ 𝒮 values
are initialized based on the given noisy labels y𝑖. The initialization goes in the
following way. An additional label ̃︀y𝑖 is used to assist y𝑑𝑖 . ̃︀y𝑖 is initialized by
multiplying the given y𝑖 with a large constant:

̃︀y𝑖 = 𝐾y𝑖.

(𝐾 is the same value for all 𝑖, in [10] 𝐾 is 10). ̃︀y𝑖 is then transformed into a
probability distribution with softmax. This will be the value of y𝑑𝑖 :

y𝑑𝑖 = softmax(̃︀y𝑖).

The loss function terms are also similar to [8], but there are important dif-
ferences. The authors showed that Kullback-Leibler divergence with interchanged

Ensemble noisy label detection on MNIST 129

arguments is more suitable for this noise correction task than the classic form. So
here the classification loss ℒ𝑐 is the following:

ℒ𝑐 =
1

𝑛

𝑛∑︁

𝑖=1

𝐷𝐾𝐿(s(𝜃,x𝑖)||y𝑑𝑖),

where

𝐷𝐾𝐿(s(𝜃,x𝑖)||y𝑑𝑖) =
𝑐∑︁

𝑗=1

𝑠𝑗(𝜃,x𝑖) log

(︃
𝑠𝑗(𝜃,x𝑖)

𝑦𝑑𝑖𝑗

)︃
.

As we have seen before, we have to prevent the assignment of all instances to
a single class if we begin the update of the labels. It should not be allowed for the
estimated label distribution y𝑑𝑖 to be much different from the original y𝑖. Therefore,
in [10] a cross entropy loss term is introduced between label distribution and the
noisy label. It is called compatibility loss:

ℒ𝑜(Y,Y𝑑) = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

𝑦𝑖𝑗 log 𝑦𝑑𝑖𝑗 ,

where Y is the set of given noisy labels, and Y𝑑 is the set of the estimated labels.
There is one more issue to prevent during the label correction: if 𝑠(𝜃,x𝑖) is equal

to y𝑑, it stops the training and label updating process, so the softmax outputs need
to be forced to concentrate on a single class. An entropy loss is suitable for this
requirement:

ℒ𝑒(𝑠(𝜃,x)) = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

𝑠𝑗(𝜃,x𝑖) log 𝑠𝑗(𝜃,x𝑖).

This term is exactly the same as ℒ𝑒 in [8].
The PENCIL loss function is a weighted sum of these terms:

ℒ =
1

𝑐
ℒ𝑐(𝑠(𝜃,x),Y𝑑) + 𝛼ℒ𝑜(Y,Y𝑑) +

𝛽

𝑐
ℒ𝑒(𝑠(𝜃,x)), (2.2)

where 𝛼 and 𝛽 are two hyperparameters.
The training with PENCIL begins with a fixed, high learning rate, because it

helps not to overfit to noisy labels. In the next stage, the label correction starts
with the (2.2) loss function. y𝑑 is updated by updating ̃︀y. The advantage of this
labeling is that ̃︀y can be updated freely without any constraint while y𝑑 is always
a probability distribution. It is important to note that a very large learning rate is
needed to update ̃︀y. Finally, the network is fine-tuned with only the classification
loss.

In the paper [10] the PreAct ResNet is used as a background network, but the
PENCIL framework can also be used with any neural network.

130 I. Fazekas, A. Barta, L. Fórián

3. Our experiments

Tanaka et al. [8] made experiments on CIFAR-10 with synthetic label noise, and a
real-world dataset, in which almost 40 percent of the labels are wrong [9]. Yi and
Wu [10] have also conducted experiments with synthetic label noise and real-world
datasets.

In our work, we use a preprocessed dataset without adding synthetic label
noise. However, we do not treat it as a perfectly clean training set. We suppose
the existence of a certain, but not too large amount of label noise in MNIST. As
mentioned before, we train an ensemble of CNN classifiers before and after the label
noise cleansing. We perform this correction with the first phase of the method seen
in section 2.1, and the technique in 2.2. To further enhance this procedure, we have
also used an ensemble for this label noise cleansing, too. Our goal is to examine
its effect on the dataset, the learning process, and the accuracy.

