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Abstract

Lower and upper bounds on the size of resolving sets for the point-hyperplane incidence
graph of the finite projective space PG(n, q) are presented.

1 Introduction

For a connected, finite, simple graph Γ = (V,E) and x, y ∈ V let d(x, y) denote the length of a
shortest path joining x and y.

Definition 1. Let Γ = (V,E) be a finite, connected, simple graph. A vertex v ∈ V is resolved
by S = {v1, . . . , vn} ⊂ V if the ordered sequence (d(v, v1), d(v, v2), . . . , d(v, vn)) is unique. S is a
resolving set in Γ if it resolves all the elements of V . The metric dimension of Γ is the size of the
smallest example of resolving set in it.

The study of metric dimension is an interesting question in its own right and it is also motivated
by the connection to the base size of the corresponding graph. The base size of a permutation group
is the smallest number of points whose stabilizer is the identity. The base size of Γ is the base
size of its automorphism group. The study of base size dates back more than 50 years, see [10].
A resolving set for Γ is obviously a base for Aut(Γ), so the metric dimension of a graph gives an
upper bound on its base size.

The best known general bounds on metric dimension are given in the next theorem. The lower
bound is straightforward, but the bound is tight (e.g. for a path or for a complete graph). The

∗The research was supported by the Italian National Group for Algebraic and Geometric Structures and their
Applications (GNSAGA - INDAM) and by University of Perugia, (Project: ”Strutture Geometriche, Combinatoria e
loro Applicazioni”, Base Research Fund 2017).
†The research was partially supported by the bilateral Slovenian-Hungarian Joint Research Project, grant no. NN

114614 (in Hungary) and N1-0032 (in Slovenia).

1



upper bound was proved by Hernando et al. [7]. They also proved that for all integers d ≥ 2 and
k ≥ 1, there exists a graph on n vertices for which equality holds in Inequality (1).

Theorem 2 (Hernando et al.). If Γ has n vertices, its diameter is d and its metric dimension is
k, then

k + d ≤ n ≤
(⌊

2d

3

⌋
+ 1

)k
+ k

dd/3e∑
i=1

(2i− 1)k−1. (1)

For more information about general results we refer the reader to the survey paper of Bailey
and Cameron [1].

Much better bounds are known for incidence graphs of some linear spaces. In these cases, there
are several estimates on the size of double blocking sets that can be used to prove lower bounds
on the metric dimension. The knowledge of geometric properties are useful for the constructions
and hence for the proof of upper bounds. It was shown by Héger and Takáts [6] that the metric
dimension of the point-line incidence graph of a projective plane of order q is 4q − 4 if q ≥ 23.
Estimates on the metric dimension of affine and biaffine planes and generalized quadrangles were
given by Bartoli et al. [2]. In higher dimensional spaces resolving sets are connected to lines in
higgledy-piggledy arrangement which were studied by Fancsali and Sziklai [4].

Let ΓP,H(n, q) be the point-hyperplane incidence graph of the finite projective space PG(n, q).
The two sets of vertices of this bipartite graph correspond to the points and hyperplanes of PG(n, q),
respectively, and there is an edge between two vertices if and only if the corresponding point is in
the corresponding hyperplane. In this paper, we investigate the metric dimension of ΓP,H(n, q).

We use the same notations as in [6]. In particular

• [P ] and [H] denote the set of all hyperplanes through P and all the points in the hyperplane
H, respectively;

• if S = PS∪HS , with PS points and HS hyperplanes, then inner points and inner hyperplanes
indicate points or hyperplanes in S, whereas outer points or outer hyperplanes denote points
and hyperplanes not in S;

• an outer point is t-covered if it lies on exactly t hyperplanes of HS .

In ΓP,H(n, q) the distance of two distinct vertices is 2 if both vertices correspond to points or
to hyperplanes and the distance is 1 or 3 if one vertex corresponds to a point and the other one
corresponds to a hyperplane. Thus, outer points can only be resolved by hyperplanes and outer
hyperplanes can only be resolved by points. Considering this property, the following definition is
natural.
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Definition 3. A subset S of vertices in ΓP,H(n, q) is called a semi-resolving set for points (hyper-
planes) if it resolves all of those vertices of ΓP,H(n, q) that correspond to points (hyperplanes) of
PG(n, q).

