

NORMAL DIRECTION CURVES AND APPLICATIONS

SEZAI KIZILTUĞ, MEHMET ÖNDER, AND YUSUF YAYLI

Received 23 December, 2014

Abstract. In this study, we define a new type of associated curves in the Euclidean 3-space such as normal-direction curve and normal-donor curve. We obtain characterizations for these curves. Moreover, we give applications of normal-direction curves to some special curves such as helix, slant helix, plane curve or normal-direction (ND) -normal curves in E^3 . And, we show that slant helices and rectifying curves can be constructed by using normal-direction curves.

2010 *Mathematics Subject Classification:* 53A04

Keywords: associated curve, normal-direction curve, normal-donor curve

1. INTRODUCTION

In the curve theory of Euclidean space, the most important subject is to obtain a characterization for a regular curve, since these characterizations allow to classify curves according to some relations. These characterizations can be given for a single curve or for a curve pair. Helix, slant helix, plane curve, spherical curve, etc. are the well-known examples of single special curves $[1,10,12,17,20]$ $[1,10,12,17,20]$ $[1,10,12,17,20]$ $[1,10,12,17,20]$ $[1,10,12,17,20]$ and these curves, especially the helices, are used in many applications $[2,7,9,16]$ $[2,7,9,16]$ $[2,7,9,16]$ $[2,7,9,16]$. Moreover, special curves can be defined by considering Frenet planes. If the position vector of a space curve always lies on its rectifying, osculating or normal planes, then the curve is called rectifying curve, osculating curve or normal curve, respectively [\[4\]](#page-10-5). In the Euclidean space $E³$, rectifying, normal and osculating curves satisfy Cesaro's fixed point condition, i.e., Frenet planes of such curves always contain a particular point [\[8,](#page-10-6) [15\]](#page-11-4). In particular, there exists a simple relationship between rectifying curves and Darboux vectors (centrodes), which play some important roles in mechanics, kinematics as well as in differential geometry in defining the curves of constant precession [\[4\]](#page-10-5).

Moreover, special curve pairs are characterized by some relationships between their Frenet vectors or curvatures. Involute-evolute curves, Bertrand curves, Mannheim curves are the well-known examples of curve pairs and studied by some math-ematicians [\[3,](#page-10-7) [11,](#page-11-5) [14,](#page-11-6) [19,](#page-11-7) [20\]](#page-11-2).

Recently, a new curve pair in the Euclidean 3-space $E³$ has been defined by Choi and Kim [\[6\]](#page-10-8). They have considered an integral curve γ of a unit vector field *X* defined

© 2021 Miskolc University Press

364 SEZAI KIZILTUĞ, MEHMET ÖNDER, AND YUSUF YAYLI

in the Frenet basis of a Frenet curve α and they have given the definitions and characterizations of principal-directional curve and principal-donor curve in $E³$. They also gave some applications of these curves to some special curves.

In the present paper, we consider a new type of associated curves and define a new curve pair such as normal-direction curve and normal-donor curve in $E³$. We obtain some characterizations for these curves and show that normal-direction curve is a space evolute of normal-donor curve. Moreover, we give some applications of normal-direction curve to some special curves such as helix, slant helix or plane curve.

2. PRELIMINARIES

This section includes a brief summary of space curves and definitions of general helix and slant helix in the Euclidean 3-space E^3 .

A unit speed curve $\alpha: I \to E^3$ is called a general helix if there is a constant vector *u*, so that $\langle T, u \rangle = \cos \theta$ is constant along the curve, where $\theta \neq \pi/2$ and $T(s) = \alpha'(s)$ is unit tangent vector of α at *s*. The curvature (or first curvature) of α is defined by $\kappa(s) = ||\alpha''(s)||$. Then, the curve α is called Frenet curve, if $\kappa(s) \neq 0$, and the unit principal normal vector $N(s)$ of the curve α at *s* is given by $\alpha''(s) = \kappa(s)N(s)$. The unit vector $B(s) = T(s) \times N(s)$ is called the unit binormal vector of α at *s*. Then ${T, N, B}$ is called the Frenet frame of α . For the derivatives of the Frenet frame, the following Frenet-Serret formulae hold:

