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1. INTRODUCTION

Let’s start our study by introducing the concept of convex function and the famous
inequality obtained for the mean value of a convex function (see [6], [15]).

Definition 1. Let I ⊆ R be an interval. Then a real-valued function f : I→ R is
said to be convex (concave) on the interval I if the inequality

f (λx+(1−λ)y)≤ (≥)λ f (x)+(1−λ) f (y) (1.1)

holds for all x,y ∈ I and λ ∈ [0,1].

With the help of convex function and inequalities we will give below, we observe
that many applications take place in pure and applied mathematics.

The following double inequality is called Hermite-Hadamard inequality in the lit-
erature. If f : I→R is a convex function on the interval I of real numbers and a,b∈ I
with a < b, then

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
. (1.2)

The inequalities in (1.2) hold in the reversed direction if f is concave.
Different convex function types and different Hermite-Hadamard type inequalities

which are considered basic for each definition and for each inequality have been
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obtained through the Definition 1 and Hermite-Hadamard Inequality. It is observed
that studies in this direction take a large place in the literature.

In [22], G. Toader defined m−convexity as the following:

Definition 2. The function f : [0,b]→ R,b > 0 is said to be m−convex where
m ∈ [0,1], if we have

f (λx+m(1−λ)y)≤ λ f (x)+m(1−λ) f (y)

for all x,y ∈ [0,b] and λ ∈ [0,1]. We say that f is m−concave if (− f ) is m−convex.

In [4], Dragomir obtained the following Theorem for m− convex functions.

Theorem 1. Let f : [0,∞) → R be a m− convex function with m ∈ (0,1] and
0≤ a < b. If f ∈ L1[a,b], then one has the inequalities

f
(

a+b
2

)
≤ 1

b−a

∫ b

a

f (x)+m f ( x
m)

2
dx

≤ 1
2

[
f (a)+m f ( a

m)

2
+m

f ( b
m)+m f ( b

m2 )

2

]
. (1.3)

Let us remind the definition of h− convex function [11, 23]:

Definition 3. Let h− be a positive function. We say that f : I ⊆ R → R is
h−convex function or that belongs to the class SX(h, I), if f is non-negative and
for all x,y ∈ I and λ ∈ (0,1), we have

f (λx+(1−λ)y)≤ h(λ) f (x)+h(1−λ) f (y). (1.4)

If the inequality in (1.4) is reserved, then f is said to be h−concave, i.e. SV (h, I).
Obviously, if f (λ) = λ; f (λ) = 1

λ
; f (λ) = 1; f (λ) = λs where s ∈ (0,1), then all non-

negative convex function belong to SX(h, I) and all nonnegative concave functions
belong to SV (h, I); SX(h, I) = Q(I); SX(h, I)⊇ P(I); SX(h, I)⊇ K2

s , respectively.

The classical H-H inequality for h− convex functions was obtained by Sarikaya
et. al. in [18] is as follows:

Theorem 2. Let f ∈ SX(h, I), a,b ∈ I with a < b, f ∈ L1[a,b]. Then

1
2h(1

2)
f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ [ f (a)+ f (b)]

∫ 1

0
h(λ)dλ. (1.5)

In [5], Dragomir and Ionescu introduced the following class of functions and
proved some inequalities.

Definition 4. Let g : I→ R be a convex function on the interval I. The function
g : I→ R is called g−convex dominated on I if the following condition is satisfied:

|λ f (x)+(1−λ) f (y)− f (λx+(1−λ)y)| ≤ λg(x)+(1−λ)g(y)−g(λx+(1−λ)y)

for all x,y ∈ I and λ ∈ [0,1].



