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Abstract. We introduce the central Fubini-like numbers and polynomials using Rota approach.
Several identities and properties are established as generating functions, recurrences, explicit
formulas, parity, asymptotics and determinantal representation.
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1. INTRODUCTION

We start by giving some definitions that will be used throughout this paper.
For n≥ 1, the falling factorial denoted xn is defined by

xn = x(x−1) · · ·(x−n+1),

and the central factorial x[n], see [4, 9], is defined by

x[n] = x(x+n/2−1)(x+n/2−2) · · ·(x−n/2+1).

We use the convention, x0 = x[0] = 1.
It is well-known that, for all non-negative integers n and k (k≤ n), Stirling numbers

of the second kind are defined as the coefficients S(n,k) in the expansion

xn =
n

∑
k=0

S(n,k)xk. (1.1)

Riordan, in his book [15], shows that, for all non-negative integers n and k (k≤ n),
the central factorial numbers of the second kind are the coefficients T (n,k) in the
expansion

xn =
n

∑
k=0

T (n,k)x[k]. (1.2)

In combinatorics, the number of ways to partition a set of n elements into k
nonempty subsets are counted by Stirling numbers S(n,k), and the central factorial
numbers T (2n,2n−2k) count the number of ways to place k rooks on a 3D-triangle
board of size (n−1), see [11].
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FIGURE 1. 3D-triangle board of size 3.

The coefficients S(n,k) and T (n,k) satisfy, respectively, the triangular recurrences

S(n,k) = kS(n−1,k)+S(n−1,k−1) (1≤ k ≤ n) (1.3)

and

T (n,k) =
(

k
2

)2

T (n−2,k)+T (n−2,k−2) (2≤ k ≤ n), (1.4)

where

S(n,k) = T (n,k) = 0 for k > n, S(0,0) = T (0,0) = T (1,1) = 1 and T (1,0) = 0.

S(n,k) and T (n,k) admit also the explicit expressions

S(n,k) =
1
k!

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n , (1.5)

T (n,k) =
1
k!

k

∑
j=0

(−1) j
(

k
j

)(
k
2
− j
)n

. (1.6)

n\ k 0 1 2 3 4 5 6
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1

TABLE 1. The first few
values of S(n,k).

0 1 2 3 4 5 6
0 1
1 0 1
2 0 0 1
3 0 1

4 0 1
4 0 0 1 0 1
5 0 1

16 0 5
2 0 1

6 0 0 1 0 5 0 1

TABLE 2. The first few
values of T (n,k).
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The usual difference operator ∆, the shift operator Ea and the central difference
operator δ are given respectively by

∆ f (x) = f (x+1)− f (x),

Ea f (x) = f (x+a)
and

δ f (x) = f (x+1/2)− f (x−1/2).
Riordan, [15], mentioned that the central factorial operator δ satisfies the following
property

δ fn(x) = n fn−1(x), (1.7)
where ( fn(x))n≥0 is a sequence of polynomials with f0(x) = 1.

We can also express δ by means of both ∆ and Ea, see [9, 15], as follows:

δ f (x) = ∆E−1/2 f (x). (1.8)

For more details about difference operators, we refer the reader to [9].

2. CENTRAL FUBINI-LIKE NUMBERS AND POLYNOMIALS

In 1975, Tanny [17], introduced the Fubini polynomials (or ordered Bell polyno-
mials) Fn(x) by applying a linear transformation L defined as

L(xn) := n!xn.

The polynomials Fn(x) are given by

Fn(x) :=
n

∑
k≥0

k!S(n,k)xk, (2.1)

according to,

Fn(x) := L(xn) = L

(
n

∑
k=0

S(n,k)xk

)
=

n

∑
k=0

S(n,k)L(xk) =
n

∑
k=0

k!S(n,k)xk.

Putting x = 1 in (2) we get

Fn := Fn(1) =
n

∑
k=0

k!S(n,k), (2.2)

which is the n-th Fubini number.
The Fubini polynomial Fn(x) has the exponential generating function given by, see

[17],

∑
n=0

Fn(x)
tn

n!
=

1
1− x(et −1)

. (2.3)

For more details concerning Fubini numbers and polynomials, see [3, 6, 8, 12, 17, 18,
20] and papers cited therein.

Now, we introduce the linear transformation Z as follows.
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Definition 1. For n≥ 0, we define the transformation

Z(x[n]) = n!xn. (2.4)

Then, we have

Z(xn) = Z

(
n

∑
k=0

T (n,k)x[k]
)

=
n

∑
k=0

T (n,k)Z(x[k]) =
n

∑
k=0

k!T (n,k)xk. (2.5)

And due to Formula (1.6), we are now able to introduce the main notion of the present
paper.

