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Abstract

Chronic disease progression models are governed by two main parameters:
preclinical intensity and sojourn time. The estimation of these parameters
helps in optimizing screening programs (with an additional parameter: sen-
sitivity of the screens), and we examine their effect in improving survival.
Multiple approaches exist for estimating these parameters. However, these
models are based on strong underlying assumptions. Our main aim is to in-
vestigate the effect of these assumptions. For this purpose, we developed a
simulator to mimic a breast cancer screening program while directly observing
the exact onset and the sojourn time of the disease. We then examine the per-
formance of the model under different parameterizations and investigate the
effects of different models on the sensitivity, the inter-screening intervals and
misspecification of the used parametric distributions. Our results indicate a
strong correlation among the estimated parameters. Besides, the underlying
assumptions have a strong effect on the overall performance of the model.
These findings shed a light on the seemingly discrepant results obtained by
different authors using the same data sets but different assumptions.
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1. Introduction

Statistical modeling of natural disease progression aids in understanding its dynam-
ics and forecasting its incidence rates. This allows better prevention and treatment
plans which improves survival. However, in many cases, some data is not observ-
able, as some diseases have an asymptomatic phase in which the patient does not
know he has the sickness yet.

In the model proposed by Shen and Zelen [12], the natural progression of a
disease is regarded as a three state model (see Figure 1): individuals progress from
a disease free state 𝑆𝑓 to the preclinical state 𝑆𝑝, when the disease has become
onset but is still asymptomatic, i.e. the person has the disease but it has not
shown any symptoms. The final state of the disease from this point of view is
when it manifests itself through clinical symptoms, thus it is called the clinical
state 𝑆𝑐.

𝑆𝑓 𝑆𝑝 𝑆𝑐

Figure 1. Progression in the three state model.

The flow in the process is governed by the preclinical intensity and the sojourn
time. The preclinical intensity is the probability of moving from the disease free
state to the preclinical one during (𝑡, 𝑡 + 𝑑𝑡). Equivalently, it is the waiting time
in the disease free state 𝑆𝑝. The sojourn time is defined as the amount of time
spent in the preclinical state 𝑆𝑝, in other words it is the time needed for the disease
to show itself by means of clinical symptoms. However, directly observing sojourn
time is not feasible as the exact time of onset is unknown. The sojourn time is then
estimated through modelling, mostly by assuming it is a random variable with a
specified distribution, see e.g. [16, 17].

Early detection methods such as screening allows discovering the disease before
any symptoms appear. Screening sensitivity, defined as the probability of detec-
tion given that the patient is in 𝑆𝑝, is crucial in determining the efficiency of the
screening program.

The parameters of interest in such a process are the preclinical intensity, the
sojourn time and screening sensitivity. The estimation of these parameters is es-
sential to optimize screening intervals and to correct lead time bias, that is defined
as the apparent increase in survival due to early detection by means of screening.

In this paper we aim to investigate the identifiability of the parameters govern-
ing the process in different setups. For that purpose, a simulator is developed to
record the exact onset and sojourn times of patients. This allows us to assess the
accuracy of the estimators by comparing the estimated values to the real ones.

The theoretical basis of disease progression models under periodic screening was
set by Zelen and Feinleib [17] and Prorok [10]. Later, Shen and Zelen [12] intro-
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duced two models to estimate the parameters governing disease progression. The
first describes stable diseases that are assumed to have incidence and prevalence in-
dependent of time or age. The other incorporates time dependence of incidence and
prevalence to the model (these cases are called non stable diseases). We investigate
the common cases, when incidence is age-dependent.

Wu et al. [16] further extended the results by allowing both the transition
probability from the disease-free state and the sensitivity to be age-dependent.
They assume that the sojourn time follows a loglogistic distribution, the preclinical
intensity has a lognormal distribution and the sensitivity is age-dependent, the age-
dependence is incorporated by assuming that the sensitivity has a logistic function
form.

Generally, these models are built by deriving the probabilities of cases being
detected by screening or symptoms, this allows the forming a likelihood function
from which parameters can be estimated by classical methods such as maximization
of the likelihood function, a least squares approach or a Bayesian one. However,
many questions can be raised about the effects of the assumptions one makes when
modelling such a scenario.

The paper is organized as follows: we lay the model foundations in Section
2. Next, we setup the simulations in Section 3, we then present our simulation
based on results in Section 4. We then show the reasons behind the discrepancy
of estimates in the literature in Section 5. Finally, we summarize our findings in
Section 6.

2. The model

We will use the generalized model proposed by Wu et al. [16] in this paper. Now,
to lay the setup of the model, we suppose an individual becomes onset at a random
time 𝑋 where 𝑋 is a random variable with a (possibly) defective density 𝑓𝑋(𝑥).
Introduce 𝑟 ≤ 1 as the lifetime risk, which is the probability of a person to get
the disease i.e.