INEQUALITIES WITH FRACTIONAL INTEGRALS 289

Theorem 3. (See [7]) Let g : I→ R be a convex function and f : I→ R be a g−
convex dominated mapping. Then, for all a,b ∈ I,a < b,∣∣∣∣ f(a+b

2

)
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣≤ 1
b−a

∫ b

a
g(x)dx−g

(a+b
2

)
(1.6)

and ∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣∣∣∣≤ g(a)+g(b)
2

− 1
b−a

∫ b

a
g(x)dx. (1.7)

(g,m)− dominated convex function and interested theorem have been given as the
following (see [12]):

Definition 5. Let g : [0,b]→ R be a given m− convex function on the interval
[0,b]. The real function f : [0,b]→ R is called (g,m)−convex dominated on [0,b] if
the following condition is satisfied

|λ f (x)+m(1−λ) f (y)− f (λx+m(1−λ)y)| (1.8)

≤ λg(x)+m(1−λ)g(y)−g(λx+m(1−λ)y)

for all x,y ∈ [0,b], m,λ ∈ [0,1].

Theorem 4. Let g : [0,∞)→ R be an m−convex function with m ∈ (0,1]. f :
[0,∞)→R is (g,m)− convex dominated mapping and 0≤ a < b. If f ∈ L1[a,b], then
one has the inequalities:∣∣∣∣ 1

b−a

∫ b

a

f (x)+m f ( x
m)

2
dx− f

(a+b
2

)∣∣∣∣ (1.9)

≤ 1
b−a

∫ b

a

g(x)+mg( x
m)

2
dx−g

(a+b
2

)
and∣∣∣∣∣12

[
f (a)+m f ( a

m)

2
+m

f ( b
m)+m f ( b

m2 )

2

]
− 1

b−a

∫ b

a

f (x)+m f ( x
m)

2
dx

∣∣∣∣∣ (1.10)

≤ 1
2

[
g(a)+mg( a

m)

2
+m

g( b
m)+mg( b

m2 )

2

]
− 1

b−a

∫ b

a

g(x)+mg( x
m)

2
dx.

Definition 6. (See [12]) Let h 6= 0,h : J→ R be a nonnegative function, g : I →
R be an h−convex function. The real function f : I → R is called (g,h)−convex
dominated on I if the following condition is satisfied:

|h(λ) f (x)+h(1−λ) f (y)− f (λx+(1−λ)y)|
≤ h(λ)g(x)+h(1−λ)g(y)−g(λx+(1−λ)y)

for all x,y ∈ I and λ ∈ (0,1].
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Theorem 5. Let h : J→R be a non-negative function, h 6= 0, g : I→R, be an h−
convex function and the real function f : I → R be (g,h)− convex dominated on I.
Then one has the inequalities:∣∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− 1

2h(1
2)

f
(a+b

2

)∣∣∣∣∣
≤ 1

b−a

∫ b

a
g(x)dx− 1

2h(1
2)

g
(a+b

2

)
and ∣∣∣∣[ f (a)+ f (b)]

∫ 1

0
h(λ)dλ− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣ (1.11)

≤ [g(a)+g(b)]
∫ 1

0
h(λ)dλ− 1

b−a

∫ b

a
g(x)dx (1.12)

for all x,y ∈ I and λ ∈ (0,1].

Many authors study integral inequalities involving various fractional operators
like Erdelyi-Kober, Riemann-Liouville, conformable fractional integral operators,
Katugampola, etc. in last years. The most studied in them is Riemann-Liouville
fractional integral operators. In [16], Liouville and Riemann introduced the frac-
tional calculus at last of the nineteenth century. Now, we remind the definition of
Riemann-Liouville fractional integrals.

Definition 7. Let f ∈ L1[a,b]. The Riemann-Liouville integrals Jα

a+ f and Jα

b− f of
order α > 0 with a≥ 0 are defined by

Jα

a+ f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a (1.13)

and

Jα

b− f (x) =
1

Γ(α)

∫ b

x
(t− x)α−1 f (t)dt, x < b (1.14)

where Γ(α) =
∫

∞

0 e−tuα−1du. Here J0
a+ f (x) = J0

b− f (x) = f (x). In the case of α = 1,
the fractional integral reduces to the classical integral.

One can find the interested properties and inequalities the references [1–3, 8–10,
13, 16, 17, 19–21, 24, 25].