Definition 2. The n-th central Fubini-like polynomial is given by

Cn(x) :=
n

∑
k=0

k!T (n,k)xk. (2.6)

Setting x = 1, we obtain the central Fubini-like numbers,

Cn = Cn(1) :=
n

∑
k=0

k!T (n,k). (2.7)

The first central polynomials Cn(x) are given in Table 3.

n C2n(x) 22n
C2n+1(x)

0 1 x
1 2x2 x+24x3

2 2x2 +24x4 x+240x3 +1920x5

3 2x2 +120x4 +720x6 x+2184x3 +67200x5 +322560x7

4 2x2 +504x4 +10080x6 +40320x8 x+19680x3 +1854720x5 +27095040x7 +92897280x9

TABLE 3. First value of Cn(x).

The first few central Fubini-like numbers are

(C2n)n≥0 : 1,2,26,842,50906,4946282,704888186,138502957322, . . .

(22n
C2n+1)n≥0 : 1,25,2161,391945,121866721,57890223865,38999338931281, . . .

2.1. Exponential generating function

We begin by establishing the exponential generating function of the central Fubini-
like polynomials.

Theorem 1. The polynomials Cn(x) have the following exponential generating
function

G(x; t) := ∑
n=0

Cn(x)
tn

n!
=

1
1−2xsinh(t/2)

. (2.8)
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Proof. We have

∑
n=0

Cn(x)
tn

n!
=

∞

∑
n=0

n

∑
k=0

k!T (n,k)xk tn

n!
= ∑

k=0
k!xk

∞

∑
n=k

T (n,k)
tn

n!
,

from [15, p. 214] , we have

∑
n=0

T (n,k)
tn

n!
=

1
k!

(2sinh(t/2))k ,

therefore

∑
n=0

Cn(x)
tn

n!
=

∞

∑
k=0

(2sinh(t/2))k xk =
1

1−2xsinh(t/2)
.

�

Corollary 1. The sequence (Cn)n≥0 has the following exponential generating func-
tion

n

∑
k=0

Cn
tn

n!
=

1
1−2sinh(t/2)

. (2.9)

2.2. Explicit representations

In this subsection we propose some explicit formulas for the central Fubini-like
polynomials, we start by the derivative representation.

Proposition 1. The polynomials (Cn(x))n≥0 correspond to the higher derivative
expression

Cn(x) =
∞

∑
k=0

∂n

∂nt
(2xsinh(t/2))k

∣∣∣∣∣
t=0

.

Proof. Let

∂n

∂nt

(
∞

∑
m=0

Cm(x)
tm

m!

)∣∣∣∣∣
t=0

=
∞

∑
m=n

Cm(x)
tm−n

(m−n)!

∣∣∣∣
t=0

=
∞

∑
m=0

Cn+m(x)
tm

m!

∣∣∣∣∣
t=0

= Cn(x).

Thus from Theorem 1 we get the result. �

From Formula (1.6), it is clear that the following proposition holds.

Proposition 2. The central Fubini-like polynomials satisfy the following explicit
formula

Cn(x) =
n

∑
k=0

xk
k

∑
j=0

(−1) j
(

k
j

)
(k/2− j)n .

Proof. It suffices to replace T (n,k) in Equation (2.6) by its explicit formula (Equa-
tion (1.6)),

Cn(x) =
n

∑
k=0

k!T (n,k)xk =
n

∑
k=0

xk
k

∑
j=0

(−1) j
(

k
j

)
(k/2− j)n .
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�

Theorem 2. For non-negative n, the following explicit representation holds true.

Cn(x) = x
n−1

∑
k=0

(
n
k

) k

∑
j=0

(
k
j

)(−1
2

)k− j
C j(x) = x

n−1

∑
j=0

(
n
j

)
δ[0n− j]C j(x), (2.10)

where δ[0n− j] = (1/2)n− j− (−1/2)n− j.

The proof will depend on Lemma 1, Lemma 2 and Relation (1.8).

Lemma 1. For all polynomials pn(x) the following relation holds true.

Z(pn(x)) = xZ(δpn(x)).