$$
\begin{bmatrix} T' \\ N' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}
$$
 (2.1)

where $\tau(s)$ is the torsion (or second curvature) of α at *s*. It is well-known that the curve α is a general helix if and only if $\frac{\tau}{\kappa}(s) = \text{constant}$ [\[17,](#page-11-1)[18\]](#page-11-8). If both $\kappa(s) \neq 0$ and $\tau(s)$ are constants, we call α as a circular helix. A curve α with $\kappa(s) \neq 0$ is called a slant helix if the principal normal lines of α make a constant angle with a fixed direction. Also, a slant helix α in E^3 is characterized by the differential equation of its curvature κ and its torsion τ given by

$$
\frac{\kappa^2}{\left(\kappa^2+\tau^2\right)^{3/2}}\left(\frac{\tau}{\kappa}\right)' = \text{constant}.
$$

(See [\[12\]](#page-11-0)).

Now, we give the definitions of some associated curves defined by Choi and Kim [\[6\]](#page-10-8). Let $I \subset \mathbb{R}$ be an open interval. For a Frenet curve $\alpha : I \to E^3$, consider a vector field *X* given by

$$
X(s) = u(s)T(s) + v(s)N(s) + w(s)B(s),
$$
\n(2.2)

where *u*,*v* and *w* are arbitrary differentiable functions of *s* which is the arc length parameter of α. Let

$$
u^2(s) + v^2(s) + w^2(s) = 1,
$$
\n(2.3)

holds. Then the definitions of *X*-direction curve and *X*-donor curve in $E³$ are given as follows.

Definition 1. (Definition 2.1. in [\[6\]](#page-10-8)) Let α be a Frenet curve in Euclidean 3-space $E³$ and *X* be a unit vector field satisfying the equations [\(2.2\)](#page-1-0) and [\(2.3\)](#page-2-0). The integral curve $β: I \to E^3$ of *X* is called an *X*-direction curve of α. The curve α whose *X*direction curve is β is called the *X*-donor curve of β in E^3 .

Definition 2. (Definition 2.2. in [\[6\]](#page-10-8)) An integral curve of principal normal vector $N(s)$ (resp. binormal vector $B(s)$) of α in [\(2.2\)](#page-1-0) is called the principal-direction curve (resp. binormal-direction curve) of α in E^3 .

Remark 1. (Remark 2.3. in [\[6\]](#page-10-8)) A principal-direction (resp. the binormal-direction) curve is an integral curve of $X(s)$ with $u(s) = w(s) = 0$, $v(s) = 1$ (resp. $u(s) = 0$ $v(s) = 0$, $w(s) = 1$) for all *s* in [\(2.2\)](#page-1-0).

3. Normal-direction curve and normal-donor curve in E^3

In this section, we will give definitions of normal-direction curve and normal donor curve in $E³$. We obtain some theorems and results characterizing these curves. First, we give the following definition.

Definition 3. Let α be a Frenet curve in E^3 and X be a unit vector field lying on the normal plane of α and defined by

$$
X(s) = v(s)N(s) + w(s)B(s), \qquad v(s) \neq 0, \qquad w(s) \neq 0,
$$
 (3.1)

and satisfying that the vectors $X'(s)$ and $T(s)$ are linearly dependent. The integral curve $\gamma: I \to E^3$ of $X(s)$ is called a normal-direction curve of α . The curve α whose normal -direction curve is γ is called the normal-donor curve in E^3 .

The Frenet frame is a rotation-minimizing with respect to the principal normal *N* [\[8\]](#page-10-6). If we consider a new frame given by $\{T, X, M\}$ where $M = T \times X$, we have that this new frame is rotation-minimizing with respect to T , i.e., the unit vector X belongs to a rotation-minimizing frame.