In [19], Sarikaya et. al. obtained the Hermite-Hadamard type inequality for frac-
tional calculus as following:

Theorem 6. Let f : [a,b]→R be positive function with 0≤ a < b and f ∈ L1[a,b].
If f is a convex function on [a,b], then the following inequalities for fractional integ-
rals hold:

f
(a+b

2

)
≤ Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]≤ f (a)+ f (b)
2

(1.15)
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with α≥ 0.

In [14], another Hermite-Hadamard type inequality via fractional calculus have
been presented by Özdemir and Önalan.

Theorem 7. Let f ,g : [a,b]→ R be positive functions with 0 ≤ a < b and f ,g ∈
L1[a,b]. If g is a convex function on [a,b] and f is a g− convex dominated function,
then the following inequalities for fractional integrals hold:∣∣∣ Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]− f
(a+b

2

)∣∣∣
≤ Γ(α+1)

2(b−a)α
[Jα

a+g(b)+ Jα

b−g(a)]−g
(a+b

2

)
and ∣∣∣ f (a)+ f (b)

2
− Γ(α+1)

2(b−a)α
[Jα

a+ f (b)+ Jα

b− f (a)]
∣∣∣

≤ g(a)+g(b)
2

− Γ(α+1)
2(b−a)α

[Jα

a+g(b)+ Jα

b−g(a)].

In [14], Özdemir and Önalan present Hermite-Hadamard type inequalities for frac-
tional calculus as following:

Theorem 8. Let f : [0,∞)→ R be a positive function with 0 ≤ a < b and f ∈
L1[a, b

m ]. If f is an m-convex function on [0,∞), then the following inequality for
fractional integrals holds:

f
(

a+b
2

)
≤ Γ(α+1)

2(b−a)α

[
Jα

a+ f (b)+mα+1Jα
b
m
− f (

a
m
)

]
≤ 1

2

[
α f (a)+m f ( a

m)

α+1
+m

f ( b
m)+mα f ( b

m2 )

α+1

]
with α > 0 ve m ∈ (0,1].

Yildiz et. al give Hermite-Hadamard type inequality for fractional calculus in [25].

Theorem 9. Let f : I ⊆ R→ R be a real function with a < b,a,b ∈ I? and f ∈
L [a,b]. If f belongs to the SX (h, I), we give

1
αh
(1

2

) f
(

a+b
2

)
≤ Γ(α)

(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]

≤ [ f [a]+ f [b]]
∫ 1

0
tα−1 [h(t)+h(1− t)]dt

with α > 0.

Now, we give new Hermite-Hadamard type inequalities for (g,h)−convex domin-
ated functions and (g,m)−convex dominated functions by using fractional calculus.
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2. THE RESULTS

Theorem 10. Let f ,g : [a,b]→ R be positive functions with 0≤ a < b and f ,g ∈
L1[a,b]. If g is an h− convex function on [a,b] and f is a (g,h)− convex dominated
function, then the following inequalities for fractional integrals hold:

∣∣∣∣∣ Γ(α)

(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]−
f
(a+b

2

)
αh
(1

2

) ∣∣∣∣∣
≤ Γ(α)

(b−a)α [Jα

a+g(b)+ Jα

b−g(a)]−
g
(a+b

2

)
αh
(1

2

) (2.1)

and

[ f (a)+ f (b)]
[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]
− Γ(α)

2(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]

≤ [g(a)+g(b)]
[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]
− Γ(α)

2(b−a)α [Jα

a+g(b)+ Jα

b−g(a)] (2.2)

with α≥ 0.

