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NORMAL DIRECTION CURVES AND APPLICATIONS
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Abstract. In this study, we define a new type of associated curves in the Euclidean 3-space such
as normal-direction curve and normal-donor curve. We obtain characterizations for these curves.
Moreover, we give applications of normal-direction curves to some special curves such as helix,
slant helix, plane curve or normal-direction (ND)-normal curves in E3. And, we show that slant
helices and rectifying curves can be constructed by using normal-direction curves.
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1. INTRODUCTION

In the curve theory of Euclidean space, the most important subject is to obtain a
characterization for a regular curve, since these characterizations allow to classify
curves according to some relations. These characterizations can be given for a single
curve or for a curve pair. Helix, slant helix, plane curve, spherical curve, etc. are the
well-known examples of single special curves [1,10,12,17,20] and these curves, espe-
cially the helices, are used in many applications [2,7,9,16]. Moreover, special curves
can be defined by considering Frenet planes. If the position vector of a space curve
always lies on its rectifying, osculating or normal planes, then the curve is called
rectifying curve, osculating curve or normal curve, respectively [4]. In the Euclidean
space E3, rectifying, normal and osculating curves satisfy Cesaro’s fixed point con-
dition, i.e., Frenet planes of such curves always contain a particular point [8, 15]. In
particular, there exists a simple relationship between rectifying curves and Darboux
vectors (centrodes), which play some important roles in mechanics, kinematics as
well as in differential geometry in defining the curves of constant precession [4].

Moreover, special curve pairs are characterized by some relationships between
their Frenet vectors or curvatures. Involute-evolute curves, Bertrand curves, Man-
nheim curves are the well-known examples of curve pairs and studied by some math-
ematicians [3, 11, 14, 19, 20].

Recently, a new curve pair in the Euclidean 3-space E3 has been defined by Choi
and Kim [6]. They have considered an integral curve γ of a unit vector field X defined
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in the Frenet basis of a Frenet curve α and they have given the definitions and charac-
terizations of principal-directional curve and principal-donor curve in E3. They also
gave some applications of these curves to some special curves.

In the present paper, we consider a new type of associated curves and define a
new curve pair such as normal-direction curve and normal-donor curve in E3. We
obtain some characterizations for these curves and show that normal-direction curve
is a space evolute of normal-donor curve. Moreover, we give some applications of
normal-direction curve to some special curves such as helix, slant helix or plane
curve.

2. PRELIMINARIES

This section includes a brief summary of space curves and definitions of general
helix and slant helix in the Euclidean 3-space E3.

A unit speed curve α : I→ E3 is called a general helix if there is a constant vector
u, so that 〈T,u〉= cosθ is constant along the curve, where θ 6= π/2 and T (s) = α′(s)
is unit tangent vector of α at s. The curvature (or first curvature) of α is defined by
κ(s) = ‖α′′(s)‖. Then, the curve α is called Frenet curve, if κ(s) 6= 0, and the unit
principal normal vector N(s) of the curve α at s is given by α′′(s) = κ(s)N(s). The
unit vector B(s) = T (s)×N(s) is called the unit binormal vector of α at s. Then
{T,N,B} is called the Frenet frame of α. For the derivatives of the Frenet frame, the
following Frenet-Serret formulae hold: T ′

N′

B′

=

 0 κ 0
−κ 0 τ

0 −τ 0

 T
N
B

 (2.1)

where τ(s) is the torsion (or second curvature) of α at s. It is well-known that the
curve α is a general helix if and only if τ

κ
(s) = constant [17,18]. If both κ(s) 6= 0 and

τ(s) are constants, we call α as a circular helix. A curve α with κ(s) 6= 0 is called
a slant helix if the principal normal lines of α make a constant angle with a fixed
direction. Also, a slant helix α in E3 is characterized by the differential equation of
its curvature κ and its torsion τ given by

κ2

(κ2 + τ2)3/2

(
τ

κ

)′
= constant.

(See [12]).
Now, we give the definitions of some associated curves defined by Choi and Kim

[6]. Let I ⊂ R be an open interval. For a Frenet curve α : I→ E3, consider a vector
field X given by

X(s) = u(s)T (s)+ v(s)N(s)+w(s)B(s), (2.2)
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where u,v and w are arbitrary differentiable functions of s which is the arc length
parameter of α. Let

u2(s)+ v2(s)+w2(s) = 1, (2.3)

holds. Then the definitions of X-direction curve and X-donor curve in E3 are given
as follows.

Definition 1. (Definition 2.1. in [6]) Let α be a Frenet curve in Euclidean 3-space
E3 and X be a unit vector field satisfying the equations (2.2) and (2.3). The integral
curve β : I → E3 of X is called an X-direction curve of α. The curve α whose X-
direction curve is β is called the X-donor curve of β in E3.