This paper is organized as follows. In Section 2, lower bounds on the size of resolving sets
are proved in a pure combinatorial way. In Section 3, some constructions are presented. These
resolving sets come from lines in higgledy-piggledy arrangement and the proof of our main result
is based on estimates of the number of Fq-rational points of suitable algebraic curves. Finally, in
Section 4 computer aided result for spaces containing small number of points are given.

2 A general lower bound

Our first general lower bound is a generalization of the planar result of Héger and Takáts [6].

Theorem 4. If q is large enough, then the size of any resolving set in ΓP,H(n, q) is at least

r = 2nq − 2
nn−1

(n− 1)!
.

Proof. The statement for n = 2 was proven by Héger and Takáts [6], so we may assume that n > 2.
Suppose to the contrary that a resolving set S = PS∪HS contains less elements than r. Because

of the duality we may assume without loss of generality that HS contains at most (r − 1)/2

hyperplanes. Let |HS | = nq − C, where C > nn−1

(n−1)! . All outer points must be resolved by the
elements of HS because the distance of any two distinct points is exactly 2. If m < n, then the
intersection of any set of m hyperplanes contains at least qn−m + qn−m−1 + · · ·+ 1 > 1 points, thus
any set of m hyperplanes can resolve at most one m-covered points. Hence, a lot of points must
be covered at least n times. The maximum number of resolved m-covered points is

(
nq−C
m

)
, the

number of 1-covered points and outer points altogether is r, and there is at most one not covered
outer point. Therefore, counting the incident (inner hyperplane, point) pairs, we get

(nq − C) (qn−1 + qn−2 + · · ·+ 1) ≥ n

(
qn+1 − 1

q − 1
−

n−1∑
m=2

(
nq − C
m

)
− r − 1

)
+

n−1∑
m=1

m

(
nq − C
m

)

= n(qn + qn−1 + · · ·+ 1)−
n−2∑
i=1

i

(
nq − C
n− i

)
− n(r + 1) + nq − C.
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The coefficients of qn are the same on the two sides of the inequality. As n > 2 implies that the
summands n(r + 1) and nq do not contain any term of qn−1, when comparing the coefficients of
qn−1 we get

n− C ≥ n− nn−1

(n− 1)!
,

this contradiction proves the statement of the theorem.

Let us remark that in the case n = 2 the bound is tight. Héger and Takáts [6] not only
proved the lower bound if q ≥ 23, but they also constructed several resolving sets of size 4q− 4 for
ΓP,H(2, q), so we know that the metric dimension of the point-line incidence graph of a projective
plane of order q ≥ 23 is 4q − 4.

In higher dimensions the sizes of the known resolving sets are much greater than the bound
in Theorem 4. For instance, a construction due to Fancsali and Sziklai provides, under some
assumptions on n and q, resolving sets of size (4n − 2)q; see [4] and Theorem 10 below. From a
result of Héger, Patkós and Takáts [5, Theorem 1.4], who used probabilistic methods, the existence
of resolving sets of size 4(n+ 1)q follows. In the present paper, we construct resolving sets of sizes
8q (n = 3 case) and 12q (n = 4 case), improving Theorem 10; see Theorem 9 and Corollary 12.
Such constructions are still far from attaining the bound in Theorem 4.

As outer hyperplanes can only be resolved by points, there is a natural connection between
blocking sets and semi-resolving sets for hyperplanes and dually, between dual blocking sets and
semi-resolving sets for points. The simplest k-fold blocking set for hyperplanes is the union of
k pairwise skew lines. If we restrict ourselves and we consider only those semi-resolving sets for
hyperplanes that are contained in the union of some lines, then we can give much better estimates
than the bound of Theorem 4. To do this, we recall a result of Fancsali and Sziklai [4, Lemma 13].

Lemma 5 (Fancsali and Sziklai, [4]). If the set L of lines in PG(n, q) has at most bn2 c + n − 1
elements, then there exists a subspace of co-dimension 2 meeting each line in L.

Corollary 6. If a semi-resolving set S for hyperplanes of PG(n, q) is contained in the union of m
lines, then m ≥ b3n/2c.