Since, $X(s)$ is a unit vector and $\gamma: I \to E^3$ is an integral curve of $X(s)$, without loss of generality we can take *s* as the arc length parameter of γ and we can give the following characterizations in the view of these information.

Theorem 1. Let $\alpha: I \to E^3$ be a Frenet curve and an integral curve of $X(s)$ = $\nu(s)N(s) + \nu(s)B(s)$ *be the curve* $\gamma: I \to E^3$. Then, γ *is a normal-direction curve of* α *if and only if the following equalities hold,*

$$
v(s) = \sin\left(\int \tau ds\right) \neq 0, \qquad w(s) = \cos\left(\int \tau ds\right) \neq 0. \qquad (3.2)
$$

Proof. Since γ is a normal-direction curve of α , from Definition [3,](#page-2-1) we have

$$
X(s) = v(s)N(s) + w(s)B(s),
$$
\n(3.3)

and

$$
v^2(s) + w^2(s) = 1.
$$
\n(3.4)

Differentiating [\(3.3\)](#page-3-0) with respect to *s* and by using the Frenet formulas, it follows

$$
X'(s) = -\nu \kappa T + (\nu' - \nu \tau)N + (\nu' + \nu \tau)B.
$$
 (3.5)

Since we have that X' and T are linearly dependent. Then from (3.5) we can write

$$
\begin{cases}\n-\nu \kappa \neq 0, \\
\nu' - \nu \tau = 0, \\
\omega' + \nu \tau = 0.\n\end{cases}
$$
\n(3.6)

The solutions of second and third differential equations are

$$
v(s) = \sin\left(\int \tau ds\right) \neq 0, \qquad w(s) = \cos\left(\int \tau ds\right) \neq 0,
$$

respectively, which completes the proof.

Theorem 2. Let $\alpha: I \to E^3$ be a Frenet curve. If γ is the normal-direction curve *of* α*, then* γ *is a space evolute of* α*.*

Proof. Since γ is an integral curve of *X*, we have $\gamma' = X$. Denote the Frenet frame of γ by $\{\bar{T}, \bar{N}, \bar{B}\}\)$. Differentiating $\gamma' = X$ with respect to *s* and by using Frenet formulas we get

$$
X' = \overline{T}' = \overline{\kappa}\overline{N}.\tag{3.7}
$$

Furthermore, we know that X' and T are linearly dependent. Then from (3.7) we get \bar{N} and *T* are linearly dependent, i.e, γ is a space evolute of α .

Theorem 3. Let $\alpha: I \to E^3$ be a Frenet curve. If γ is the normal direction curve *of* α *, then the curvature* $\bar{\kappa}$ *and the torsion* $\bar{\tau}$ *of* γ *are given as follows,*

$$
\bar{\kappa} = \kappa \left| \sin \left(\int \tau ds \right) \right|, \qquad \qquad \bar{\tau} = \kappa \cos \left(\int \tau ds \right).
$$

Proof. From [\(3.5\)](#page-3-1), [\(3.6\)](#page-3-3) and [\(3.7\)](#page-3-2), we have

$$
\overline{\kappa}\overline{N} = -\nu\kappa T. \tag{3.8}
$$

By considering (3.8) and (3.2) we obtain

$$
\bar{\kappa}\bar{N} = -\kappa \sin\left(\int \tau ds\right)T,\tag{3.9}
$$

which gives us

$$
\bar{\kappa} = \kappa \left| \sin \left(\int \tau ds \right) \right|.
$$
 (3.10)

Moreover, from (3.9) and (3.10) , we can write

$$
\bar{N} = T. \tag{3.11}
$$

Then, we have

$$
\bar{B} = \bar{T} \times \bar{N} = \cos\left(\int \tau ds\right) N - \sin\left(\int \tau ds\right) B. \tag{3.12}
$$