Definition 2. (Definition 2.2. in [6]) An integral curve of principal normal vector
N(s) (resp. binormal vector B(s)) of α in (2.2) is called the principal-direction curve
(resp. binormal-direction curve) of α in E3.

Remark 1. (Remark 2.3. in [6]) A principal-direction (resp. the binormal-direction)
curve is an integral curve of X(s) with u(s) = w(s) = 0, v(s) = 1 (resp. u(s) =
v(s) = 0, w(s) = 1) for all s in (2.2).

3. NORMAL-DIRECTION CURVE AND NORMAL-DONOR CURVE IN E3

In this section, we will give definitions of normal-direction curve and normal donor
curve in E3. We obtain some theorems and results characterizing these curves. First,
we give the following definition.

Definition 3. Let α be a Frenet curve in E3 and X be a unit vector field lying on
the normal plane of α and defined by

X(s) = v(s)N(s)+w(s)B(s), v(s) 6= 0, w(s) 6= 0, (3.1)

and satisfying that the vectors X ′(s) and T (s) are linearly dependent. The integral
curve γ : I→ E3 of X(s) is called a normal-direction curve of α. The curve α whose
normal -direction curve is γ is called the normal-donor curve in E3.

The Frenet frame is a rotation-minimizing with respect to the principal normal N
[8]. If we consider a new frame given by {T,X ,M} where M = T ×X , we have
that this new frame is rotation-minimizing with respect to T , i.e., the unit vector X
belongs to a rotation-minimizing frame.

Since, X(s) is a unit vector and γ : I → E3 is an integral curve of X(s), without
loss of generality we can take s as the arc length parameter of γ and we can give the
following characterizations in the view of these information.

Theorem 1. Let α : I → E3 be a Frenet curve and an integral curve of X(s) =
v(s)N(s)+w(s)B(s) be the curve γ : I→ E3. Then, γ is a normal-direction curve of
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α if and only if the following equalities hold,

v(s) = sin
(∫

τds
)
6= 0, w(s) = cos

(∫
τds
)
6= 0. (3.2)

Proof. Since γ is a normal-direction curve of α, from Definition 3, we have

X(s) = v(s)N(s)+w(s)B(s), (3.3)

and
v2(s)+w2(s) = 1. (3.4)

Differentiating (3.3) with respect to s and by using the Frenet formulas, it follows

X ′(s) =−vκT +(v′−wτ)N +(w′+ vτ)B. (3.5)

Since we have that X ′ and T are linearly dependent. Then from (3.5) we can write −vκ 6= 0,
v′−wτ = 0,
w′+ vτ = 0.

(3.6)

The solutions of second and third differential equations are

v(s) = sin
(∫

τds
)
6= 0, w(s) = cos

(∫
τds
)
6= 0,

respectively, which completes the proof. �

Theorem 2. Let α : I→ E3 be a Frenet curve. If γ is the normal-direction curve
of α, then γ is a space evolute of α.

Proof. Since γ is an integral curve of X , we have γ′ = X . Denote the Frenet frame
of γ by {T̄ , N̄, B̄}. Differentiating γ′ = X with respect to s and by using Frenet formu-
las we get

X ′ = T̄ ′ = κ̄N̄. (3.7)
Furthermore, we know that X ′ and T are linearly dependent. Then from (3.7) we get
N̄ and T are linearly dependent, i.e, γ is a space evolute of α. �

Theorem 3. Let α : I→ E3 be a Frenet curve. If γ is the normal direction curve
of α, then the curvature κ̄ and the torsion τ̄ of γ are given as follows,

κ̄ = κ

∣∣∣∣sin
(∫

τds
)∣∣∣∣ , τ̄ = κcos

(∫
τds
)
.

Proof. From (3.5), (3.6) and (3.7), we have

κ̄N̄ =−vκT. (3.8)

By considering (3.8) and (3.2) we obtain

κ̄N̄ =−κsin
(∫

τds
)

T, (3.9)
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which gives us

κ̄ = κ

∣∣∣∣sin
(∫

τds
)∣∣∣∣ . (3.10)

Moreover, from (3.9) and (3.10), we can write

N̄ = T. (3.11)

Then, we have

B̄ = T̄ × N̄ = cos
(∫

τds
)

N− sin
(∫

τds
)

B. (3.12)

Differentiating (3.12) with respect to s gives

B̄′ =−κcos
(∫

τds
)

T. (3.13)

Since τ̄ =−〈B̄′, N̄〉=−〈B̄′,T 〉, from (3.13) it follows

τ̄ = κcos
(∫

τds
)
, (3.14)

that finishes the proof. �

Corollary 1. Let γ be a normal-direction curve of the curve α. Then the relation-
ships between the Frenet frames of curves are given as follows,

X = T̄ = sin
(∫

τds
)

N + cos
(∫

τds
)

B,

N̄ = T,

B̄ = cos
(∫

τds
)

N− sin
(∫

τds
)

B.