Proof. Suppose to the contrary that m < b3n/2c. By Lemma 5, there exists a subspace Π of co-
dimension 2 meeting each of the m lines. This means that each of the q+ 1 hyperplanes containing
Π meets S in the same set of points, contradiction.
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3 Upper bounds

In the planar case, all semi-resolving sets for lines are slight modifications of double blocking
sets. The natural generalization of these constructions in PG(n, q) is the following: take an n-fold
blocking set for hyperplanes and modify it a bit. We show that this idea does not work without
requiring some additional properties. The simplest n-fold blocking set for hyperplanes is the point
set contained in the union of n pairwise skew lines. It could happen that a 2-codimensional subspace,
say Πn−2, intersects each of the n lines. In this case, any two hyperplanes whose intersection is Πn−2
meet the n-fold blocking set in the same set of points, hence they are not resolved. To avoid this
situation we need the notion of lines in higgledy-piggledy arrangement. This notion was introduced
by Héger, Patkós and Takáts [5] and these sets were investigated by Fancsali and Sziklai [4].

Definition 7. In PG(n, q) a set of lines L is called a higgledy-piggledy arrangement if no 2-
codimensional subspace of PG(n, q) meets each element of L.

The next lemma plays a crucial role later in our constructions.

Lemma 8. Suppose that PG(n, q) allows a set of k lines in higgledy-piggledy arrangement. Then,
the graph ΓP,H(n, q) has a resolving set of size 2kq.

Proof. We construct a resolving set S = PS ∪HS having the extra property |PS | = |HS |. Because
of duality, it is enough to show that there exists a set of points PS of size kq that resolves the
hyperplanes of the space.

Let L = {`1, `2, . . . , `k} be a set of lines in higgledy-piggledy arrangement and Pi be an arbitrary
point on `i. We claim that the set of points

PS =

k⋃
i=1

(`i \ {Pi})

resolves the hyperplanes. Every hyperplane meets every line in either 1 or q+ 1 points. As there is
no 2-codimensional subspace meeting each element of L, and the intersection of any two hyperplanes
is a 2-codimensional subspace, we get that no two hyperplanes meet PS in the same set of points,
which proves the statement.

Our first result is based on a well-known property of hyperbolic quadrics in PG(3, q). This
construction shows that the estimate in Corollary 6 is tight in the 3-dimensional case.

Theorem 9. The graph ΓP,H(3, q) has a resolving set of size 8q.
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Proof. By Lemma 8, it is enough to show that there exists a set of four lines which have no common
transversal line.

Let H be a hyperbolic quadric, `1, `2 and `3 be three pairwise skew lines on H and `4 be an
external line to H. If a line contains three points of a quadratic surface, then each point of the
line is on the surface. Thus, all the transversals of `1, `2 and `3 are contained in H. As the line `4
has empty intersection with H, there is no line meeting each of the four lines `i. This proves the
statement.

Fancsali and Sziklai [4] constructed sets of lines in higgledy-piggledy arrangement of size 2n− 1
in PG(n, q) if q satisfies some conditions. As a reformulation of [4, Theorem 20] we get the following
statement.

Theorem 10 (Fancsali and Sziklai, [4]). If q = pr, p > n and q ≥ 2n−1, then the graph ΓP,H(n, q)
has a resolving set of size (4n− 2)q.

Our main result improves this bound for n = 4. The proof is based on the following proposition
which shows the existence of six lines in higgledy-piggledy arrangement in PG(4, q). Let us remark
that our construction is totally different from the one of Fancsali and Sziklai, although we also
use the Grassmann coordinates. For a brief introduction to these coordinates we refer the reader
to [9, Section 24.1].

Proposition 11. In PG(4, pr) if p 6= 2, p 6= 3 and q > 36086, then there exists α ∈ GF(pr) such
that there is no plane which intersects each of the six lines joining the pairs of points

(1 : 0 : 0 : 0 : 0) and (0 : 1 : 1 : 0 : 0),
(0 : 1 : 0 : 0 : 0) and (0 : 0 : 1 : 1 : 0),
(0 : 0 : 1 : 0 : 0) and (0 : 0 : 0 : 1 : 1),
(0 : 0 : 0 : 1 : 0) and (1 : 0 : 0 : 0 : 1),
(0 : 0 : 0 : 0 : 1) and (1 : 1 : 0 : 0 : 0),
(1 : 1 : 1 : 1 : 1) and (1 : 0 : 1 : α : 0).