Differentiating [\(3.12\)](#page-4-1) with respect to *s* gives

$$
\bar{B}' = -\kappa \cos\left(\int \tau ds\right) T. \tag{3.13}
$$

Since $\bar{\tau} = -\langle \bar{B}', \bar{N} \rangle = -\langle \bar{B}', T \rangle$, from [\(3.13\)](#page-4-2) it follows

$$
\bar{\tau} = \kappa \cos\left(\int \tau ds\right),\tag{3.14}
$$

that finishes the proof. \Box

Corollary 1. *Let* γ *be a normal-direction curve of the curve* α*. Then the relationships between the Frenet frames of curves are given as follows,*

$$
X = \overline{T} = \sin\left(\int \tau ds\right)N + \cos\left(\int \tau ds\right)B,
$$

$$
\overline{N} = T,
$$

$$
\overline{B} = \cos\left(\int \tau ds\right)N - \sin\left(\int \tau ds\right)B.
$$

Proof. The proof is clear from Theorem [3.](#page-3-7) □

Theorem 4. *Let* γ *be a normal-direction curve of* α *with curvature* $\bar{\kappa}$ *and torsion* τ¯*. Then curvature* κ *and torsion* τ *of* α *are given by*

$$
\kappa=\sqrt{\bar{\kappa}^2+\bar{\tau}^2},~~\tau=\frac{\bar{\tau}^2}{\bar{\kappa}^2+\bar{\tau}^2}\left(\frac{\bar{\kappa}}{\bar{\tau}}\right)'.
$$

Proof. From [\(3.10\)](#page-4-0) and [\(3.14\)](#page-4-3), we easily get

$$
\kappa = \sqrt{\bar{\kappa}^2 + \bar{\tau}^2}.
$$
\n(3.15)

Substituting (3.15) into (3.10) and (3.14) , it follows

$$
\left|\sin\left(\int \tau ds\right)\right| = \frac{\bar{\kappa}}{\sqrt{\bar{\kappa}^2 + \bar{\tau}^2}},\tag{3.16}
$$

$$
\cos\left(\int \tau ds\right) = \frac{\bar{\tau}}{\sqrt{\bar{\kappa}^2 + \bar{\tau}^2}},\tag{3.17}
$$

respectively. Differentiating [\(3.16\)](#page-4-5) with respect to *s*, we have

$$
\tau \cos\left(\int \tau ds\right) = \frac{\bar{\tau}(\bar{\kappa}' \bar{\tau} - \bar{\kappa} \bar{\tau}')}{(\bar{\kappa}^2 + \bar{\tau}^2)^{3/2}}.
$$
 (3.18)

From (3.17) and (3.18) , it follows

$$
\tau=\frac{\bar{\kappa}'\bar{\tau}-\bar{\kappa}\bar{\tau}'}{\bar{\kappa}^2+\bar{\tau}^2},
$$

or equivalently,

$$
\tau = \frac{\bar{\tau}^2}{\bar{\kappa}^2 + \bar{\tau}^2} \left(\frac{\bar{\kappa}}{\bar{\tau}}\right)'.
$$
\n(3.19)

Theorem [4](#page-4-6) leads us to give the following corollary whose proof is clear.

Corollary 2. *Let* γ *with the curvature* κ¯ *and the torsion* τ¯ *be a normal-direction curve of* α*. Then*

$$
\frac{\tau}{\kappa} = -\frac{\bar{\kappa}^2}{\left(\bar{\kappa}^2 + \bar{\tau}^2\right)^{3/2}} \left(\frac{\bar{\tau}}{\bar{\kappa}}\right)',\tag{3.20}
$$

is satisfied, where κ *and* τ *are curvature and torsion of* α*, respectively.*

4. APPLICATIONS OF NORMAL-DIRECTION CURVES

In this section, we focus on relations between normal-direction curves and some special curves such as general helix, slant helix, plane curve or rectifying curve in E^3 .

4.1. *General helices, slant helices and plane curves*

Considering Corollary [2,](#page-5-2) we have the following theorems which gives a way to construct the examples of slant helices by using general helices.