∫︀∞
0
𝑓𝑋(𝑥) d𝑥 = 𝑟. After a case becomes onset, we suppose that it

stays in the preclinical state for a random amount of time 𝑌 (called sojourn time)
independent of 𝑋, where 𝑌 is a random variable with pdf 𝑓𝑌 (𝑦) and survivor
function 𝑄𝑌 (𝑦). Let 𝑍 = 𝑋 + 𝑌 denote the time of diagnosis. As 𝑋 and 𝑌 are
assumed independent, the density of 𝑍 in the absence of screening is given by the
convolution of 𝑋 and 𝑌 , namely: 𝑓𝑍(𝑧) =

∫︀ 𝑧
0
𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥) d𝑥.

If no screens are organized, i.e. the patient only knows that he has the sickness
when symptoms are exhibited, then one can only observe the time of diagnosis 𝑍
and the likelihood function would simply be the product of the densities 𝑓𝑍(𝑧𝑖).
The identifiablity of the parameters in such a setup is a serious concern, for instance
if both 𝑋 and 𝑌 are normally distributed, there are infinitely many parameters
which can generate the same distributions. We currently investigate the theoretical
aspects of identifiability which we will publish in a separate paper.

Suppose now that a screening program consisting of 𝐾 screens is organized for a
population which is stratified by age at the first screen 𝑡1 where 𝑡1 = 𝑡min, . . . , 𝑡max.
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Let us define ∆ as the inter-screening time and assume that all participants are
disease free at age 𝑡0 before the first screen (we assume 𝑡0 = 0). Denote by 𝑡𝑖 =
𝑡1 + (𝑖 − 1)∆ the age at the 𝑖𝑡ℎ screen and by (𝑡𝑖−1, 𝑡𝑖) the 𝑖𝑡ℎ screening interval.
Denote the sensitivity of a screen by 𝜉(𝑡) and suppose it is a parametric function of
the age at screening. The aim is to build a likelihood function using the probabilities
of detection by screens and by showing symptoms.

Under this setup, the probability of detection at the first screen for those aged
𝑡1 at the first screen denoted by 𝐷1,𝑡1 is given by cases which have moved to 𝑆𝑝 in
(𝑡0, 𝑡1) and stayed there till they are screened positively. Therefore:

𝐷1,𝑡1 = 𝜉(𝑡1)

𝑡1∫︁

𝑡0

𝑓𝑋(𝑥)𝑄𝑌 (𝑡1 − 𝑥) d𝑥.

In order to determine the probability of detection at the 𝑘𝑡ℎ screen, let us
discretize the timeline into intervals of the form (𝑡𝑖−1, 𝑡𝑖). Denote by 𝐷

(𝑖)
𝑘,𝑡1

the
contribution of cases which have moved to 𝑆𝑝 in the 𝑖𝑡ℎ screening interval to the
probability of detection at the 𝑘𝑡ℎ screen for 𝑖 = 1, . . . ,𝐾. That is given by cases
which have been falsely screened negative in all the previous screens and they did
not show symptoms before the 𝑘𝑡ℎ screen when they were finally screened positively.
Hence:

𝐷
(𝑖)
𝑘,𝑡1

=

⎧
⎨
⎩
𝜉(𝑡𝑘)

[︁
(1− 𝜉(𝑡𝑖)) · · · (1− 𝜉(𝑡𝑘−1))

]︁∫︀ 𝑡𝑖
𝑡𝑖−1

𝑓𝑋(𝑥)𝑄𝑌 (𝑡𝑘 − 𝑥) d𝑥, if 𝑖 < 𝑘,

𝜉(𝑡𝑘)
∫︀ 𝑡𝑘
𝑡𝑘−1

𝑓𝑋(𝑥)𝑄𝑌 (𝑡𝑘 − 𝑥) d𝑥, if 𝑖 = 𝑘.
(2.1)

Hence, the probability of detection at the 𝑘𝑡ℎ screen is given by the sum of
contributions:

𝐷𝑘,𝑡1 =

𝑘∑︁

𝑖=1

𝐷
(𝑖)
𝑘,𝑡1

.

A similar approach is used to determine the probability of showing symptoms
in the 𝑘𝑡ℎ screening interval. Denote by 𝑓 (𝑖,𝑘)𝑍𝑡1

the contribution of cases which have
moved to 𝑆𝑝 in (𝑡𝑖−1, 𝑡𝑖) to the probability of showing symptoms between (𝑧, 𝑧+𝑑𝑧)
where 𝑡𝑘−1 < 𝑧 < 𝑡𝑘. Therefore:

𝑓
(𝑖,𝑘)
𝑍𝑡1

(𝑧) =

⎧
⎨
⎩

∫︀ 𝑧
𝑡𝑘−1

𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥) d𝑥, if 𝑘 = 𝑖,
∫︀ 𝑡𝑖
𝑡𝑖−1

𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥) d𝑥
∏︀𝑘−1
𝑗=𝑖 (1− 𝜉(𝑡𝑗)), if 𝑘 > 𝑖.

(2.2)

Hence, the probability of a case to show symptoms between 𝑧 and 𝑧 + 𝑑𝑧 for
𝑡𝑘 < 𝑧 < 𝑡𝑘+1 is given by:

𝑓𝑘𝑍𝑡1
(𝑧) =

𝑘∑︁

𝑖=1

𝑓
(𝑖,𝑘)
𝑍𝑡1

(𝑧). (2.3)
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The probability for a case to show symptoms between 𝑡𝑘−1 and 𝑡𝑘 for individuals
aged 𝑡1 at the first screen denoted by 𝐼𝑘,𝑡1 is given by integrating Equation (2.3),
i.e.