Proof. We have

Z(x[n]) = n!xn = xn(n−1)!xn−1 = xZ(nx[n−1]) = xZ(δx[n]),

as any polynomial can be written as sums of central factorials x[n]. Thus, we have the
result. �

Lemma 2 (Tanny [17]). For all polynomials pn(x) we have

∆pn(x) =
n−1

∑
k=0

(
n
k

)
pk(x). (2.11)

Now we give the proof of Theorem 2,

Proof of Theorem 2. Using Lemma 1, Lemma 2 and setting pn(x) = xn, we get

Z(xn) = xZ(δxn) = xZ
(

∆E−1/2xn
)
= xZ

(
∆

(
x− 1

2

)n)
= xZ

( n−1

∑
k=0

(
n
k

)(
x− 1

2

)k)
= xZ

( n−1

∑
k=0

(
n
k

) k

∑
j=0

(
k
j

)(−1
2

)k− j
x j
)

= x
n−1

∑
k=0

(
n
k

) k

∑
j=0

(
k
j

)(−1
2

)k− j
C j(x).

Using binomial product identity
(

n
k

)(
k
j

)
=

(
n− j
k− j

)(
n
j

)
, we get the result. �

Corollary 2. The central Fubini-like numbers satisfy

Cn =
n−1

∑
j=0

(
n
j

)
δ[0n− j]C j. (2.12)

Now we give an explicit formula connecting the central Fubini-like polynomials
with Stirling numbers of the second kind S(n,k),
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Theorem 3. The central Fubini-like polynomials Cn(x) satisfy

Cn(x) =
n

∑
k=0

k!xk
n

∑
j=0

(
n
j

)(
−k
2

) j

S(n− j,k). (2.13)

Proof. From Theorem 1, we have

∑
n=0

Cn(x)
tn

n
=

1
1−2xsinh(t/2)

.

Using the exponential form of 2xsinh(t/2) we get

∑
n=0

Cn(x)
tn

n
=

1
1− xe(−t/2)(et −1)

= ∑
k=0

xke(−kt/2)(et −1)k.

It is also known that

∑
n=0

S(n,k)
tn

n!
=

(et −1)k

k!
.

Therefore

∑
n=0

Cn(x)
tn

n
= ∑

k=0
xkk! ∑

n=0

(
−k
2

)n tn

n! ∑
n=0

S(n,k)
tn

n!
.

Then Cauchy’s product implies the identity. �

Corollary 3. The central Fubini-like numbers Cn satisfy

Cn =
n

∑
k=0

k!
n

∑
j=0

(
n
j

)(
−k
2

) j

S(n− j,k). (2.14)

2.3. Umbral representation

Umbral (or Blissard or symbolic) calculus originated as a method for discover-
ing and proving combinatorial identities in which subscripts are treated as powers.
Bell in [1] gave a postulational bases of this calculus. In this section we use the
following property given by Riordan [16]. As specified by the author in [16], ”A
sequence a0,a1, ... may be replaced by a0,a1, ... with the exponents are treated as
powers during all formal operations, and only restored as indexes when operations
are completed”. Then when we have

an = ∑
k=0

(
n
k

)
bkcn−k

we can write it as
an = (b+ c)n,

where bn ≡ bn and cn ≡ cn. We note that b0 and c0 is not necessary equal to 1.
In the following theorem we use the umbral notation Ck(x)≡ C

k(x) and Ck ≡ C
k.

Theorem 4. Let n be a non-negative integer, for all real x we have

Cn(x) = x [(C(x)+1/2)n− (C(x)−1/2)n] .
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Proof. From Theorem 2 and using the umbral notation, a simple calculation gives
the umbral representation result. �

Corollary 4. For non-negative integer n, we have

Cn = (C+1/2)n− (C−1/2)n.

2.4. Parity

A function f (x) is said to be even when f (x) = f (−x) for all x and it is said to be
odd when f (x) =− f (−x).

Theorem 5. For all non-negative n and real variable x we have

Cn(x) = (−1)n
Cn(−x).

Proof. Using the fact that the function f : t 7→ sinh(t) is odd, this gives G(x; t) =
G(−x;−t), then comparing the coefficients of tn/n! in G(x; t) and G(−x;−t) the
theorem follows. �

Corollary 5. The polynomials Cn(x) are odd if and only if n is odd.

Proof. Using Theorem 5, it suffices to replace n by 2k+1 (resp. 2k) and establish
the property. �

2.5. Recurrences and derivatives of higher order

Now we are interested to derive some recurrences for Cn(x) in terms of their de-
rivatives.

First, we deal with a recurrence of second order.

Theorem 6. For n ≥ 2, the polynomials Cn(x) satisfy the following recurrence
relation

Cn(x) = 2x2
Cn−2(x)+

( x
4
+4x3

)
C
′
n−2(x)+

(
x2

4
+ x4

)
C
′′
n−2(x).

Here C′n(x) and C′′n(x) are respectively the first and second derivative of Cn(x).