Proof. In Definition 6, if we choose λ = 1
2 , we get∣∣∣h(1

2

)
[ f (x)+ f (y)]− f

(
x+ y

2

)∣∣∣≤ h
(

1
2

)
[g(x)+g(y)]−g

(
x+ y

2

)
for all x,y ∈ [a,b]. Then if we take x = ta+(1− t)b and y = (1− t)a+ tb, we get∣∣∣h(1

2

)
[ f (ta+(1− t)b)+ f ((1− t)a+ tb)]− f

(
a+b

2

)∣∣∣ (2.3)

≤ h
(

1
2

)
[g(ta+(1− t)b)+g((1− t)a+ tb)]−g

(
a+b

2

)
for t ∈ [0,1]. Multiplying (2.3) by tα−1, then integrating the deduced inequality with
respect to t over [0,1], we obtain;∣∣∣h(1

2

)[∫ 1

0
tα−1 ( f (ta+(1− t)b))dt +

∫ 1

0
tα−1 ( f ((1− t)a+ tb))dt

]
− f

(
a+b

2

)∫ 1

0
tα−1dt

∣∣∣
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≤ h
(

1
2

)[∫ 1

0
tα−1 (g(ta+(1− t)b))dt +

∫ 1

0
tα−1 (g((1− t)a+ tb))dt

]
−g
(

a+b
2

)∫ 1

0
tα−1dt

If we correct the above inequality, we get the first part of requested inequality.∣∣∣∣∣ Γ(α)

(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]−
f
(a+b

2

)
αh
(1

2

) ∣∣∣∣∣
≤ Γ(α)

(b−a)α [Jα

a+g(b)+ Jα

b−g(a)]−
g
(a+b

2

)
αh
(1

2

) .
To get second part of Theorem 10, let’s use Definition 6. Then,∣∣∣h(t) f (a)+h(1− t) f (b)− f (ta+(1− t)b)

∣∣∣
≤ h(t)g(a)+h(1− t)g(b)−g(ta+(1− t)b)

and ∣∣∣h(1− t) f (a)+h(t) f (b)− f ((1− t)a+ tb)
∣∣∣

≤ h(1− t)g(a)+h(t)g(b)−g((1− t)a+ tb) .

Obtained last two inequalities if add side by side, we get

[ f (a)+ f (b)] [h(t)+h(1− t)]− f (ta+(1− t)b)− f ((1− t)a+ tb)

≤ [g(a)+g(b)] [h(t)+h(1− t)]−g(ta+(1− t)b)−g((1− t)a+ tb) .

Multiplying the last inequality by tα−1, then integrating with respect to t over [0,1],
we obtain;

[ f (a) + f (b)]
[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]
−

∫ 1

0
tα−1 f (ta+(1− t)b)dt−

∫ 1

0
tα−1 f ((1− t)a+ tb)dt

≤ [g(a)+g(b)]
[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]
−

∫ 1

0
tα−1g(ta+(1− t)b)dt−

∫ 1

0
tα−1g((1− t)a+ tb)dt.

If we correct the obtained inequality, we get the desired inequality,

[ f (a) + f (b)]
[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]
− Γ(α)

2(b−a)α [Jα

a+ f (b)+ Jα

b− f (a)]
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≤ [g(a)+g(b)]
[∫ 1

0
tα−1 (h(t)+h(1− t))dt

]
− Γ(α)

2(b−a)α [Jα

a+g(b)+ Jα

b−g(a)] .

So the proof is completed. �

Corollary 1. If we choose h(t) = t and α = 1 in Theorem 10, we get the results of
Theorem 3.

Corollary 2. If we choose h(t) = t in Theorem 10, we get the result of Theorem 7.
Also, if we choose α = 1, we obtain Theorem 5.

Theorem 11. Let f ,g : [0,∞)→R be positive functions with 0≤ a < b and f ,g ∈
L1[a, b

m ]. If g is an m− convex function on [0,∞) and f is a (g,m)− convex dominated
function, then the following inequalities for fractional integrals hold:∣∣∣∣∣ Γ(α+1)

2(b−a)α

[
Jα

a+ f (b)+mα+1Jα
b
m
− f
( a

m

)]
− f

(
a+b

2

)∣∣∣∣∣
≤ Γ(α+1)

2(b−a)α

[
Jα

a+g(b)+mα+1Jα
b
m
−g
( a

m

)]
−g
(

a+b
2

)
and ∣∣∣∣∣12

[
α f (a)+m f

( a
m

)
α+1

+m
f
( b

m

)
+mα f

( b
m2

)
α+1

]

− Γ(α+1)
2(b−a)α

[
Jα

a+ f (b)+mα+1Jα
b
m
− f
( a

m

)]∣∣∣∣∣
≤ 1

2

[
αg(a)+mg

( a
m

)
α+1

+m
g
( b

m

)
+mαg

( b
m2

)
α+1

]

− Γ(α+1)
2(b−a)α

[
Jα

a+g(b)+mα+1Jα
b
m
−g
( a

m

)]
with α > 0 and m ∈ (0,1].