𝐼𝑘,𝑡1 =

𝑡𝑘∫︁

𝑡𝑘−1

𝑓𝑘𝑍𝑡1
(𝑧) d𝑧.

For a screening program consisting of 𝐾 screens and participants age at first screen
ranging between 𝑡min, . . . , 𝑡max, Wu et al. [16] used the count data (𝑛𝑘,𝑡1 , 𝑠𝑘,𝑡1 , 𝑟𝑘,𝑡1)
to form a likelihood function similar to a multinomial distribution, where 𝑛𝑘,𝑡1 is
the number of participants in screen 𝑘 who were aged 𝑡1 at program entry, 𝑠𝑘,𝑡1 is
the number of screen detected cases on screen 𝑘 from those aged 𝑡1 at screen entry
and 𝑟𝑘,𝑡1 is the number of symptomatic cases in the 𝑘𝑡ℎ screening interval from
those aged 𝑡1 at program entry. The likelihood is of the form:

𝐿1 =

𝑡max∏︁

𝑡1=𝑡min

𝐾∏︁

𝑘=1

𝐼
𝑟𝑘,𝑡1

𝑘,𝑡1
𝐷
𝑠𝑘,𝑡1

𝑘,𝑡1
(1−𝐷𝑘,𝑡1 − 𝐼𝑘,𝑡1)𝑛𝑘,𝑡1

−𝑠𝑘,𝑡1
−𝑟𝑘,𝑡1 .

Our important suggestion is that we propose to incorporate the exact dates
of diagnosis of symptomatic patients (𝑧𝑖) in the likelihood function if they are
available, as they carry important information. Then the likelihood is of the form:

𝐿2 =

𝑡max∏︁

𝑡1=𝑡min

𝐾∏︁

𝑘=1

[︃
𝐷
𝑠𝑘,𝑡1

𝑘,𝑡1
(1−𝐷𝑘,𝑡1 − 𝐼𝑘,𝑡1)𝑛𝑘,𝑡1

−𝑠𝑘,𝑡1
−𝑟𝑘,𝑡1

𝑟𝑘,𝑡1∏︁

𝑖=1

𝑓𝑘𝑍𝑡1
(𝑧𝑖)

]︃
.

After specifying the parametric distributions of the preclinical and the sojourn
time, we obtain the maximum likelihood estimates through nonlinear minimization
of the negative log-likelihood. The variances of the parameter estimators can be
approximated using the observed Fisher information matrix. We expect this to be
more accurate for larger sample sizes.

3. Simulation setup

In order to investigate the identifiability of the parameters, we simulated disease
progression data mimicking a breast cancer screening program using different on-
set and sojourn time distributions. The aims are: checking the identifiability of
the parameters, examining the improvement in the model performance if the ex-
act date of the diagnosis of symptomatic cases is incorporated, studying the effect
of the length of the inter-screening time and see the effects of incorrect specifica-
tions, namely if the sensitivity is falsely assumed constant or if the sojourn time
distribution is misspecified.

Breast cancer’s screening sensitivity is known to be increasing with age ([11]).
Wu et al [16] choose to model this age-dependence via a logistic function with
parameters 𝑏0 and 𝑏1. As a result, the sensitivity at age 𝑡 is then given by:

𝜉(𝑡) =
1

exp(−𝑏0 − 𝑏1(𝑡− 𝑡)) .
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Adopting the age-dependent sensitivity, we also chose the lognormal distribution
𝐿𝑁(𝜇, 𝑠2) for the onset time. This is realistic since the transition probabilities of
breast cancer to the preclinical state were estimated by Lee and Zelen [8] using age-
specific incidence rates. Wu et al [16] plotted the probabilities and found them to be
right skewed with a heavy tail, so the lognormal distribution was chosen for having
similar properties. It is also noted that the estimates of the onset distribution
parameters may depend on the model choice, so different estimates exist [9]. We
simulated our data using 𝜇 = 3.971 and 𝑠 = 2.267, these values lead to an average
age of transition of around 54 years and a standard deviation of 15 years.

Using a lognormal preclinical intensity and an age-dependent sensitivity, we
simulate progression data based on an exponential sojourn time with 𝜆 = 1/2.5
and a gamma sojourn time with shape 𝛼 = 6.25 and rate 𝛽 = 2.5 both resulting
in a mean sojourn time of 2.5 years and a unit variance (gamma case). For 𝑡1 =
40, . . . , 65 years, we simulate 2 data sets for each distribution, one with 𝑁1,𝑡1 =
10 000 and the other of size 𝑁1,𝑡1 = 100 000 in each cohort, this would help us
study the asymptotic performance of the model. The model is then run on each of
the data sets, with and without including the exact date of diagnosis.