Proof. The proof is clear from Theorem 3. �

Theorem 4. Let γ be a normal-direction curve of α with curvature κ̄ and torsion
τ̄. Then curvature κ and torsion τ of α are given by

κ =
√

κ̄2 + τ̄2, τ =
τ̄2

κ̄2 + τ̄2

(
κ̄

τ̄

)′
.

Proof. From (3.10) and (3.14), we easily get

κ =
√

κ̄2 + τ̄2. (3.15)

Substituting (3.15) into (3.10) and (3.14), it follows∣∣∣∣sin
(∫

τds
)∣∣∣∣= κ̄√

κ̄2 + τ̄2
, (3.16)
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cos
(∫

τds
)
=

τ̄√
κ̄2 + τ̄2

, (3.17)

respectively. Differentiating (3.16) with respect to s, we have

τcos
(∫

τds
)
=

τ̄(κ̄′τ̄− κ̄ τ̄′)

(κ̄2 + τ̄2)3/2 . (3.18)

From (3.17) and (3.18), it follows

τ =
κ̄′ τ̄− κ̄ τ̄′

κ̄2 + τ̄2 ,

or equivalently,

τ =
τ̄2

κ̄2 + τ̄2

(
κ̄

τ̄

)′
. (3.19)

�

Theorem 4 leads us to give the following corollary whose proof is clear.

Corollary 2. Let γ with the curvature κ̄ and the torsion τ̄ be a normal-direction
curve of α. Then

τ

κ
=− κ̄2

(κ̄2 + τ̄2)3/2

(
τ̄

κ̄

)′
, (3.20)

is satisfied, where κ and τ are curvature and torsion of α, respectively.

4. APPLICATIONS OF NORMAL-DIRECTION CURVES

In this section, we focus on relations between normal-direction curves and some
special curves such as general helix, slant helix, plane curve or rectifying curve in
E3.

4.1. General helices, slant helices and plane curves

Considering Corollary 2, we have the following theorems which gives a way to
construct the examples of slant helices by using general helices.

Theorem 5. Let α : I→ E3 be a Frenet curve in E3and γ be a normal-direction
curve of α. Then the followings are equivalent,

(i) A Frenet curve α is a general helix in E3.
(ii) α is a normal-donor curve of a slant helix.

(iii) A normal-direction curve of α is a slant helix.

Theorem 6. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction
curve of α. Then the followings are equivalent,

(i) A Frenet curve α is a plane curve in E3.
(ii) α is a normal-donor curve of a general helix.
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(iii) A normal-direction curve of α is a general helix.

Example 1. Let consider the general helix given by the parametrization
α(s) =

(
cos s√

2
, sin s√

2
, s√

2

)
in E3 (Fig 1a). The Frenet vectors and curvatures of

α are obtained as follows,

T (s) =
(
− 1√

2
sin

s√
2
,

1√
2

cos
s√
2
,

1√
2

)
,

N(s) =
(
−cos

s√
2
, sin

s√
2
, 0
)
,

B(s) =
(

1√
2

sin
s√
2
, − 1√

2
cos

s√
2
,

1√
2

)
,

κ = τ =
1
2
.

Then we have X(s) = (x1(s), x2(s), x3(s)) where

x1(s) =−sin
( s

2
+ c
)

cos
s√
2
+

1√
2

cos
( s

2
+ c
)

sin
s√
2
,

x2(s) = sin
( s

2
+ c
)

sin
s√
2
− 1√

2
cos
( s

2
+ c
)

cos
s√
2
,

x3(s) =
1√
2

cos
( s

2
+ c
)
.

and c is integration constant. Now, we can construct a slant helix γ which is also a
normal-direction curve of α (Fig 1b):

γ =
∫ s

0
γ
′(s)ds =

∫ s

0
X(s)ds = (γ1(s), γ2(s), γ3(s)) ,

where

γ1(s) =
∫ s

0

[
−sin

( s
2
+ c
)

cos
s√
2
+

1√
2

cos
( s

2
+ c
)

sin
s√
2

]
ds,

γ2(s) =
∫ s

0

[
sin
( s

2
+ c
)

sin
s√
2
− 1√

2
cos
( s

2
+ c
)

cos
s√
2

]
ds,

γ3(s) =
∫ s

0

1√
2

cos
( s

2
+ c
)

ds.
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(A) General helix α. (B) Slant helix γ.

FIGURE 1. Slant helix γ constructed by α.

4.2. ND-normal Curves

In this subsection we define normal-direction (ND)-normal curves in E3 and give
the relationships between normal-direction curves and ND-normal curves.

