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Abstract

We propose a novel algorithm for minimizing communication costs of
multi-threaded and distributed actor systems, to gain performance advan-
tage by dynamically adapting to the structure of actor communication. We
provide an implementation in Circo, an open source actor system, and show
promising experimental results.
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1. Introduction and related work

Actor-based concurrency models [1] have been used for decades for scalable dis-
tributed applications [11]. Actors – the primitives of concurrency – encapsulate
their state, communicate through asynchronous messaging and form arbitrary topo-
logical relations.

Various frameworks and languages permit actor programming, including Akka
[15], CAF [7] and Pony [10]. Applications include banking and telecom transaction
processing, complex event stream processing and large-scale analytical pipelines.
The concurrency model of microservice architectures [8] corresponds with the ac-
tor model, and actor frameworks can be applied directly in cloud environments
(e.g. Orleans [4]). Driven by the popularity of cloud and Internet of Things (IoT)
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solutions and the stagnating performance of single CPU cores, the last few years
has seen an increased interest in actor systems. We believe that actor systems also
have a great potential for artificial intelligence, by providing an efficient tool to
incorporate sparsity into deep learning.

1.1. Why actors?

Programs built using other programming models – especially the synchronous ones
– may be easier to reason about, but the actor model allows unlimited scaling and
a variety of performance optimizations thanks to a few key properties:

1. No shared state: An actor can access only its own state directly, and every-
thing else must be done through messaging. Shared state is an abstraction
famous for introducing hard to find bugs called data races in concurrent pro-
grams. Actor programming does not expose the programmer to the risks of
shared memory, leaving shared memory to automatic performance optimiza-
tions.

2. No global synchronization mechanism included: Synchronization must be im-
plemented on the actor level, using the fact that message processing of a
single actor is serializable.

3. Location transparency: The act of sending a message does not depend on the
location of the target actor – sending messages within a machine is the same
as between machines.

Global synchronization performance degrades as the physical diameter of the
system grows, because information cannot travel faster than light. Similarly, pro-
viding the illusion of synchronous shared state – which does not exists in reality - is
only possible with introducing a latency proportional to the diameter of the subsys-
tem containing the state. Not having these features allows the actor model to scale
arbitrarily without performance loss. The third property, location transparency,
allows the execution environment to optimize actor placement and message passing
during run-time without actors noticing it.

1.2. Communication complexity

Communication is a common performance bottleneck of distributed systems, even
on single-node multi-core systems, where shared-memory communication between
cores works well, but brings in significant latency.

Communication is layered in modern hardware: network is slower than shared-
memory which is slower than in-thread (cached) data passing. This layeredness of
technology is a result of physical and technological constraints, namely the speed
of light, maximal density of hardware elements, and manufacturing costs. It is
reasonable to think that these constraints and the technology layers will not dis-
appear soon. Even if the layers merge, messaging latency remains dependent on
physical distance, because information cannot travel faster than light. Communi-
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cation therefore will remain a performance limiting factor of distributed systems
for long.

Large scale data processing systems apply data locality to minimize the cost
of communication – bringing computation to the data [6]. Disk-based data local-
ity was a key success factor of MapReduce, but as network technology outpaced
local storage speed, memory locality became the primary goal. Data processing
frameworks are now often aware of locality, with regard to NUMA (Non-Uniform
Memory Access) patterns [13]. Actor systems are also employing techniques to
deal with locality in non-uniform shared memory: a locality-guided scheduler for
CAF was published in [14], and locality-aware work stealing scheduler methods was
studied in [2].

The main goal of this paper is to provide a general method to reduce communi-
cation overhead in distributed systems. We formulate a solution in the context of
the actor model: the decentralized “infoton optimization” algorithm is presented,
which explores and exploits the structure of communication to minimize communi-
cation cost by co-locating actors during run-time. The computational cost of this
algorithm is proportional to the number of actor messages.

2. Infoton optimization

To reduce communication costs during execution of an actor system, frequently
communicating actors are to be moved to a common, or at least to nearby locations
– e.g. to the same NUMA location, computer or data center.

Infoton optimization is a physics-inspired model, essentially a decentralized,
scalable version of force-directed graph drawing [12] – a physical system of bodies
with cohesive forces, where the energy of the system is to be minimized. Infoton
optimization maps intensity of actor communication to forces of the physical sys-
tem and approximates the behavior of the system in a way that needs no central
coordination.

Actors and schedulers (threads executing actor code) are mapped to 3D Eu-
clidean space: The main idea is that distance approximates communication cost,
and actors move towards their communication partners to minimize communication
cost.

Euclidean space is chosen on purpose as the model of the physical universe,
where communication cost often depends on physical distance – even multicore
CPUs evolve to be 3D structures [3]. However, as network and other communication
costs don’t always match the strict Euclidean properties, other spaces might also
be investigated.