We also run a simplified simulation mimicking the model used by Duffy et al
[3] in which both the onset and the sojourn times are exponentially distributed
with parameters 𝜆1 and 𝜆2 while assuming that the sensitivity is constant. From
a mathematical point of view, this model is interesting as the natural progression
(without screening) in the chain is time homogeneous. The defined parameters in
the simulations are 𝜉 = 0.75, 𝜆1 = 1/55 and 𝜆2 = 1/2.5, resulting in an average
onset age of 55 years and a mean sojourn time of 2.5 years. We also simulate two
datasets (𝑁1,𝑡1 = 10 000 and 𝑁1,𝑡1 = 100 000).

In order to test the goodness of fit, we will use Pearson’s chi-squared test, which
measures the distance between the observed and the expected counts. However,
the chi-squared distance is just an illustrative measure, used only for showing the
magnitude of the differences. Asymptotically, this distance is 𝜒2 distributed with
𝐾 · (𝑡max− 𝑡min)− 𝑣 degrees of freedom, where 𝑣 is the number of parameters , but
we experienced large deviations for the small sample sizes due to the large number
of classes.

In order to establish confidence regions for the parameters, we will use the
likelihood ratio statistic, which assesses the goodness of fit of two competing sta-
tistical models based on the ratio of their likelihoods. The likelihood ratio statis-
tic can be expressed as a function of the difference between the loglikelihoods
𝐿𝑅 = 2(𝑙(𝜃)− 𝑙(𝜃)), where 𝑙(𝜃) is the value of the loglikelihood at the maximum.

The finite sample distributions of likelihood-ratio tests are generally unknown.
However, under the null hypothesis (𝜃 = 𝜃0), 𝐿𝑅 converges in distribution to
a 𝜒2-distribution (by Wilks’ theorem [15]). That allows defining the asymptotic
confidence region 𝐶(𝜃) as:

𝐶(𝜃) = {𝜃 : 2(𝑙(𝜃)− 𝑙(𝜃)) < 𝜒2
0.95(𝑣)}.

The simulation and the nonlinear minimization of the negative loglikelihood
are carried out using the statistical software R. However, since the integrals in
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Equation (2.1) and (2.2) usually do not have a closed form, the integration has to
be carried out numerically. This can be computationally expensive, especially as
we include the date of diagnosis. For that reason, we use the package Rcpp [4] to
carry out the numerical integration in C++ using the package CUBA by Hahn [5].
The negative of the log likelihood is then minimized using the optim function, that
is carried out using the “L-BFGS-B” algorithm [1]. In each scenario, we present the
actual parameters, the estimates based on the count and full models for both data
sets, the negative loglikelihood at the maximum (𝐿max) and the likelihood based
on the actual parameters (𝐿𝑎𝑐𝑡𝑢𝑎𝑙).

4. Results

4.1. Exponential sojourn time

4.1.1. Exponentially distributed onset

Let us start with the results of the simplest case, in which a constant sensitivity is
assumed along with exponential 𝑋 and 𝑌 . The results are presented in Table 1, it
is clear that the model does not perform well for a small sample size.

In the first block of Table 1, the results for the small data set are presented,
we noticed that the estimates for both the count based and full model are similar
but not accurate at all. The sensitivity and the average onset age are highly
overestimated and the mean sojourn time is underestimated.

Table 1. Estimates of the sensitivity, onset and sojourn time pa-
rameters for exponentially distributed 𝑋 and 𝑌 .

-Loglikelihood Sensitivity Onset Sojourn time
Maximum Actual 𝜉 1/𝜆1 1/𝜆2

Actual 0.75 55 2.5
∆ = 1 Count data 27 957.9 27 973.9 0.964 67.694 2.110

𝑁𝑡1 = 10 000 Full data 27 950.4 27 975.9 1.000 59.443 2.081
∆ = 1 Count data 240 181.8 240 184.2 0.779 54.408 2.431

𝑁𝑡1 = 100 000 Full data 239 864.6 239 866.7 0.778 54.381 2.431

Increasing the sample size to 𝑁𝑡1 = 100 000 (second block of Table 1), we
observed a significant improvement in the accuracy of the models. The results of
the count based model and the full model are almost identical, estimates for 1/𝜆1
and 1/𝜆2 are accurate.

When we studied the profile likelihood of the onset, it became clear that multiple
parameters can maximize the likelihood and that the confidence region is vast. This
can be seen in Figure 2, where we plot the negative loglikelihood fixing 𝜉 and 𝜆2 to
the estimated values and variating 𝜆1. The confidence region for the average onset
age 1/𝜆2 is [49.31;71.67] for the small data set and [48.7;61.07] for the large one.
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The reason behind this large region is the exponential onset, that is very dense
near 0 and decays quickly. Since we only start observing patients older than
𝑡min=40 years old and follow them up for 10 years, there is no information about
the densest interval (0, 𝑡min), it is difficult for the model to estimate 𝜆1 for a small
sample size. The dissimilarity to the actual density within the observation period
is not detectable. Increasing the sample size allows better estimation of the pa-
rameters although the confidence region is still sizable. In this scenario, one can
think of the disease progression as a flow process with the parameters controlling
the rate of flow between states, accordingly, there are different flow rates which
generate the same output.
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Figure 2. Profile likelihood of the average onset for the small data
(left) and the large one (right), the red line is the critical threshold

for the likelihood based confidence region.