Theorem 5. Let $\alpha: I \to E^3$ be a Frenet curve in E^3 and γ be a normal-direction *curve of* α*. Then the followings are equivalent,*

- *(i) A* Frenet curve α *is a general helix in* E^3 .
- *(ii)* α *is a normal-donor curve of a slant helix.*
- *(iii) A normal-direction curve of* α *is a slant helix.*

Theorem 6. Let $\alpha: I \to E^3$ be a Frenet curve in E^3 and γ be a normal-direction *curve of* α*. Then the followings are equivalent,*

- *(i) A* Frenet curve α *is a plane curve in* E^3 .
- *(ii)* α *is a normal-donor curve of a general helix.*

(iii) A normal-direction curve of α *is a general helix.*

Example 1*.* Let consider the general helix given by the parametrization $\alpha(s) = \left(\cos \frac{s}{\sqrt{2}}, \sin \frac{s}{\sqrt{2}}, \frac{s}{\sqrt{2}}\right)$) in E^3 (Fig [1a\)](#page-7-0). The Frenet vectors and curvatures of α are obtained as follows,

$$
T(s) = \left(-\frac{1}{\sqrt{2}}\sin\frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}}\cos\frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),
$$

\n
$$
N(s) = \left(-\cos\frac{s}{\sqrt{2}}, \sin\frac{s}{\sqrt{2}}, 0\right),
$$

\n
$$
B(s) = \left(\frac{1}{\sqrt{2}}\sin\frac{s}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\cos\frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),
$$

\n
$$
\kappa = \tau = \frac{1}{2}.
$$

Then we have $X(s) = (x_1(s), x_2(s), x_3(s))$ where

$$
x_1(s) = -\sin\left(\frac{s}{2} + c\right)\cos\frac{s}{\sqrt{2}} + \frac{1}{\sqrt{2}}\cos\left(\frac{s}{2} + c\right)\sin\frac{s}{\sqrt{2}},
$$

\n
$$
x_2(s) = \sin\left(\frac{s}{2} + c\right)\sin\frac{s}{\sqrt{2}} - \frac{1}{\sqrt{2}}\cos\left(\frac{s}{2} + c\right)\cos\frac{s}{\sqrt{2}},
$$

\n
$$
x_3(s) = \frac{1}{\sqrt{2}}\cos\left(\frac{s}{2} + c\right).
$$

and c is integration constant. Now, we can construct a slant helix γ which is also a normal-direction curve of α (Fig [1b\)](#page-7-0):

$$
\gamma = \int_0^s \gamma'(s) ds = \int_0^s X(s) ds = (\gamma_1(s), \gamma_2(s), \gamma_3(s)),
$$

where

$$
\gamma_1(s) = \int_0^s \left[-\sin\left(\frac{s}{2} + c\right) \cos\frac{s}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos\left(\frac{s}{2} + c\right) \sin\frac{s}{\sqrt{2}} \right] ds,
$$

\n
$$
\gamma_2(s) = \int_0^s \left[\sin\left(\frac{s}{2} + c\right) \sin\frac{s}{\sqrt{2}} - \frac{1}{\sqrt{2}} \cos\left(\frac{s}{2} + c\right) \cos\frac{s}{\sqrt{2}} \right] ds,
$$

\n
$$
\gamma_3(s) = \int_0^s \frac{1}{\sqrt{2}} \cos\left(\frac{s}{2} + c\right) ds.
$$

FIGURE 1. Slant helix γ constructed by α .

4.2. *ND-normal Curves*

In this subsection we define normal-direction (ND) -normal curves in E^3 and give the relationships between normal-direction curves and *ND*-normal curves.

A space curve whose position vector always lies in its normal plane is called normal curve [\[5\]](#page-10-9). Moreover, if the Frenet frame and curvatures of a space curve are given by $\{T, N, B\}$ and κ , τ , respectively, then the vector $\tilde{D}(s) = \frac{\tau}{\kappa}(s)T(s) + B(s)$ is called modified Darboux vector of the curve [\[12,](#page-11-0) [13\]](#page-11-9).