Proof. The Grassmann coordinates

(g01 : g02 : g03 : g04 : g12 : g13 : g14 : g23 : g24 : g34)
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of the lines are the following.

`1 : (1 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0),
`2 : (0 : 0 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0),
`3 : (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0),
`4 : (0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : −1),
`5 : (0 : 0 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 0),
`6 : (1 : 0 : 1− α : 1 : −1 : −α : 0 : 1− α : 1 : α).

Suppose that a plane Π with Grassmann coordinates

(g234 : g314 : g124 : g213 : g034 : g204 : g023 : g014 : g103 : g012)

meets each of the six lines. This means that the dot product of the coordinate vectors of `i and
Π is zero. Writing it for i = 1, 2, . . . 5 we get g234 + g314 = 0, g034 + g204 = 0, g014 + g103 = 0,
g124− g012 = 0 and g213 + g023 = 0, respectively. Let g234 = a, g123 = b, g213 = c, g034 = d g014 = e.
Then, the coordinate vector of Π is

(a : −a : b : c : d : −d : −c : e : −e : b).

This vector satisfies the quadratic Plücker relations

gi1i2i3gj1j2j3 = gj1i2i3gi1j2j3 − gj2i2i3gi1j1j3 ,

thus choosing j3 = 4, 3, 2, 1 and 0 we get

ae = ad− bd, ac = cd− ae, ab = cd− bc, ab = be+ ce, bd = ce+ de, (2)

respectively. The plane Π also meets `6, hence we have 0 = a+(1−α)b+c−d+αd+(1−α)e−e+αb,
so

a+ b+ c+ (α− 1)d− αe = 0. (3)

We claim that for a suitable choice of α Equations (2) and (3) imply a = b = c = d = e = 0.
First, suppose that a = 0. Then, from the first three equations of (2) we get bd = cd = bc = 0,

hence at least two of b, c and d are 0. Then, the fifth equation of (2) implies that either b = c = d = 0,
or e = 0, so there is at most one non-zero among a, b, c, d and e. This fact, together with Equation
(3), prove the statement of the theorem.

Now, suppose that a 6= 0. Because of the homogeneity we may assume without loss of generality
that a = 1.
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If d = 0, then the first and second equations of (2) imply e = 0 and c = 0, and the third
equation implies b = 0, because a = 1. Thus, Equation (3) gives 1 = 0, contradiction.

If d = 1, then the second equation of (2) gives e = 0, hence the first equation of (2) implies
b = 1. This means that the third equation of (2) becomes 1 = 0, a contradiction again.

Suppose that 0 6= d 6= 1. Then, the first and second equations of (2) give b = d−e
d and c = e

d−1 ,
respectively. Substituting these expressions into the remaining three equations of (2), we get

d2e− d2 + d+ e2 − e = 0

in each case, while substituting into Equation (3) gives

(1− α)d3 + (α− 3)d2 + 2d+ e(αd2 − αd− 1) = 0.

The resultant of these two equations with respect to e is

(d5 − d4)α2 + (−d5 + d4 + 4d3 − 5d2 + d)α+ d4 − 4d3 + 6d2 − 5d+ 1. (4)

In the following, we prove that there exists at least one α ∈ Fq such that Equation (4) has no
solution in Fq.

First of all, we count the number of αs for which the equation

Gα(d) = (d5 − d4)α2 + (−d5 + d4 + 4d3 − 5d2 + d)α+ d4 − 4d3 + 6d2 − 5d+ 1 = 0

has at least two distinct solutions in Fq. Consider the polynomial

Fx,y,z,t,u(d) = (d+ x)(d+ y)(d3 + d2z + dt+ u) ∈ Fq[d].

We will give a lower bound on the number of six-tuples [x, y, z, t, u, α] ∈ F6
q such that Gα(d) =

λFx,y,z,t,u(d) for some λ ∈ F∗q .
This immediately gives λ = α2 − α, therefore α 6= 0, 1, and

xyuα2 − xyuα− 1 = 0,
xα2 − xα+ yα2 − yα+ zα2 − zα+ α2 − α− 1 = 0,
xytα2 − xytα+ xuα2 − xuα+ yuα2 − yuα− α+ 5 = 0,
xyzα2 − xyzα+ xtα2 − xtα+ ytα2 − ytα+ uα2 − uα+ 5α− 6 = 0,
xyα+ xzα+ yzα+ tα− 4 = 0.