Another observation is the very strong negative correlation between the sensi-
tivity and the sojourn time estimators (the correlation measured using the observed
Fisher information matrix between 𝑏0 and 𝜉 is around −0.8). Although they are
assumed independent in the model, screening acts as a censoring mechanism, once
a case is detected, the rest of its sojourn time cannot be observed. What happens
then is that the model preserves a good fit in one of two ways, the first is by re-
turning a high sensitivity estimate and a low sojourn time meaning that cases stay
a short time in the preclinical state but participation in a screen leads to detection
with a high probability. The second is by combining a high sojourn time estimate
with a low sensitivity, meaning that cases will stay for a longer time in the preclin-
ical state, therefore having multiple chances to participate in a screen, with screens
having a low probability of detection. We observed this negative correlation in all
of our parameterizations.

4.1.2. Lognormal onset

The results for a lognormally distributed onset time and an exponentially dis-
tributed sojourn time are presented in Table 2, plots for the sensitivity and the
sojourn time are presented in the top part of Figure 3.

For (𝑁𝑡1 = 10 000), the sensitivity and onset parameters are substantially biased
when using the count data, while using the full model results in more accurate
estimates. Increasing the number of participants to 100 000 (second block), we

146 A. Hijazy, A. Zempléni



noticed a slight improvement in the performance of the count based model and a
significant improvement when using the full model.

Table 2. Estimates of the sensitivity (𝑏0, 𝑏1), onset (𝜇, 𝑠) and so-
journ time (𝜆) parameters for a lognormal 𝑋 and an exponential 𝑌 .

-Loglikelihood Sensitivity Preclinical intensity Sojourn time
Maximum Actual 𝑏0 𝑏1 𝜇 𝑠 𝜆

Actual 1.4 0.05 3.971 0.267 2.5
∆ = 1 Count data 71 777.0 71 786.6 1.971 0.081 3.969 0.253 2.236

𝑁𝑡1 =10 000 Full data 71 647.6 71 652.7 1.529 0.061 3.969 0.257 2.423
∆ = 1 Count data 712 825.7 712 851.5 1.540 0.050 3.972 0.260 2.428

𝑁𝑡1 = 100 000 Full data 711 386.6 711 408.4 1.437 0.047 3.972 0.261 2.486
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Figure 3. Sensitivity and the sojourn time density for lognormal
𝑋 and exponential 𝑌 (top), lognormal 𝑋 and gamma 𝑌 (bottom).

In order to evaluate the performance of the model and create reliable confidence
intervals for the estimators for the small dataset, we ran the simulator 50 times
and estimated the parameters based on both models. We also calculated the like-
lihood based confidence regions. The resulting confidence intervals are displayed
in Table 3. We noticed that the intervals based on the full model are tighter than
those of the count based ones. Besides, the likelihood-based confidence intervals
for the sensitivity parameters 𝑏0 and 𝑏1 are larger than those based on the simu-
lation. That is not the situation for the mean sojourn time intervals, where the
likelihood-based intervals are tighter. The strong negative correlation between the
sojourn time and the sensitivity creates a multi-centered confidence region for the
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sojourn time. Since the likelihood based intervals are built around one center, they
appear tighter than they actually are.

Table 3. Likelihood based and simulation based confidence inter-
vals for the count based and the full models.

Count based model Full model
Simulations Likelihood Simulations Likelihood

𝑏0 [1.425; 1.925] [1.612; 2.418] [1.346; 1.783] [1.296; 1.786]
𝑏1 [0.0294; 0.0808] [0.0219; 0.134] [0.0314; 0.0672] [0.0221; 0.101]

1/𝜆 [2.200; 2.663] [2.095; 2.392] [2.298; 2.590] [2.185; 2.302]

4.2. Gamma sojourn time

For a lognormal onset and a gamma distributed sojourn time, the estimates are
presented in Table 4, plots for the sensitivity and the sojourn time are shown in
the bottom part of Figure 3.

For the small data set, the sensitivity estimates are biased under both models
(bottom left part of Figure 3). Besides, estimates of the sojourn time parameters
for both models are strange at first glance. However, these parameters result in
acceptable estimates of the mean sojourn time, although the sojourn time variance
is substantially underestimated in both cases.

Table 4. Estimates of the sensitivity (𝑏0, 𝑏1), onset (𝜇, 𝑠) and
sojourn time (𝜆) parameters for a lognormal 𝑋 and gamma 𝑌 .

-Loglikelihood Sensitivity Preclinical intensity Sojourn time
Maximum Actual 𝑏0 𝑏1 𝜇 𝑠 𝛼 𝛽 E(𝑌 ) V(𝑌 )

Actual 1.4 0.05 3.971 0.267 6.25 2.5 2.5 1
∆ = 1 Count data 68 069.8 68 077.4 1.114 0.045 3.970 0.261 10.252 3.940 2.602 0.661
𝑁𝑡1 =10 000 Full data 68 040.3 68 047.3 1.181 0.047 3.970 0.261 8.407 3.259 2.580 0.792
∆ = 1 Count data 676 971.1 676 999.6 1.375 0.050 3.973 0.264 5.457 2.116 2.579 1.219
𝑁𝑡1 =100 000 Full data 676 564.9 676 595.3 1.388 0.050 3.973 0.264 5.344 2.072 2.579 1.244

Moving on to the second block (larger dataset), both models perform well and
their results are very close. However, the estimates of the sojourn time variance are
still biased, the plots in Figure 3 show that estimated sojourn time density based
on the full model is very close to the actual one although a slight bias is observed.