Let now α be a Frenet curve with Frenet frame $\{T, N, B\}$ and γ a normal-direction curve of α. The curve γ is called normal-direction normal curve (or *ND*-normal curve) of α , if the position vector of γ always lies on the normal plane of its normaldonor curve α.

The definition of *ND*-normal curve allows us to write the following equality,

$$
\gamma(s) = m(s)N(s) + n(s)B(s),\tag{4.1}
$$

where $m(s)$, $n(s)$ are non-zero differentiable functions of *s*. Since γ is normaldirection curve of α , from Corollary [1,](#page-4-7) we have

$$
\begin{cases}\nN = \sin(\int \tau ds) \,\overline{T} + \cos(\int \tau ds) \,\overline{B}, \\
B = \cos(\int \tau ds) \,\overline{T} - \sin(\int \tau ds) \,\overline{B}.\n\end{cases} \tag{4.2}
$$

Substituting (4.2) in (4.1) gives

$$
\gamma(s) = \left[m \sin \left(\int \tau ds \right) + n \cos \left(\int \tau ds \right) \right] \bar{T} + \left[m \cos \left(\int \tau ds \right) - n \sin \left(\int \tau ds \right) \right] \bar{B}. \quad (4.3)
$$

Writing

$$
\begin{cases}\n\rho(s) = m \sin(\int \tau ds) + n \cos(\int \tau ds), \\
\sigma(s) = m \cos(\int \tau ds) - n \sin(\int \tau ds),\n\end{cases}
$$
\n(4.4)

in [\(4.3\)](#page-7-3) and differentiating the obtained equality we obtain

$$
\bar{T} = \rho'\bar{T} + (\rho\bar{\kappa} - \sigma\bar{\tau})\bar{N} + \sigma'\bar{B}.
$$
\n(4.5)

Then we have

$$
\sigma = a = \text{constant}, \qquad \rho = s + b = \frac{\bar{\tau}}{\bar{\kappa}} a, \qquad (4.6)
$$

where a , b are non-zero integration constants. From (4.6) , it follows that

$$
\gamma(s) = a\left(\frac{\bar{\tau}}{\bar{\kappa}}\bar{T} + \bar{B}\right)(s) = a\tilde{D}(s),\tag{4.7}
$$

where $\tilde{\bar{D}}$ is the modified Darboux vector of γ.

Now we can give the followings which characterize *ND*-normal curves.

Theorem 7. Let $\alpha: I \to E^3$ be a Frenet curve in E^3 and γ be a normal-direction *curve of* α*. If* γ *is a ND-normal curve in E*³ *, then we have the followings,*

- *(i)* γ *is a rectifying curve in* E^3 *whose curvatures satisfy* $\frac{\bar{\tau}}{\bar{\kappa}} = \frac{s+b}{a}$ *a where a*, *b are non-zero constants .*
- *(ii) The position vector and modified Darboux vector* $\tilde{\bar{D}}$ *of* γ *are linearly dependent.*

Theorem [7](#page-8-1) gives a way to construct a rectifying curve by using normal-donor curve as follows:

Corollary 3. Let $\alpha: I \to E^3$ be a Frenet curve in E^3 and γ a ND-normal curve of α *in E*³ *. Then the position vector of* γ *is obtained as follows,*

$$
\gamma(s) = \left[(s+b)\sin\left(\int \tau ds\right) + a\cos\left(\int \tau ds\right) \right] N(s) + \left[(s+b)\cos\left(\int \tau ds\right) - a\sin\left(\int \tau ds\right) \right] B(s)
$$
\n(4.8)

where a, *b are non-zero integration constants.*

Proof. The proof is clear from (4.1) , (4.4) and (4.6) .