We implemented our experiments with the Python-based deep learning frame-
work Tensorflow and the Keras library. Our first task was to implement the loss
functions (2.1) and (2.2). Then we built a custom training loop for both frame-
works to update the labels. In the case of PENCIL, the main task was to write
the code for the backpropagation to update ỹ. Tensorflow’s Gradient Tape made
it easy for us. For the joint optimization framework (Tanaka’s method) we used
the average of the last 10 epoch’s output for the updating.

The CNN ensembles are built up with very accurate convolutional neural net-
works [3]. A Keras summary of such a CNN can be seen in the appendix. We used
this CNN with structure in Table 8 as the background network of the label noise
cleansing frameworks, too.

3.1. Comparison of the two cleansing frameworks

In order to get a better result we increased our dataset with 60 000 augmented
images, where the augmentation was a little amount of random shift and rotation.
In our experiments the first step was to train a base-model with the cross entropy
loss function with a high learning rate (lr = 1). After 20 epochs we saved our
model and used it for both frameworks as a base-model. As a second step, we
continued with the label changing phase of the two methods. Table 1 shows the
parameters we used and how they worked on the different frameworks in this stage.
In the last two columns, we show how many labels were detected as incorrect on
the whole dataset and in parentheses we show only the detected labels from the
original dataset. The last column corresponds to an ensemble of a PENCIL and a
Tanaka network, which was made by taking the average of the softmax outputs.

We also wanted to examine how differently the detection works in the case of
these two frameworks. Table 2 contains the number of images, which were classified
into the same new class according to the pairwise intersections of Tanaka, PENCIL
and the ensemble of them. The table shows that different methods detect mostly
the same label noise. Figure 2 shows some seemingly mislabeled training images,

Ensemble noisy label detection on MNIST 131

which were found by both frameworks. The subcaptions contain the new labels
and the highest scores generated by the cleansing methods. The Tanaka process
seems to be more confident than PENCIL according to the higher peak scores. It
can be generally concluded on the whole set of detected instances.

Table 1. Noisy label detection of ensembles on the training set
with 120 000 samples.

Framework 𝛼 𝛽 lr 𝜆 epochs Detected labels Ensemble
PENCIL 0.05 0.6 0.1 600 30 71 (28)

75 (36)
Tanaka 1.1 0.6 0.05 - 20 116 (59)

Table 2. The number of identically detected images.

PENCIL Tanaka
Tanaka 54 (24) -

Ensemble 55 (24) 74 (36)

Original label: 3
New label: 5
Tanaka: 0.899
PENCIL: 0.641

Original label: 5
New label: 3
Tanaka: 0.897
PENCIL: 0.638

Original label: 9
New label: 4
Tanaka: 0.901
PENCIL: 0.643

Original label: 5
New label: 6
Tanaka: 0.887
PENCIL: 0.598

Figure 2. Some detected images with new labels and the
corresponding scores of Tanaka and PENCIL.

Then in this experiment we wanted to investigate how the exclusion of the
detected labeled inputs affects the goodness of the CNN. Here we use a single very
accurate CNN with structure in Table 8. In Table 3 we show that how the different
training datasets performed with the same weight initialized models. The table
contains the performance of our CNN model trained on the original augmented
dataset and on its cleaned versions. Of course, they were evaluated on the test
dataset. In Table 3, column ’Original’ contains the results of the CNN without
cleaning the training set. Columns ’Tanaka’ and ’PENCIL’ contain the result
of the CNN after cleaning with the Tanaka and PENCIL methods, respectively.
’Ensemble’ means that the cleaning was made by an ensemble of a Tanaka and a

132 I. Fazekas, A. Barta, L. Fórián

PENCIL network, with weighting the same way as the previous case. The * symbol
denotes the cases when we deleted the detected items only from the artificially
created part of the training dataset. We repeated each experiment 30 times and
in each case with a learning rate of 0.1 and a momentum of 0.2 for 30 epochs. In
Table 3 we show the best, the worst and the mean of the 30 repetitions.

Table 3. Training with cleaned labels.

Original Tanaka Tanaka* PENCIL PENCIL* Ensemble Ensemble*
Max 99.70% 99.67% 99.64% 99.68% 99.65% 99.64% 99.60%
Mean 99.57% 99.56% 99.55% 99.49% 99.40% 99.57% 99.44%
Min 99.30% 99.40% 99.34% 99.35% 99.36% 99.37% 99.34%

We can see that the result depends on the cleaning method. We can also see
that removing the misleading items makes the classification more stable in the
following sense. The minimum is higher and the range is smaller after the use of
each cleaning method than for the original raw dataset. For the original dataset
the minimum is 99.30% and the range is 99.70 − 99.40 = 0.40% while for Tanaka
the minimum is 99.40% and the range is 0.27%. However, such simple cleaning
techniques do not improve the average and the maximal performance.