Schedulers are embedded in a way that their distance represents communication
overhead, either by static positioning, or by using network coordinates. Actors
move in the space during optimization and are continuously migrated to the nearest
scheduler.
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2.1. Assumptions
Infoton optimization assumes the following properties of the actor system:

1. Actors are significantly more numerous than threads.
2. Actor communication is structured: Only a small, slowly changing portion of

possible actor connections is used.
3. Actors can be migrated: Computational load with actors can be moved be-

tween schedulers, affecting future communication cost.

2.2. What is an infoton
The infoton is the quantum of actor forces, a force-carrying particle – like photons
in physics – that:

1. Is coming from a source location.
2. Carries a positive scalar value called energy.
3. Has a sign.

2.3. Infoton action
When the infoton acts on an actor, it either pulls or pushes the actor toward/away
from the source location of the infoton. The direction of the actor movement
depends on the sign (positive pulls), while the distance is proportional to the
energy of the infoton.

Actors have no inertia in this model, they only move when infotons act on
them. This way inactive actors introduce no computational overhead. The physical
analogy is that actors move in thick fluid.

2.4. The first force
We define two major forces of infoton optimization. The first force of infoton
optimization brings communicating actors toward one another.

1. An infoton is attached to every message passed between actors, holding the
position of the source actor and a unit of energy with positive sign.

2. When the message arrives at its destination actor, the infoton attached to it
acts on that actor, pulling it towards the source of the message.

2.5. The second force
Another force spreads actors in the segment of the space near schedulers, avoiding
all concentrating around a single point:

1. When a message arrives, the scheduler that executes the target actor creates
a new “scheduler infoton”, with itself as source.

2. Scheduler infotons either pull or push actors toward or away from the sched-
uler, depending on the load of the scheduler.
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3. Implementation details

We have added an experimental implementation to the Circo [9] actor system
(where the main author and maintainer is the main author of this paper). Circo
is written in Julia [5], a dynamically typed, garbage collected general-purpose lan-
guage designed for numerical computing.

Unlike most contemporary actor systems, Circo implements multi-threading
by running several single-threaded schedulers that communicate through shared
memory and form the “host cluster”. Similarly, distribution of work between hosts
is done in a separated cluster, which we call “the” Cluster, because we think that
the Actors stick to schedulers by default, but can migrate between them by using
the migration service.

For simplicity the current implementation of infoton optimization assumes that
communication overhead between any pair of schedulers is fixed, thus schedulers are
statically positioned. This, however, can be extended to be dynamically adjusted.

The algorithm can be customized with the following parameters:

1. I – A proportionality constant of actor forces, similar to the G gravitational
constant in physics. It connects the energy of the acting infoton to the length
of movement caused by the action. Higher values cause more intense actor
movement.

2. TARGET_DISTANCE – Force-directed graph drawing algorithms often use
repulsive forces between every pair of nodes to avoid the concentration of
nodes. The second force of infoton optimization has a similar goal, but we
have found that the algorithm is more stable with a quirk that approximates a
hidden repelling force acting only at low distances: When the source position
of a pulling infoton is closer to the target actor than TARGET_DISTANCE,
its effect is extinguished.

3. SCHEDULER_TARGET_LOAD – We define the load of a scheduler as the
total number of messages waiting to be processed. This parameter sets the
load that every scheduler tries to maintain independently. Scheduler infotons
emitted by a scheduler will pull actors when its load is lower and push when
higher.

4. SCHEDULER_LOAD_FORCE_STRENGTH – Proportionality constant of
scheduler infoton energy.

Following is the Julia code that calculates the movement of an actor caused by
an infoton acting on it (error handling is not shown):� �

function Circo.apply_infoton(targetactor, infoton)
diff = infoton.sourcepos - targetactor.core.pos
difflen = norm(diff)
energy = infoton.energy
if energy > 0 && difflen < conf[].TARGET_DISTANCE

return nothing
end
stepvect = diff / difflen * energy * conf[].I
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targetactor.core.pos += stepvect
return nothing

end� �
The code to generate the “scheduler infoton” when delivering a message:� �
function Circo.scheduler_infoton(scheduler, actor)

dist = norm(scheduler.pos - actor.core.pos)
loaddiff = Float64(conf[].SCHEDULER_TARGET_LOAD - length(scheduler.msgqueue))
if loaddiff == 0.0 # Nothing to do at target load

return Infoton(scheduler.pos, 0.0)
end
energy = sign(loaddiff) *

log(abs(loaddiff)) *
conf[].SCHEDULER_LOAD_FORCE_STRENGTH

return Infoton(scheduler.pos, energy)
end� �
Although Circo supports multi-threaded and distributed settings, for easier

experimentation we have created a simulation environment1 that starts several
schedulers on the same thread and allows changing of optimization parameters
during run-time.

4. Experiments

We have conducted experiments with two actor programs:

1. Linked List: Generates a linked list of actors, each storing a single scalar,
then runs reduce (sum) operations on the list concurrently. When an op-
eration finishes, immediately starts a new one, maintaining 100 concurrent
operations.

2. Search Tree: Generates a binary search tree of actors, leafs hold 1000 scalars,
inner nodes contain only a split value and addresses of two children. Fills the
tree with random data and runs search operations concurrently (during and
after filling, maintaining 500 concurrent searches).