.

We also require that x 6= y, that is x − y 6= 0, and xy 6= 0 in order to consider the following
substitution:

t = −(xyα+ xzα+ yzα− 4)/α,
u = 1/(xy(α2 − α)),
z = −(xα2 − xα+ yα2 − yα+ α2 − α− 1)/(α2 − α).

.
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We get 

0 = (x4y2 + x3y3 + x3y2 + x2y4 + x2y3)α2

+ (−x4y2 − x3y3 − x3y2 − x2y4 − x2y3 + 4x2y2 − xy)α

− x3y2 − x2y3 − 4x2y2 + 5xy + x+ y,

0 = (x4y + x3y2 + x3y + x2y3 + x2y2 + xy4 + xy3)α2

+ (−x4y − x3y2 − x3y − x2y3 − x2y2 + 4x2y − xy4 − xy3 + 4xy2 + 5xy)α

− x3y − x2y2 − 4x2y − xy3 − 4xy2 − 6xy + 1.

(5)

It is easily seen that α 6= 0, 1 is equivalent to

(x3y2 + x2y3 − 4xy − x− y)(x3y2 + x2y3 + 4x2y2 − 5xy − x− y) 6= 0.

Now, the resultant of the two polynomials in (5) with respect to α contains the factor H(x, y) equal
to

x8y8 + 4x8y7 + 7x8y6 + 13x8y5 + 24x8y4 + 33x8y3 + 27x8y2 + 9x8y + x8 + 4x7y8 + 11x7y7 + 8x7y6

+23x7y5 + 79x7y4 + 110x7y3 + 71x7y2 + 20x7y + 2x7 + 7x6y8 + 8x6y7 − 3x6y6 + 87x6y5 + 262x6y4

+256x6y3 + 101x6y2 + 17x6y + x6 + 13x5y8 + 23x5y7 + 87x5y6 + 367x5y5 + 586x5y4 + 397x5y3

+112x5y2 + 11x5y + 24x4y8 + 79x4y7 + 262x4y6 + 586x4y5 + 622x4y4 + 307x4y3 + 70x4y2 + 6x4y

+33x3y8 + 110x3y7 + 256x3y6 + 397x3y5 + 307x3y4 + 104x3y3 + 16x3y2 + x3y + 27x2y8 + 71x2y7

+101x2y6+112x2y5+70x2y4+16x2y3+x2y2+9xy8+20xy7+17xy6+11xy5+6xy4+xy3+y8+2y7+y6.

Let β = α+ x3y+x2y2+x2y+xy3+xy2−4xy+1
2xy(x2+xy+x+y2+y)

. Then

4x2y2(x2 + xy + x+ y2 + y)2β2 =x6y2 + 2x5y3 + 6x5y2 + 3x4y4

+ 12x4y3 + 13x4y2 + 2x3y5 + 12x3y4 + 18x3y3 + 8x3y2

− 18x3y − 4x3x2y6 + 6x2y5 + 13x2y4 + 8x2y3 − 2x2y2

− 26x2y − 4x2 − 18xy3 − 26xy2 − 16xy − 4y3 − 4y2 + 1.

9



Finally, put γ = 2xy(x2 + xy + x+ y2 + y)β. Then, we obtain

γ2 =x6y2 + 2x5y3 + 6x5y2 + 3x4y4 + 12x4y3 + 13x4y2 + 2x3y5 + 12x3y4 + 18x3y3

+ 8x3y2 − 18x3y − 4x3 + x2y6 + 6x2y5 + 13x2y4 + 8x2y3 − 2x2y2 − 26x2y

− 4x2 − 18xy3 − 26xy2 − 16xy − 4y3 − 4y2 + 1

=L(x, y).