3.2. Possibilities of improving a CNN ensemble classifier
Our final goal was to examine the opportunities of making an already accurate CNN
ensemble classifier even better. An ensemble of 3 convolutional neural networks
was trained before and after label noise cleansing. In our ensemble, 3 CNNs with
structure in Table 8 were used. For fair comparison, these networks were initialized
with the same weights in each case. All of them were trained with a learning rate
of 0.1 and a momentum of 0.2 for 30 epochs.

The treating of the label noise was carried out in the following way: 3 networks
were trained with both frameworks. We took the average of the label estimations
of the 6 networks and applied the NumPy argmax function. These were the new
labels corresponding to the training examples.

In the following experiment the training data was slightly increased with 24 000
augmented images, so the training set consisted of 84 000 examples in this setting.
For both noise cleansing frameworks, the training of the models began with 20
epochs using the cross entropy loss function and a momentum of 0.3. In the second
phase, the momentum was set to 0.5 for the networks with Tanaka’s method and
0.1 for both of PENCIL’s optimizers, because of the nature of these techniques.
The other parameters can be seen in Table 4. Of course, the number of epochs
in this table means the number of epochs in this phase. In the ’Detected labels’
column, there is the number of labels detected as noisy by the ensemble of the
3 networks corresponding to the methods. In parentheses, the number of noisy
labels are shown in the original dataset. The last column contains the results of
ensembling all the 6 networks.

Ensemble noisy label detection on MNIST 133

Table 4. Noisy label detection of ensembles on the training set
with 84 000 samples.

Framework 𝛼 𝛽 lr 𝜆 epochs Detected labels Ensemble
PENCIL 0.08 0.5 0.2 550 25 52 (27)

36 (24)
Tanaka 1.1 0.6 0.04 - 20 56 (32)

In the next part of the experiment, the different options of label noise handling
are investigated. Table 5 contains the test performance of the CNN ensembles
trained on this augmented dataset with the original labels, relabeling and deletion.
These results correspond to 20 runs in each case with the same 20 × 3 weight set
initialization. The first and third rows show the best and weakest performances,
while the second line contains the mean of the 20 test accuracies.

Table 5. Performance of the CNN ensemble with different noise
handling options.

CNN ensemble CNN ensemble CNN ensemble
before after relabeling after deletion

Max 99.68% 99.71% 99.72%
Mean 99.663% 99.675% 99.673%
Min 99.58% 99.61% 99.60%

Finally, we wanted to investigate the opportunities of this CNN ensemble im-
provement by using only the original 60 000 samples. In this setting, the parameters
of the noise detecting ensemble are the same as before and this table corresponds
to 3 PENCIL and 3 Tanaka networks, too. The number of labels detected as wrong
are visible below and the performance of the CNN ensembles are shown in Table 7,
in the same way as in Table 5.

Table 6. Noisy label detection of ensembles on the original MNIST
dataset.

Framework Detected labels Ensemble
PENCIL 29

21
Tanaka 24

Table 7. Performance of the CNN ensemble with different noise
handling options on the original MNIST.

CNN ensemble CNN ensemble CNN ensemble
before after relabeling after deletion

Max 99.67% 99.69% 99.71%
Mean 99.647% 99.654% 99.658%
Min 99.58% 99.57% 99.59%

134 I. Fazekas, A. Barta, L. Fórián

4. Conclusions

Machine learning methods developed for classification data with label noise can be
applied to handle datasets containing some misleading items. These machine learn-
ing methods can be used for preprocessing the training data. After preprocessing
any usual classification tool can be applied. Deleting some misleading items in the
preprocessing phase is more promising than relabeling them. With preprocessing
we can further improve the performance of very accurate convolutional networks,
too. For preprocessing, ensembles of different noise correction methods (like the
method of Tanaka et al. [8] and PENCIL of [10]) are promising. However, we have
to be careful with relabeling and with removal of relabeled items, too. Relabeling
means adding information to the training set artificially. If we relabel too many
images, it may happen that we mislead the classifier with those modified labels.
The removal of the relabeled examples is also dangerous: it can cause information
loss that degrades the performance of our models. (With high noise rates, it is
obviously a wrong choice.) We can improve a classifier with those operations only
if we find the right amount of training data to relabel or delete.