Example 2*.* Let consider the general helix given by the parametrization

$$
\alpha(s) = \left(\sqrt{1+s^2}, s, \ln(s+\sqrt{1+s^2})\right),
$$

and drawn in Fig [2a.](#page-9-0)

(C) *ND*-normal curve γ for $\frac{-3\pi}{2} \leq s \leq \frac{3\pi}{2}$

. (D) *ND*-normal curve γ for −2π ≤ *s* ≤ 2π.

FIGURE 2. *ND*-normal curve γ constructed by α .

Frenet vectors and curvatures of the curve are

$$
T(s) = \frac{1}{\sqrt{2}\sqrt{1+s^2}} \left(s, \sqrt{1+s^2}, 1\right),
$$

\n
$$
N(s) = \frac{1}{\sqrt{1+s^2}} (1, 0, -s),
$$

\n
$$
B(s) = \frac{1}{\sqrt{2}\sqrt{1+s^2}} \left(-s, \sqrt{1+s^2}, -1\right),
$$

\n
$$
\kappa = \tau = \frac{1+s^2}{2},
$$

respectively. Then from Corollary [3,](#page-3-7) a ND -normal curve γ is obtained as follows,

$$
\gamma(s) = \left(\frac{1}{\sqrt{1+s^2}} \left[(s+b) \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) + a \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] \n- \frac{s}{\sqrt{2(1+s^2)}} \left[(s+b) \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) - a \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right], \n- \frac{1}{\sqrt{2}} \left[(s+b) \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) - a \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right], \n- \frac{s}{\sqrt{1+s^2}} \left[(s+b) \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) + a \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] \n- \frac{1}{\sqrt{2(1+s^2)}} \left[(s+b) \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) - a \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] \right)
$$

which is also a rectifying curve in the view of Theroem [7](#page-8-1) and drawn in Figures [2b,](#page-9-0) [2c,](#page-9-0) [2d](#page-9-0) by choosing $a = b = 1$, $c = 0$.

ACKNOWLEDGEMENT

The authors express their gratitude to the editor and referees for their constructive criticism and feedback, which helped to develop the article.