In both cases a coordinator actor manages the creation of the data structure and
sends the reduce/search operations to it. Results are sent back to the coordinator,
so the computing graphs are cyclic: A single cycle containing every actor of the
linked list, and a unique cycle for every leaf of the search tree.

We have introduced “domain knowledge” to the search tree through two simple
actor behaviors, improving performance. We call these behaviors domain specific,
because they reflect information about the structure of the actor system (that it is
a tree). First, the coordinator actor goes back to the fixed position (−10, 0, 0) every
time it receives a search response. This helps stabilizing the tree layout. Second,
tree nodes periodically send a negatively signed infoton to their siblings in order to

1To reproduce the experiments, open https://github.com/Circo-dev/ExploreInfotonOpt.
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repel each other. This is intended to open up the tree, making easier for siblings
to separate.

Actors are continuously moving and occasionally changing schedulers when they
get closer to another one. Messages are considered local if source and destination
actors run on the same scheduler. As the direct indicator of optimization success
we have measured the ratio of the number of local messages to the total number
of messages.

To demonstrate that it is possible to find a single set of parameters for which
infoton optimization yields good results for a wide variety of actor programs, we
have run differently sized versions of the two programs with the same fixed infoton
optimization parameters, selected manually:

• I = 0.2,
• TARGET_DISTANCE = 200.0,
• SCHEDULER_TARGET_LOAD = 13,
• SCHEDULER_LOAD_FORCE_STRENGTH = 0.02

Six schedulers were used, positioned at face-centers of a cube: (−1000, 0, 0),
(1000, 0, 0), (0,−1000, 0), (0, 1000, 0), (0, 0,−1000), (0, 0, 1000).

Figures in this paper are screenshots of the Circo tool “Camera Diserta”, used to
monitor and validate actor layout. Grey lines are local, orange lines are non-local
connections between actors. Schedulers are drawn as blue cubes, test coordinator
as a red sphere.

Figure 1 illustrates the layout of the linked list program with 200 (71%), 500
(83%), 1000 (85%), 2000 (89%), 4000 (89%) and 8000 (89%) (row major order) list
item actors. Percents in parentheses are local message ratios of the last 10 seconds
before taking the screenshots. (When actors are distributed randomly between six
schedulers, local message ratio is 1/6 (17%).)

Figure 2 illustrates the layout of the search tree program with 62 (51%), 126
(57%), 254 (64%), 506 (66%), 1018 (70%), 2028 (73%), 4046 (74%) and 8080 (76%)
(row major order) tree node actors. Percents in parentheses are local message ratios
of the last 10 seconds before taking the screenshots. Connections from leafs to the
coordinator are not drawn.

Figure 3 illustrates the layout of the search tree without the domain-specific
behaviors, with 62 (45%), 96 (46%), 254 (51%), 510 (50%), 1017 (51%), 2004 (56%)
tree node actors. These layouts are not stable, they are slowly and continuously
restructuring while maintaining high local message rate. Note that connections
near the leafs have much less message traffic than near the root, so the optimization
is still successful despite the high amount of non-local connections.

Infoton optimization radically improved message locality in all three experi-
ments, reducing inter-scheduler communication by 43–87% compared to the ran-
dom placement baseline. Figure 4 illustrates this by showing local message ratios
achieved after optimization.
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Figure 1. Optimized layouts of a linked list of 200, 500, 1000,
2000, 4000 and 8000 actors on 6 schedulers.
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Figure 2. Optimized layouts of a binary tree built from 62, 126,
254, 506, 1018, 2028, 4046 and 8080 actors on 6 schedulers.

Exploiting the structure of communication in actor systems 279



Figure 3. Optimized layouts of a binary tree without the domain-
specific behaviors, built from 62, 96, 254, 510, 1017, 2004 actors on

6 schedulers.
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Figure 4. Local message ratios achieved at different program sizes
on 6 schedulers, and random actor placement as baseline.

5. Conclusions and future work

We have introduced infoton optimization, and demonstrated in a limited scenario
that it is capable of distributing computational load of actor systems while opti-
mizing message locality. The algorithm is decentralized and its cost is proportional
to the number of messages.

The algorithm has several parameters that need to be tuned manually. Manual
tuning of large decentralized systems may not always be feasible, so future work
should focus on meta-optimization or elimination of these parameters.

One of our examples introduces domain-specific constraints on how actors be-
have, which improves the efficiency of the optimization significantly. However, the
optimization works well without these domain-specific behaviours too. This shows
that the algorithm is easily customizable with (application-specific) domain knowl-
edge, and for some actor programs such customization may result in significant
performance gain.

In the simple version of the algorithm discussed in this paper, actors behave
uniformly when infotons act on them. Introducing “mass” or “size” properties of
actors to reflect the cost of migration is however a promising extension of the
algorithm.

Several further aspects of infoton optimization are to be clarified and detailed
as future work. For example, convergence criteria of infoton optimization and
optimality of the results are studied in the context of stochastic optimization.
Detailed benchmark experiments are also being performed, comparing common
actor systems with Circo.
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