In general, the model seems to perform well in this case, with some slight
bias in the sensitivity and the variance of the sojourn time. However, to test the
reliability of our confidence sets, we fixed all the parameters to their estimated
values (𝑁𝑡1 =100 000) and calculated the profile likelihood for different 𝛼 and 𝛽.
The contour plot can be seen in Figure 4, which clearly shows that the likelihood-
based confidence region (black region) contains a substantial part of the line 𝛼 =
2.5𝛽.
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Figure 4. Contour plot of the loglikelihood (𝑁𝑡1 = 100000) using
the estimated sensitivity and onset parameters and variating 𝛼 and
𝛽. The black region represents the likelihood based confidence re-

gion.

The figure shows that the likelihood is near constant in the neighborhood of
the line 𝛼 = 2.5𝛽. In this neighborhood, the expected value of the gamma dis-
tributed mean sojourn time is almost constant (𝛼/𝛽 = 2.5), however, there is a
great variation of the variance (𝛼/𝛽2), which does not affect the likelihood, this
essentially means that the variance could be much larger or smaller and still fall
in the likelihood based confidence region, with the noise in the data determining
where the center of that region is. The model is then not able to estimate the
variance of the sojourn time under this setup.

To further test the ability of the model to estimate the sojourn time variance,
we generated a dataset (𝑁𝑡1 = 100 000, 𝐾 = 10) based on 𝛼 = 100 and 𝛽 = 10
resulting in a mean sojourn time of 10 years and a variance of 1. In this case, fitting
a constant sojourn time of 10 years results in a -loglikelihood of 928 675.1, almost
identical to the -loglikelihood based on the original parameters (928 674.3). This
means that for large enough parameters 𝛼0 and 𝛽0 where 𝛼0/𝛽0 = 10, the model
retains a good fit regardless of the variance, showing that there are infinitely many
parameters maximizing the likelihood. Hence, the model is not able to estimate
the variance of the sojourn time when ∆ is too small since the tail of the sojourn
time cannot be observed due to screening.

A larger inter-screening interval means that there are fewer opportunities for
an individual to participate in a screening exam, thus it will lead to a high number
of clinically detected (interval) cases and therefore more information about the
sojourn time tail, we investigate this question in the next subsection.
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4.3. Larger inter-screening time

In order to study the effect of a larger inter-screening time, we used the same
disease progression data of size 100 000 and ran a screening program consisting of
5 screens with 2 years between each screen. The results are presented in Table 5.
The models perform well in general, the estimates are more accurate than the case
where the inter-screening time is one year.

Table 5. Estimates of the process governing parameters for an
inter-screening time of 2 years.

Exponential onset and sojourn time 𝜒2
0.95(247) = 284.66

𝐿max 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 𝜉 1/𝜆1 1/𝜆2

∆ = 2 Count data 215 680.9 215 681.9 0.751 55.948 2.532
𝑁𝑡1 =100 000 Full data 222 598.4 222 599.3 0.752 55.972 2.528

Lognormal onset and expontential sojourn time 𝜒2
0.95(245) = 282.51

𝐿max 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 𝑏0 𝑏1 𝜇 𝑠 1/𝜆

∆ = 2 Count data 636 568.5 636 587.1 1.556 0.048 3.973 0.264 2.469
𝑁𝑡1 =100 000 Full data 658 494.9 658 512.1 1.431 0.045 3.972 0.265 2.542

Lognormal onset and gamma sojourn time 𝜒2
0.95(244) = 281.44

𝐿max 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 𝑏0 𝑏1 𝜇 𝑠 𝛼 𝛽 E(𝑌 ) V(𝑌 )

∆ = 2 Count data 60 993.9 62 151.2 1.403 0.055 3.973 0.267 5.282 2.047 2.58 1.261
𝑁𝑡1 =100 000 Full data 606 678.4 618 104.1 1.381 0.053 3.973 0.267 5.506 2.132 2.582 1.211

4.4. Misspecifications

Since it is not possible to observe neither the exact onset nor the sojourn time
of breast cancer, there is a possibility that one may falsely assume the sensitivity
to be constant or model the process with an incorrect distribution. In order to
investigate the performance of the model under these false assumptions, we first
force the sensitivity to be constant by fixing 𝑏1 = 0.

To investigate the performance of the model when one misspecifies the distri-
bution of the sojourn time, the model is run on the data generated by a known
distribution, while using an incorrect distribution to model the sojourn time.

4.4.1. Constant sensitivity

Let us first use a constant sensitivity (𝑏1 = 0) and fit the count based and the
full model on the data (𝑁𝑡1 =100 000 and ∆ = 1) generated by a lognormal onset
combined with an exponential and gamma sojourn times. The results can be seen
in Table 6.