(6)

Now, consider the algebraic variety V defined by Equation (6) and H(x, y) = 0. We are going
to prove the existence of an absolutely irreducible component defined over Fq of V. Consider the
birational transformation ϕ defined as ϕ(x, y, γ) = (x, x2y − 1, γ). Let H ′(x, y) = H(ϕ(x, y, γ))
and γ2 = L(ϕ(x, y, γ)). It is easily seen that the new variety V ′ has a component given by γ2 =
L(ϕ(x, y, γ)), H(ϕ(x, y, γ))/x4 = 0. This component contains a simple Fq-rational point (0 : 0 : 1)
and therefore there exists an absolutely irreducible Fq-rational component X through it which is
not contained in the plane x = 0. The variety V ′ has equations



0 = x20y8 + 4x19y8 + 7x18y8 − 4x18y7 + 13x17y8 − 21x17y7 + 24x16y8 − 48x16y7 + 7x16y6 + 33x15y8

−81x15y7 + 43x15y6 + 27x14y8 − 113x14y7 + 137x14y6 − x14y5 + 9x13y8 − 154x13y7 + 290x13y6

−18x13y5 + x12y8 − 145x12y7 + 381x12y6 − 119x12y5 − 6x12y4 − 52x11y7 + 410x11y6 − 400x11y5

−21x11y4 − 6x10y7 + 360x10y6 − 671x10y5 − 8x10y4 + 11x10y3 + 129x9y6 − 677x9y5 + 161x9y4

+25x9y3 + 15x8y6 − 515x8y5 + 537x8y4 + 26x8y3 − 9x8y2 − 175x7y5 + 622x7y4 + 60x7y3

−14x7y2 − 20x6y5 + 430x6y4 − 140x6y3 + 18x6y2 + x6y + 136x5y4 − 272x5y3 − 47x5y2 + 4x5y
+15x4y4 − 191x4y3 − 36x4y2 − 12x4y + x4 − 57x3y3 + 30x3y2 + 4x3y − 6x2y3 + 33x2y2 + 18x2y
+10xy2 + 8xy + y2 + y,

γ2 = x14y6 + 2x13y5 + 3x12y4 + 2x11y4 + 2x11y3 − 2x10y4 + x10y2 − 10x9y3 − 4x8y3 − 5x8y2 − 2x8y
−18x7y3 + 6x7y2 − 6x7y − 4x6y3 + 7x6y2 − 2x6y + x6 + 28x5y2 − 18x5y + 4x5 + 8x4y2 − 26x4y
+4x4 − 18x3y + 14x3 − 4x2y + 20x2 + 8x+ 1.

.

Let Y = ϕ−1(X ) be the corresponding Fq-rational component in V. In order to estimate the
genus of Y, we notice that the curve defined by H(x, y) = 0 has genus at most 105− 56 = 49, since
such a curve has degree 16 and at least two ordinary singular points of multiplicity 8 (the two ideal
points). Thus, by [11, Corollary 3.7.4],

g(Y) ≤ 1 + 2(49− 1) +
1

2
(128) = 161.

Hence, from the Hasse-Weil Bound [11, Theorem 5.2.3], we get that Y has at least

q − 161
√
q − 3
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affine Fq-rational points.
Recall that we need to prove the existence of Fq-rational points (x0 : y0 : γ0) such that

g(x0, y0) 6= 0, where

g(x0, y0) = x0y0(x0 − y0)(x30y20 + x20y
3
0 − 4x0y0 − x0 − y0)(x30y20 + x20y

3
0 + 4x20y

2
0 − 5x0y0 − x0 − y0),

since the corresponding α must be different from 0 and 1. Now, the variety given by g(x, y) = 0
is mapped by ϕ(x, y, γ) into a variety of degree 30 in x, y. The component V ′ can have at most
30 · 28 · 2 = 1680 points in common with g ◦ ϕ. Summing up, there are at least q − 161

√
q − 1683

suitable triples (x0, y0, γ0), which correspond to suitable 6-tuples (x0, y0, z0, t0, u0, α0) such that
Gα(d) has at least 2 distinct roots in Fq. Since each polynomial Gα(d) can correspond to at most
to 5 · 4 = 20 6-tuples, the argument above proves the existence of at least (q − 161

√
q − 1683)/20

values of α such that the corresponding Gα(d) has at least 2 distinct roots in Fq.
Now, each pair (d, α) ∈ F2

q such that Gα(d) = 0 corresponds to an Fq-rational point of the curve
Z defined by Gα(d) = 0. Since such a curve has genus at most 1, there exist at most q + 2

√
q − 1

such pairs, again by [11, Theorem 5.2.3]. Finally, the number of α ∈ Fq \ {0, 1} such that Gα(d)
has no roots, or equivalently no points (d, α) belong to the curve Gα(d) = 0, is lower bounded by

q − 2︸ ︷︷ ︸
|Fq\{0,1}|

−

q + 2
√
q − 1︸ ︷︷ ︸

|Z|

−2
q − 161

√
q − 1683

20︸ ︷︷ ︸
“good” 6-tuples

 =
q − 181

√
q − 1683

10
.