Proof. From Equation (1.4) we have

Cn(x) =
n

∑
k=0

k!T (n,k)xk

=
n

∑
k=2

k!T (n−2,k−2)xk +
1
4

n

∑
k=0

k2k!T (n−2,k)xk

=
n

∑
k=0

(k+2)!T (n−2,k)xk+2 +
x
4

(
n

∑
k=0

kk!T (n−2,k)xk

)′
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= x2

(
x2

n

∑
k=0

k!T (n−2,k)xk

)′′
+

x
4

(
x

(
n

∑
k=0

k!T (n−2,k)xk

)′)′
= x2 (x2

Cn−2(x)
)′′

+
x
4
(
xC′n−2(x)

)′
= 2x2

Cn−2(x)+
( x

4
+4x3

)
C
′
n−2(x)+

(
x2

4
+ x4

)
C
′′
n−2(x),

this concludes the proof. �

In the next theorem we give a recurrence formula for the r-th derivative of Cn(x).

Proposition 3. The r-th derivative of G(x; t), defined in (2.8), is given by

∂r

∂rx
G(x; t) =

r!
xr G(x; t)(G(x; t)−1)r.

Proof. Induction on r implies the equality. �

Theorem 7. Let C(r)n (x) be the r-th derivative of Cn(x). Then C(r)n (x) is given by

C
(r)
n (x) =

r!
xr

r

∑
k=0

(
r
k

)
(−1)r−k

∑
j0+ j1+···+ jk=n

(
n

j0, j1, . . . , jk

)
C j0(x)C j1(x) · · ·C jk(x).

Proof. Using Proposition 3, by applying Cauchy product and comparing the coef-
ficients of tn/n!, we get the result. �

Corollary 6. The following equality holds for any real x:

xC′n(x) =
n−1

∑
k=0

(
n
k

)
Ck(x)Cn−k(x).

Proof. Setting r = 1 in Proposition 3, we get the first derivative of G(x; t) as

∂

∂x
G(x; t) =

2sinh
( t

2

)(
1−2xsinh( t

2)
)2 =

G(x; t)
x

(G(x; t)−1) ,

x
∂

∂x
G(x; t) = G(x; t)2−G(x; t),

x ∑
n=0

C
′
n(x)

tn

n!
=

(
∑
n=0

Cn(x)
tn

n!

)2

−∑
n=0

Cn(x)
tn

n!
,

then applying the Cauchy product in the right hand side and comparing the coeffi-
cients of tn/n! we get the result. �
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2.6. Integral representation

Integral representation is a fundamental property in analytic combinatorics. The
central Fubini-like polynomials can be represented as well.

Theorem 8. The polynomials Cn(x) satisfy

Cn(x) =
2n!
π

Im
∫

π

0

sin(nθ)

1−2xsinh(eiθ/2)
∂θ.

Proof. We will use here the known identity, see [5],

kn =
2n!
π

Im
∫

π

0
exp(keiθ)sin(nθ)∂θ.

We have

Cn(x) =
∞

∑
k=0

k!T (n,k)xk

=
∞

∑
k=0

xk
k

∑
j=0

(−1) j
(

k
j

)(
k
2
− j
)n

=
∞

∑
k=0

xk
k

∑
j=0

(−1) j
(

k
j

)
2n!
π

Im
∫

π

0
exp
(
(k/2− j)eiθ

)
sin(nθ)∂θ

=
2n!
π

Im
∫

π

0
sin(nθ)

∞

∑
k=0

xk exp
(
−k

2
eiθ
)(

exp(eiθ)−1
)k

∂θ

=
2n!
π

Im
∫

π

0

sin(nθ)

1−2xsinh(eiθ/2)
∂θ.

�

2.7. Determinantal representation

Several papers have been published on determinantal representations of many se-
quences as Bernoulli numbers, Euler numbers, ordered Bell numbers (or Fubini num-
bers), etc.

Komatsu and Ramı́rez in a recent paper gives the following theorem.

Theorem 9 (Komatsu & Ramı́rez [10]). Let (R( j)) j≥0 be a sequence, and let αn
be defined by the following determinantal expression for all n≥ 1:

αn =

∣∣∣∣∣∣∣∣∣∣∣

R(1) 1
R(2) R(1)

...
...

. . . 1
R(n−1) R(n−2) · · · R(1) 1

R(n) R(n−1) · · · R(2) R(1)

∣∣∣∣∣∣∣∣∣∣∣
. (2.15)
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Then we have

αn =
n

∑
j=1

(−1) j−1R( j)αn− j (n≥ 1). (2.16)

We set α0 = 1.