It seems that forcing the sensitivity to be constant does not have a large effect
on the estimates for an exponentially distributed sojourn time. However, the 𝜒2-
distance in both cases does not fall in the acceptance region.

In the second block of the table, where the sojourn time is gamma distributed,
a bias can be observed in the variance of the sojourn time but the full model still
performs quite well regardless of the false assumption. We also noticed that the
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𝜒2−distance for both models is extremely large and is way outside the acceptance
region.

Table 6. Estimates of the sensitivity (𝑏0), onset (𝜇, 𝑠) and sojourn
time (𝜆) parameters when forcing a constant sensitivity (𝑏1 = 0).

Distance Sensitivity Onset Sojourn time
𝜒2 𝑏0 𝜇 𝑠 𝜆

Actual 1.4 3.971 0.267 2.5
Exponential Count data 629.847 1.615 3.974 0.258 2.415

𝜒2
0.95(496) = 548.92 Full data 630.543 1.515 3.974 0.259 2.472

𝜒2 𝑏0 𝜇 𝑠 𝛼 𝛽 E(𝑌 ) V(𝑌 )

Actual 1.4 3.971 0.267 6.25 2.5 2.5 1
Gamma Count data 1200.211 1.246 3.975 0.262 8.376 3.228 2.595 0.804

𝜒2
0.95(495) = 548.87 Full data 1220.863 1.372 3.975 0.262 6.273 2.438 2.572 1.055

4.4.2. Incorrect distribution

In order to investigate the effect of misspecifying the sojourn time distribution, we
used an exponential distribution to model the data generated by a gamma sojourn
time (∆ = 1 and 𝑁𝑡1 =100 000). The results are displayed in Table 7.

Table 7. Estimates of the key parameters when misspecifying the
sojourn time distribution.

Fitting an exponential sojourn time 𝜒2
0.95(497) = 549.97

𝑌 ∼ 𝜒2 𝑏0 𝑏1 𝜇 𝑠 1/𝜆

Gamma Count data 8946.79 2.546 0.154 4.006 0.296 3.632
Full data 9048.17 2.093 0.119 4.008 0.3 3.827

When an exponential distribution is fitted to data generated by a gamma so-
journ time, the model does not perform well, the 𝜒2-distances are enormous for
both models. The estimates for the mean sojourn time are very high and both
sensitivity and preclinical intensity parameters are also highly overestimated. This
is highly problematic as the exponential distribution is the most used one in the
literature.

The likely reason behind the high mean sojourn time estimate is the inability of
the exponential distribution, which is a one parameter family, to fit the shape of a
two parameter distribution (gamma). We also noticed that in this case, the count
based model has a slightly better mean sojourn time estimate than that of the full
model, since adding the exact time of diagnosis forces the exponential distribution
to fit a density with a peak leading to worse results. The multicorrelation explains
the estimates for the sensitivity and the onset, the model adjusts by increasing
the sensitivity of screens and onset age to compensate for the inability of the
exponential distribution to fit the data.
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5. Consequences for previous results

The estimates of the mean sojourn time and the sensitivity in some famous clinical
trials are shown in Table 8. One immediately notices the discrepancy between
the estimates, there are completely different estimates based on the same data
set but using different assumptions. We aim to discuss the reasons behind this
inconsistency.

Table 8. Sojourn time and sensitivity estimates (M: mammogra-
phy, P: physical exam) for some clinical trials.

Trial Mean sojourn time Sensitivity
Health Insurance Plan of greater New York (HIP) [13] 2.5 M:0.39 P:0.47
Edinburgh [13] 4.3 M:0.63, P:0.40
Canadian National Breast Screening Study (CNBSS1) [13] 1.9 M:0.61, P:0.59
Canadian National Breast Screening Study (CNBSS2) [13] 3.1 M:0.66, P:0.39
Canadian National Breast Screening Study (CNBSS1) [2] 2.55 0.7
Canadian National Breast Screening Study (CNBSS2) [2] 3.15 0.77
Norwegian Breast Cancer Screening Program for the age group [50,59] [14] 6.1 0.58
Norwegian Breast Cancer Screening Program for the age group [60,69] [14] 7.9 0.73

Chen et al. [2] used a stable disease approach and used the gamma distribution
to model the sojourn time of breast cancer. They applied their model on the CNBSS
data. They modeled the 40–49-year-old and 50–59-year-old cohorts separately.
The sensitivity is assumed to be constant, we have shown that forcing a constant
sensitivity barely affects the rest of the parameters. However, assuming the onset
to be independent of age is not likely to hold true.

In the approach used by Wu et al [16], they used constraints on the sojourn time,
the preclinical intensity, as well as the sensitivity when maximizing the likelihood.
In other words, they run MCMC simulation on a bounded area to find a maximum,
which could force a convergence to a local maximum. They also introduced using
a loglogistic sojourn time to model the sojourn time, which has similar shape to
the lognormal distribution but has heavier tails, it also has desirable survival rate
properties.