A space curve whose position vector always lies in its normal plane is called nor-
mal curve [5]. Moreover, if the Frenet frame and curvatures of a space curve are
given by {T,N,B} and κ, τ, respectively, then the vector D̃(s) = τ

κ
(s)T (s)+B(s) is

called modified Darboux vector of the curve [12, 13].
Let now α be a Frenet curve with Frenet frame {T,N,B} and γ a normal-direction

curve of α. The curve γ is called normal-direction normal curve (or ND-normal
curve) of α, if the position vector of γ always lies on the normal plane of its normal-
donor curve α.

The definition of ND-normal curve allows us to write the following equality,

γ(s) = m(s)N(s)+n(s)B(s), (4.1)

where m(s), n(s) are non-zero differentiable functions of s. Since γ is normal-
direction curve of α, from Corollary 1, we have{

N = sin(
∫

τds) T̄ + cos(
∫

τds) B̄,
B = cos(

∫
τds) T̄ − sin(

∫
τds) B̄. (4.2)

Substituting (4.2) in (4.1) gives

γ(s) =
[

msin
(∫

τds
)
+ncos

(∫
τds
)]

T̄

+

[
mcos

(∫
τds
)
−nsin

(∫
τds
)]

B̄. (4.3)
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Writing {
ρ(s) = msin(

∫
τds)+ncos(

∫
τds) ,

σ(s) = mcos(
∫

τds)−nsin(
∫

τds) , (4.4)

in (4.3) and differentiating the obtained equality we obtain

T̄ = ρ
′T̄ +(ρκ̄−στ̄)N̄ +σ

′B̄. (4.5)

Then we have

σ = a = constant, ρ = s+b =
τ̄

κ̄
a, (4.6)

where a, b are non-zero integration constants. From (4.6), it follows that

γ(s) = a
(

τ̄

κ̄
T̄ + B̄

)
(s) = a ˜̄D(s), (4.7)

where ˜̄D is the modified Darboux vector of γ.

Now we can give the followings which characterize ND-normal curves.

Theorem 7. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction
curve of α. If γ is a ND-normal curve in E3, then we have the followings,

(i) γ is a rectifying curve in E3 whose curvatures satisfy τ̄

κ̄
= s+b

a where a, b are
non-zero constants .

(ii) The position vector and modified Darboux vector ˜̄D of γ are linearly dependent.

Theorem 7 gives a way to construct a rectifying curve by using normal-donor curve
as follows:

Corollary 3. Let α : I→ E3 be a Frenet curve in E3and γ a ND-normal curve of
α in E3. Then the position vector of γ is obtained as follows,

γ(s) =
[
(s+b)sin

(∫
τds
)
+acos

(∫
τds
)]

N(s)

+

[
(s+b)cos

(∫
τds
)
−asin

(∫
τds
)]

B(s)
(4.8)

where a, b are non-zero integration constants.

Proof. The proof is clear from (4.1), (4.4) and (4.6). �

Example 2. Let consider the general helix given by the parametrization

α(s) =
(√

1+ s2,s, ln(s+
√

1+ s2)
)
,

and drawn in Fig 2a.



372 SEZAI KIZILTUĞ, MEHMET ÖNDER, AND YUSUF YAYLI

(A) General helix α. (B) ND-normal curve γ for −π≤ s≤ π.

(C) ND-normal curve γ for −3π

2 ≤ s≤ 3π

2 . (D) ND-normal curve γ for−2π≤ s≤ 2π.

FIGURE 2. ND-normal curve γ constructed by α.

Frenet vectors and curvatures of the curve are

T (s) =
1√

2
√

1+ s2

(
s,
√

1+ s2,1
)
,

N(s) =
1√

1+ s2
(1,0,−s) ,

B(s) =
1√

2
√

1+ s2

(
−s,
√

1+ s2,−1
)
,

κ = τ =
1+ s2

2
,
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respectively. Then from Corollary 3, a ND-normal curve γ is obtained as follows,

γ(s) =
(

1√
1+ s2

[
(s+b)sin

(
s
2
+

s3

6
+ c
)
+acos

(
s
2
+

s3

6
+ c
)]

− s√
2(1+ s2)

[
(s+b)cos

(
s
2
+

s3

6
+ c
)
−asin

(
s
2
+

s3

6
+ c
)]

,

− 1√
2

[
(s+b)cos

(
s
2
+

s3

6
+ c
)
−asin

(
s
2
+

s3

6
+ c
)]

,

− s√
1+ s2

[
(s+b)sin

(
s
2
+

s3

6
+ c
)
+acos

(
s
2
+

s3

6
+ c
)]

− 1√
2(1+ s2)

[
(s+b)cos

(
s
2
+

s3

6
+ c
)
−asin

(
s
2
+

s3

6
+ c
)])

which is also a rectifying curve in the view of Theroem 7 and drawn in Figures 2b,
2c, 2d by choosing a = b = 1, c = 0.
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