REFERENCES

- [1] M. Barros, "General helices and a theorem of Lancret." *Proc. Amer. Math. Soc.*, vol. 125, no. 5, pp. 1503–1509, 1997, doi: [10.1090/S0002-9939-97-03692-7.](http://dx.doi.org/10.1090/S0002-9939-97-03692-7)
- [2] J. Beltran and J. Monterde, "A characterization of quintic helices." *J. Comput. Appl. Math.*, vol. 206, no. 1, pp. 116–121, 2007, doi: [10.1016/j.cam.2006.06.001.](http://dx.doi.org/10.1016/j.cam.2006.06.001)
- [3] J. Burke, "Bertrand curves associated with a pair of curves." *Mathematics Magazine.*, vol. 34, no. 1, pp. 60–62, 1960, doi: [10.1080/0025570X.1960.11975181.](http://dx.doi.org/10.1080/0025570X.1960.11975181)
- [4] B. Y. Chen, "When does the position vector of a space curve always lie in its normal plane?" *Amer. Math. Monthly*, vol. 110, pp. 147–152, 2003, doi: [10.2307/3647775.](http://dx.doi.org/10.2307/3647775)
- [5] B. Y. Chen and F. Dillen, "Rectifying curves as centrodes and extremal curves." *Bull. Inst. Math. Academia Sinica.*, vol. 33, no. 2, pp. 77–90, 2005.
- [6] J. H. Choi and Y. H. Kim, "Associated curves of a Frenet curve and their applications," *Applied Mathematics and Computation*, vol. 218, no. 18, pp. 9116–9124, 2012, doi: [10.1016/j.amc.2012.02.064.](http://dx.doi.org/10.1016/j.amc.2012.02.064)
- [7] A. F. Da Fonseca and C. P. Malta, "Lancret helices," *arXiv:physics/0507105v1*. [Online]. Available: <https://arxiv.org/pdf/physics/0507105.pdf>
- [8] R. Farouki, G. Gianelli, M. Sampoli, and A. Sestini, "Rotation-minimizing osculating frames." *Computer Aided Geometric Design.*, vol. 31, no. 1, pp. 27–42, 2014, doi: [10.1016/j.cagd.2013.11.003.](http://dx.doi.org/10.1016/j.cagd.2013.11.003)
- [9] R. Farouki, C. Y. Han, C. Manni, and A. Sestini, "Characterization and construction of helical polynomial space curves." *J. Comput. Appl. Math.*, vol. 162, no. 2, pp. 365–392, 2004, doi: [10.1016/j.cam.2003.08.030.](http://dx.doi.org/10.1016/j.cam.2003.08.030)
- [10] H. A. Hayden, "On a generalized helix in a Riemannian n-space." *Proc. Lond. Math. Soc.*, vol. 32, pp. 337–345, 1931, doi: [10.1112/plms/s2-32.1.337.](http://dx.doi.org/10.1112/plms/s2-32.1.337)
- [11] S. Izumiya and N. Takeuchi, "Generic properties of helices and Bertrand curves." *Journal of Geometry.*, vol. 74, pp. 97–109, 2002, doi: [10.1007/PL00012543.](http://dx.doi.org/10.1007/PL00012543)
- [12] S. Izumiya and N. Takeuchi, "New special curves and developable surfaces." *Turk. J. Math.*, vol. 28, pp. 153–163, 2004.
- [13] T. Kahraman, M. Önder, M. Kazaz, and H. H. Uğurlu, "Some Characterizations of Mannheim Partner Curves in Minkowski 3-space." *Proceedings of the Estonian Academy of Sciences.*, vol. 60, no. 4, pp. 210–220, 2011, doi: [10.3176/proc.2011.4.02.](http://dx.doi.org/10.3176/proc.2011.4.02)
- [14] H. Liu and F. Wang, "Mannheim partner curves in 3-space." *Journal of Geometry.*, vol. 88, no. 1–2, pp. 120–126, 2008, doi: [10.1007/s00022-007-1949-0.](http://dx.doi.org/10.1007/s00022-007-1949-0)
- [15] T. Otsuki, *Differential Geometry.* Tokyo: Asakura Publishing Co.Ltd., 1961.
- [16] J. Puig-Pey, A. Gálvez, and A. Iglesias, "Helical curves on surfaces for computer-aided geometric design and manufacturing." *Computational Science and its Applications ICCSA.*, vol. 3044, no. 2, pp. 771–778, 2004, doi: [10.1007/978-3-540-24709-8](http://dx.doi.org/10.1007/978-3-540-24709-8_81) 81.
- [17] D. J. Struik, *Lectures on Classical Differential Geometry.*, ser. 2. Dover: Addison Wesley., 1988.
- [18] F. Wang and H. Liu, "Mannheim partner curves in 3-Euclidean space." *Mathematics in Practice and Theory.*, vol. 37, no. 1, pp. 141–143, 2007.
- [19] J. K. Whittemore, "Bertrand curves and helices." *Duke Math. J.*, vol. 6, no. 1, pp. 235–245, 1950.
- [20] Y. C. Wong, "On the generalized helices of Hayden and Syptak in an *N*-space." *Proc. Cambridge Philos. Soc.*, vol. 37, pp. 229–243, 1941, doi: [10.1017/S0305004100021721.](http://dx.doi.org/10.1017/S0305004100021721)

Authors' addresses

Sezai Kızıltuğ

Erzincan Binali Yıldırım University, Faculty of Arts and Sciences, Department of Mathematics, 24030, Erzincan, Turkey

E-mail address: skiziltug@erzincan.edu.tr

Mehmet Önder

Delibekirli Village, Tepe Street, 31440, Kırıkhan, Hatay, Turkey *E-mail address:* mehmetonder197999@gmail.com

Yusuf Yaylı

Ankara University, Faculty of Sciences, Department of Mathematics, 06100, Ankara, Turkey *E-mail address:* yayli@science.ankara.edu.tr