If q > 36086, then the previous quantity is larger than 1 and the existence of a suitable α is
proved.

Corollary 12. The graph ΓP,H(4, q) has a resolving set of size 12q.

Proof. By Lemma 8, the existence of six lines in higgledy-piggledy arrangement implies the existence
of a resolving set of size 12q at once.

Let us remark that, by Lemma 5, the smallest size of a set of lines in higgledy-piggledy arrange-
ment in PG(4, q) is 6, hence we cannot construct smaller resolving sets in this way.

Finally, our last theorem in this section gives an upper bound in the cases when Theorem 10
cannot be applied.

Theorem 13. If n > 3, then the graph ΓP,H(n, q) has a resolving set of size (n2 + n− 8)q.

11



Proof. By Lemma 8, it is enough to give a set Ln of n
2+n−8

2 lines in higgledy-piggledy arrangement.
The construction is given by induction on the dimension. For n = 4 Theorem 12 guarantees the

existence of a required set of points which is contained in the union of 6 lines. Suppose that PG(k, q)

admits a set of k2+k−8
2 lines that resolves the hyperplanes of the space. Consider PG(k+ 1, q). Let

Σ be a hyperplane in PG(k+1, q). Then, Σ is isomorphic to PG(k, q), hence we can choose a set Lk
of k

2+k−8
2 lines in Σ such that no (k−2)-dimensional subspace of Σ meets each element of Lk. Take

k+1 pairwise skew lines in PG(k+1, q), say `1, `2, . . . , `k+1, such that each of them intersects Σ in
exactly one point, and the k+1 points Pi = Σ∩`i generate Σ. We claim that no (k−1)-dimensional
subspace of PG(k + 1, q) meets each element of the line-set

Lk+1 = Lk ∪ {`1, `2, . . . , `k+1}.

Let Π be a (k− 1)-dimensional subspace of PG(k+ 1, q). If Π is not contained in Σ, then Π∩Σ is a
(k − 2)-dimensional subspace of Σ, hence it cannot meet each element of Lk, while if Π ⊂ Σ, then
Π cannot contain all points P1, P2, . . . , Pk+1, hence it cannot meet each of the lines `1, `2, . . . , `k+1.

By definition, the set Lk+1 contains

k2 + k − 8

2
+ (k + 1) =

(k + 1)2 + (k + 1)− 8

2

lines which proves the theorem.

4 Resolving sets for small q

We performed a computer search for small resolving sets and semi-resolving sets in PG(n, q), n = 3, 4
for small values of q. All computations have been performed using MAGMA [3].
The results concerning the search for semi-resolving sets are summarized in Table 1, where a dot
after a value means that no smaller semi-resolving sets exist, while the superscript indicates the
number of equivalence classes up to PGL(n+ 1, q).

Classifications and non-existence proofs have been obtained using an exhaustive algorithm. In
both PG(n, 2), n = 3, 4, the smallest semi-resolving set is the projective frame. We also proved that
no resolving sets of size less than 8 and 10 exist in PG(n, 2), n = 3, 4, respectively. In PG(3, 3),
nine of the semi-resolving sets of size nine are subsets of semi-resolving sets obtained by Theorem
9, while the tenth is an incomplete cap; we also found a resolving set of size 17, consisting of nine
points and eight planes. The semi-resolving set of size ten in PG(4, 3) is an incomplete cap.
The other examples in Table 1 have been obtained using a randomized greedy algorithm. The

12



Table 1: The smallest known sizes of semi-resolving sets in PG(n, q), n = 3, 4

q 2 3 4 5 7

PG(3, q) 41. 910. 13 17 27

PG(4, q) 51. 101. 20 28 41

semi-resolving set of size 13 in PG(3, 4) is a subset of a semi-resolving set obtained by Theorem
9. All the other examples contained in Table 1 are not subsets of semi-resolving sets obtained by
Theorem 9 or by Theorem 12.
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