To check the model performance under a loglogistic sojourn time, we ran the
simulator based on a scale 𝛼 = 2.336 and a shape 𝛽 = 4.951, to generate a data set
of size 𝑁𝑡1 = 100 000, the defined values lead to a mean sojourn time of 2.5 years
and unit variance. After running the count based and the full model, we noticed
that the estimates are generally accurate and the performance of the model is
similar to the gamma sojourn time case. That being said, the variance of the
sojourn time is also hard to estimate in this case.

Furthermore, we also used the loglogistic sojourn time to model the data based
on the exponential and gamma distributions. For the exponential data, the count
based model performed well, with acceptable estimates. However, the full model
fails to estimate the parameters (estimated mean sojourn time of 3.41 years), this
is caused by the inability of the loglogistic distribution to fit the exponential shape.
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On the other hand, when fitting the model to data generated by a gamma sojourn
time, the results are almost indifferentiable to actually fitting a gamma sojourn
time. Even the likelihood based on the full models are almost identical, with a
-loglikelihood of 676 562.9 when fitting a gamma distribution and 676 564.9 when
fitting a loglogistic one. This means that there is no difference between the fit of
the two distributions and one is not able to differentiate between them.

Regarding the conflicting results of the CNBSS1 studies, [13] estimated the
sensitivity for Mammography(M) and physical examination(P) independently, their
mean sojourn time estimate for the CNBSS1 trial is 1.9 years, significantly lower
than the estimate of [2] of 2.55 years, the multicorrelation and different sojourn
time distributions is possibly the reason behind the difference in the estimates.

A two parameters (entry–exit) Markov chain model is used by [3], assuming
that the incidence rate 𝜆1 and the rate of transition from the preclinical state to
the clinical one 𝜆2 are both constants. When this method is applied to the data
from the Swedish two-county study of breast cancer screening in the age group
70-74, the resulting estimate for the mean sojourn time is 2.3 years. Although the
model is very flexible in the sense that symptomatic data is not needed, we have
shown that the parameters are not identifiable in this setup.

Weedon-Fekjaer et al. used a weighted non-linear least-square regression esti-
mates based on a three step Markov chain model, then performed sensitivity anal-
ysis to determine the possible impact of opportunistic screening between regular
screening rounds. Mean sojourn time and sensitivity were estimated by non-linear
least square regression, using number of cancer cases at screening and in the inter-
val between screening examinations. Mean sojourn time was estimated as 6.1 (95%
confidence interval [CI] 5.1-7.0) years for women aged 50-59 years, and 7.9 years
(95% CI 6.0-7.9) years for those aged 60-69 years, sensitivity was estimated as 58%
(95% CI 52-64 %) and 73 % (67-78 %), respectively. We suspect that the high so-
journ time estimate is a consequence of the choice of the sojourn time distribution,
as we have shown earlier, using the exponential distribution to model a sojourn
time having a different distribution results in a very high sojourn time estimate.
Their findings also suggest that sensitivity is lower than in other programs as well
as a higher mean sojourn time, but we believe it to be a direct consequence of the
correlation between the two parameters.

6. Summary

Summing up our findings, we can state that the current models are very sensitive to
the underlying assumptions. One should take great care of using such an approach,
and multiple trials with different models are needed before in order to get reliable
results. One way to solve this problem might be to include more information in
the model to stabilize the results such as tumor growth shape and tumor size [6,
7].

Under an exponential onset and sojourn time, the parameters are not iden-
tifiable for a small sample, the acceptance region is sizable and data before the
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first screen is needed to stabilize the results. On the other hand, under a lognor-
mal onset and an exponential sojourn time, the model performs much better and
estimates are generally accurate. Overall, the model performs well in this case,
we noticed that the full model performs much better than the count-based one.
Nonetheless, it would be wiser to apply the gamma model for the sojourn time, as
it is much more flexible and it can be reduced to the exponential distribution in
case the shape estimate is close to one.

The performance of the model is satisfactory for a gamma sojourn time, however
estimates of the variance of the sojourn time are quite biased. A larger inter-
screening interval improves the variance estimate since it allows observing the tail of
the sojourn time before censoring (screening). But of course medical considerations
might be more important in practice.

We also observed a high correlation between the parameters under all param-
eterizations. Consequently, the obtained variances of the estimators are not as
reliable as we might think. On the other hand, including the exact date of diagno-
sis leads to more accurate estimates for a small sample size and a more compact
acceptance region. We recommend applying both the count and the full model,
and if they give inconsistent results, then misspecification might be the reason for
this. The likelihood based on the full model is much more sensitive to small shifts
in the parameters, since it will be magnified through the product of the likelihood
of symptomatic cases. That is not the case with the count-based model.

Higher inter-screening intervals result in less accurate estimates for the sensi-
tivity but better sojourn time variance estimates. We also noticed that the 𝜒2

distance of the count-based model was always smaller than that of the full one,
although the latter allows for better estimates. Since maximizing the count-based
likelihood is equivalent to minimizing the 𝜒2-distance, this is a sign of over-fitting.
Nonetheless, the 𝜒2-distance can serve as good indicator for misspecification or
incorrect assumptions.
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