Proof. In Definition 5, if we choose λ= 1
2 and x= ta+(1− t)b,y=(1− t) a

m +t b
m ,

we get ∣∣∣∣∣ f (ta+(1− t)b)+m f
(
(1− t) a

m + t b
m

)
2

− f
(

a+b
2

)∣∣∣∣∣
≤

g(ta+(1− t)b)+mg
(
(1− t) a

m + t b
m

)
2

−g
(

a+b
2

)
.



INEQUALITIES WITH FRACTIONAL INTEGRALS 295

Multiplying the last inequality by tα−1, then integrating with respect to t over [0,1],
we obtain;∣∣∣∣∣12

[∫ 1

0
tα−1 ( f (ta+(1− t)b))dt +m

∫ 1

0
tα−1 f ((1− t)

a
m
+ t

b
m

dt
]

− f
(

a+b
2

)∫ 1

0
tα−1dt

∣∣∣∣∣
≤ 1

2

[∫ 1

0
tα−1 (g(ta+(1− t)b))dt +m

∫ 1

0
tα−1g

(
(1− t)

a
m
+ t

b
m

)
dt
]

−g
(

a+b
2

)∫ 1

0
tα−1dt.

If the necessary calculations are made and the resulting expression is edited, the first
part of Theorem 11 is obtained. To get second part of Theorem 11, we can use
Definition 5. Then, if we choose x = a and y = b

m , we get;∣∣∣t f (a)+m(1− t) f
(

b
m

)
− f (ta+m(1− t))

b
m

∣∣∣
≤ tg(a)+m(1− t)g

(
b
m

)
−g
(

ta+m(1− t)
b
m

)
.

Also, in Definition 5 if we choose x = a
m and y = b

m2 , then multiplying the obtained
inequality with m, the following inequality is obtained.∣∣∣mt f

( a
m

)
+m2 (1− t) f

(
b

m2

)
−m f

(
t

a
m
+m(1− t)

b
m2

)∣∣∣
≤ mtg

( a
m

)
+m2 (1− t)g

(
b

m2

)
−mg

(
t

a
m
+m(1− t)

b
m2

)
.

Let’s multiply both of the last two inequalities we got above by tα−1,then integrate
the obtained inequality with respect to t over [0,1],∣∣∣∣∣ f (a)

α+1
+m

f
( b

m

)
α(α+1)

− Γ(α)

(b−a)α Jα

a+ f (b)

∣∣∣∣∣
≤ g(a)

α+1
+m

g
( b

m

)
α(α+1)

− Γ(α)

(b−a)α Jα

a+g(b)

and ∣∣∣∣∣m f
( a

m

)
α(α+1)

+m2 f
( b

m2

)
α+1

−mα+1 Γ(α)

(b−a)α Jα
b
m
− f
( a

m

)∣∣∣∣∣
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≤ m
g
( a

m

)
α(α+1)

+m2 g
( b

m2

)
α+1

−mα+1 Γ(α)

(b−a)α Jα
b
m
−g
( a

m

)
.

Finally, the second part of the theorem is proved when we arrange the inequalities we
obtained using the properties of absolute value. Thus, the proof is completed. �

Corollary 3. If we choose m = 1 and α = 1 in Theorem 11, we get the results of
Theorem 3.

Corollary 4. If we choose α = 1 in Theorem 11, we get the results of Theorem 4.
Also, if we choose m = 1 in Theorem 11, we get the result of Theorem 7.
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