By applying the previous theorem we get

Theorem 10. For n≥ 1, we have

Cn(x)
n!

=

∣∣∣∣∣∣∣∣∣∣∣

R(1) 1
R(2) R(1)

...
...

. . . 1
R(n−1) R(n−2) · · · R(1) 1

R(n) R(n−1) · · · R(2) R(1)

∣∣∣∣∣∣∣∣∣∣∣
, (2.17)

where

R( j) = x
(−1) j−1

j!
δ[0 j] = x

(−1) j−1

j!

((
1
2

) j

−
(
−1

2

) j
)
.

Proof. From Theorem 2 we have,

Cn(x) = x
n−1

∑
j=0

(
n
j

)
δ[0n− j]C j(x) = x

n

∑
j=1

(
n
j

)
δ[0 j]Cn− j(x)

Cn(x)
n!

=
n

∑
j=1

x
j!

δ[0 j]
Cn− j(x)
(n− j)!

.

It suffices to set αn =
Cn(x)

n! and R( j) = x (−1) j−1

j! δ[0 j] to get the result. �

Remark 1. The function R( j) = 0 for j even.

Using Remark 1, we establish the following binomial convolution for the polyno-
mials Cn(x).

Theorem 11. For n≥ 0 we have

Cn+1(x) = x
bn/2c

∑
k=0

4−k
(

n+1
2k+1

)
Cn−2k(x). (2.18)

Proof. From Remark 1 and using Formula (2.16) with αn = Cn(x)/n! and
R( j) = x (−1) j−1

j!

((1
2

) j−
(
−1

2

) j
)

we get the result. �

Remark 2. Formula (2.18) is better than result of Theorem 2 from a computational
point of view.
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2.8. Asymptotic result with respect to Cn

Find an asymptotic behaviour of a sequence (an)n≥0 means to find a second func-
tion depending on n simple than the expression of an which gives a good approxima-
tion to the values of an when n is large.

In this subsection, we are interested to obtaining the asymptotic behaviour of the
central Fubini-like numbers.

Let (an)n≥0 be a sequence of non-negative real numbers, the asymptotic behaviour
an is closely tied to the poles in G(z), where G(z) is the generating function of an,

G(z) = ∑
n=0

anzn.

Wilf, in his book [19] and Flajolet et al. in [7] gave a method to determine the
asymptotic behaviour an which can be summarized in the following steps:

(1) Find the poles z0,z1, . . . ,zs in G(z).
(2) Calculate the principal parts P(G(z),zi) at the dominant singularities zi (which

have the smallest modulus R) as

P(G(z),zi) =
Res(G(z),zi)

(z− zi)
,

where Res(G(z),zi) is the residue of G(z) at the pole zi.
(3) Set H(z) = ∑

s
i=0 P(G(z),zi) then write H(z) as the expansion below,

H(z) = ∑
n=0

bnzn.

(4) The sequence (bn)n=0 is the asymptotic behaviour of an when n is big enough,

an ∼ bn +O
((

1
R′

+ ε

)n)
, n 7−→ ∞.

where R′ is the next smallest modulus of the poles.
For more details about singularities analysis method we refer to [7].

Remark 3. Poles z0,z1, . . . ,zs are considered as simple poles (has a multiplicity
equal to 1).

Analytic methods of determining the asymptotic behavior of a sequence (an)n are
widely discussed on [2, 7, 13, 14, 19].

Theorem 12. The asymptotic behaviour of the Cn is given by

Cn ∼
n!

2n
√

5logn+1(φ)
+O((0.15732+ ε)n) , n 7−→ ∞

where φ is the Golden ratio.

Proof. Applying the previous steps in the generating function G(z) = 1
1−2sinh(z/2)

gives
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(1) The poles of G(z) are

z0 =−2log

(
1+
√

5
2

)
+2iπ+4iπk and z1 = 2log

(
1+
√

5
2

)
+4iπk,

with k ∈ Z.
(2) By setting k = 0, the dominant singularity is z1 = 2log(φ) (the modulus R =

0.96), then,

P(G(z),z1) =−
2√

5(z−2log(φ))
.

(3) Set H(z) =− 2√
5(z−2log(φ))

, if we write H(z) as the expansion we get

H(z) = ∑
n=0

1
2n
√

5logn+1(φ)
zn.

(4) The the next smallest modulus of the poles R′ = 6.356..., then the asymptotic
behaviour of Cn when n is big enough is,

Cn ∼
n!

2n
√

5logn+1(φ)
+O((0.15732+ ε)n) , n 7−→ ∞.
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