Acknowledgements. The authors are indebted to the referees for their valuable
suggestions.

References

[1] G. Algan, I. Ulusoy: Image classification with deep learning in the presence of noisy
labels: A survey, Knowledge-Based Systems 215 (2021), p. 106771, issn: 0950-7051,
doi: https://doi.org/10.1016/j.knosys.2021.106771,
url: https://www.sciencedirect.com/science/article/pii/S0950705121000344.

[2] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T.
Maharaj, A. Fischer, A. Courville, Y. Bengio, S. Lacoste-Julien: A Closer Look at
Memorization in Deep Networks, in: ed. by D. Precup, Y. W. Teh, vol. 70, Proceedings
of Machine Learning Research, International Convention Centre, Sydney, Australia: PMLR,
Aug. 2017, pp. 233–242,
url: http://proceedings.mlr.press/v70/arpit17a.html.

[3] C. Deotte: How to choose CNN Architecture MNIST, 2018,
url: https://www.kaggle.com/cdeotte/how-to-choose-cnn-architecture-mnist.

[4] K. He, X. Zhang, S. Ren, J. Sun: Deep Residual Learning for Image Recognition, in: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778,
doi: https://doi.org/10.1109/CVPR.2016.90.

[5] K. He, X. Zhang, S. Ren, J. Sun: Identity Mappings in Deep Residual Networks, in:
Computer Vision – ECCV 2016, ed. by B. Leibe, J. Matas, N. Sebe, M. Welling, Cham:
Springer International Publishing, 2016, pp. 630–645, isbn: 978-3-319-46493-0,
doi: https://doi.org/10.1007/978-3-319-46493-0_38.

[6] Y. LeCun, C. Cortes, C. Burges: MNIST handwritten digit database, ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[7] T. Tajti: New voting functions for neural network algorithms, Annales Mathematicae et
Informaticae 52 (2020), pp. 229–242, issn: 1787-6117,
doi: https://doi.org/10.33039/ami.2020.10.003.

Ensemble noisy label detection on MNIST 135

[8] D. Tanaka, D. Ikami, T. Yamasaki, K. Aizawa: Joint Optimization Framework for Learn-
ing With Noisy Labels, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018, pp. 5552–5560,
doi: https://doi.org/10.1109/CVPR.2018.00582.

[9] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, Xiaogang Wang: Learning from massive
noisy labeled data for image classification, in: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 2691–2699,
doi: https://doi.org/10.1109/CVPR.2015.7298885.

[10] K. Yi, J. Wu: Probabilistic End-To-End Noise Correction for Learning With Noisy Labels,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

136 I. Fazekas, A. Barta, L. Fórián

Appendix

Table 8. The Keras summary of the CNN that we used.

Model: "sequential"

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 26, 26, 32) 320

batch_normalization (BatchNormalization) (None, 26, 26, 32) 128

conv2d_1 (Conv2D) (None, 24, 24, 32) 9248

batch_normalization_1 (BatchNormalization) (None, 24, 24, 32) 128

conv2d_2 (Conv2D) (None, 12, 12, 32) 25632

batch_normalization_2 (BatchNormalization) (None, 12, 12, 32) 128

dropout (Dropout) (None, 12, 12, 32) 0

conv2d_3 (Conv2D) (None, 10, 10, 64) 8496

batch_normalization_3 (BatchNormalization) (None, 10, 10, 64) 256

conv2d_4 (Conv2D) (None, 8, 8, 64) 36928

batch_normalization_4 (BatchNormalization) (None, 8, 8, 64) 256

conv2d_5 (Conv2D) (None, 4, 4, 64) 102464

batch_normalization_5 (BatchNormalization) (None, 4, 4, 64) 256

dropout_1 (Dropout) (None, 4, 4, 64) 0

flatten (Flatten) (None, 1024) 0

dense (Dense) (None, 128) 131200

batch_normalization_6 (BatchNormalization) (None, 128) 512

dropout_2 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 10) 1290
===
Total params: 327,242
Trainable params: 326,410
Non-trainable params: 832

Ensemble noisy label detection on MNIST 137

