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Abstract. Fuzzy soft positive implicative hyper BCK-ideal of types (�,⊆,⊆), (�,�,⊆) and
(⊆,�,⊆) are introduced, and their relations are investigated. Relations between fuzzy soft
strong hyper BCK-ideal and fuzzy soft positive implicative hyper BCK-ideal of types (�,⊆,⊆)
and (�,�,⊆) are discussed. We prove that the level set of fuzzy soft positive implicative hyper
BCK-ideal of types (�,⊆,⊆), (�,�,⊆) and (⊆,�,⊆) are positive implicative hyper BCK-
ideal of types (�,⊆,⊆), (�,�,⊆) and (⊆,�,⊆), respectively. Conditions for a fuzzy soft
set to be a fuzzy soft positive implicative hyper BCK-ideal of types (�,⊆,⊆), (�,�,⊆) and
(⊆,�,⊆), respectively, are founded, and conditions for a fuzzy soft set to be a fuzzy soft weak
hyper BCK-ideal are considered.
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1. INTRODUCTION

Algebraic hyperstructures represent a natural extension of classical algebraic struc-
tures and they were introduced in 1934 by the French mathematician F. Marty [13]
when Marty defined hypergroups, began to analyze their properties, and applied them
to groups and relational algebraic functions (see [13]). Since then, many papers and
several books have been written on this topic. Nowadays, hyperstructures have a lot
of applications in several branches of mathematics and computer sciences etc. (see
[1,4,11,12]). In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two elements is a
set. In [9], Jun et al. applied the hyperstructures to BCK-algebras, and introduced the
concept of a hyper BCK-algebra which is a generalization of a BCK-algebra. Sine
then, Jun et al. studied more notions and results in [5], and [8]. Dealing with un-
certainties is a major problem in many areas such as economics, engineering, envir-
onmental science, medical science and social science etc. These problems cannot be
dealt with by classical methods, because classical methods have inherent difficulties.
To overcome these difficulties, Molodtsov [14] proposed a new approach, which was
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called soft set theory, for modeling uncertainty. Jun applied the notion of soft sets to
the theory of BCK/BCI-algebras, and Jun et al. [5] studied ideal theory of BCK/BCI-
algebras based on soft set theory. Maji et al. [15] extended the study of soft sets to
fuzzy soft sets. They introduced the concept of fuzzy soft sets as a generalization of
the standard soft sets, and presented an application of fuzzy soft sets in a decision
making problem. Jun et al. applied fuzzy soft set to BCK/BCI-algebras. Khademan
et al. [10] applied the notion of fuzzy soft sets by Maji et al. to the theory of hyper
BCK-algebras. They introduced the notion of fuzzy soft positive implicative hyper
BCK-ideal, and investigated several properties. They discussed the relation between
fuzzy soft positive implicative hyper BCK-ideal and fuzzy soft hyper BCK-ideal, and
provided characterizations of fuzzy soft positive implicative hyper BCK-ideal. Us-
ing the notion of positive implicative hyper BCK-ideal, they established a fuzzy soft
weak (strong) hyper BCK-ideal.

In this paper, we introduce the notion of fuzzy soft positive implicative hyper BCK-
ideal of types (�,⊆,⊆), (�,�,⊆) and (⊆,�,⊆), and investigate their relations
and properties. We discuss relations between fuzzy soft strong hyper BCK-ideal and
fuzzy soft positive implicative hyper BCK-ideal of types (�,⊆,⊆) and (�,�,⊆).
We prove that the level set of fuzzy soft positive implicative hyper BCK-ideal of
types (�,⊆,⊆), (�,�,⊆) and (⊆,�,⊆) are positive implicative hyper BCK-ideal
of types (�,⊆,⊆), (�,�,⊆) and (⊆,�,⊆), respectively. We find conditions for
a fuzzy soft set to be a fuzzy soft positive implicative hyper BCK-ideal of types
(�,⊆,⊆), (�,�,⊆) and (⊆,�,⊆), respectively. We also consider conditions for
a fuzzy soft set to be a fuzzy soft weak hyper BCK-ideal.

2. PRELIMINARIES

Let H be a nonempty set endowed with a hyper operation “◦”, that is, “◦” is a
function from H×H to P ∗(H) = P (H)\{∅}. For two subsets A and B of H, denote
by A◦B the set ∪{a◦b | a ∈ A,b ∈ B}. We shall use x◦ y instead of x◦{y}, {x}◦ y,
or {x}◦{y}.

By a hyper BCK-algebra (see [9]) we mean a nonempty set H endowed with a
hyper operation “◦” and a constant 0 satisfying the following axioms:

(H1) (x◦ z)◦ (y◦ z)� x◦ y,
(H2) (x◦ y)◦ z = (x◦ z)◦ y,
(H3) x◦H�{x},
(H4) x� y and y� x imply x = y,

for all x,y,z ∈ H, where x� y is defined by 0 ∈ x◦ y and for every A,B⊆ H, A� B
is defined by ∀a ∈ A,∃b ∈ B such that a� b.

In a hyper BCK-algebra H, the condition (H3) is equivalent to the condition:

x◦ y�{x}. (2.1)
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In any hyper BCK-algebra H, the following hold (see [9]):

x◦0�{x}, 0◦ x�{0}, 0◦0�{0}, (2.2)

(A◦B)◦C = (A◦C)◦B, A◦B� A, 0◦A�{0}, (2.3)

0◦0 = {0}, (2.4)
0� x, x� x, A� A, (2.5)
A⊆ B implies A� B, (2.6)

0◦ x = {0}, 0◦A = {0}, (2.7)

A�{0} implies A = {0}, (2.8)
x ∈ x◦0, (2.9)

x◦0 = {x}, A◦0 = A, (2.10)

for all x,y,z ∈ H and for all nonempty subsets A, B and C of H.
A subset I of a hyper BCK-algebra H is called a hyper BCK-ideal of H (see [9]) if it
satisfies

0 ∈ I (2.11)
(∀x,y ∈ H) (x◦ y� I, y ∈ I⇒ x ∈ I) (2.12)

A subset I of a hyper BCK-algebra H, is called a strong hyper BCK-ideal of H (see
[8]) if it satisfies (2.11) and

(∀x,y ∈ H) ((x◦ y)∩ I 6=∅, y ∈ I⇒ x ∈ I). (2.13)

Recall that every strong hyper BCK-ideal is a hyper BCK-ideal, but the converse may
not be true (see [8]). A subset I of a hyper BCK-algebra H is called a weak hyper
BCK-ideal of H (see [9]) if it satisfies (2.11) and

(∀x,y ∈ H) (x◦ y⊆ I, y ∈ I⇒ x ∈ I) (2.14)

Every hyper BCK-ideal is a weak hyper BCK-ideal, but the converse may not be true.
A subset I of a hyper BCK-algebra H is said to be

• reflexive if (x◦ x)⊆ I for all x ∈ H,
• closed if the following assertion is valid.

(∀x ∈ H)(∀y ∈ I)(x� y ⇒ x ∈ I).

Given a subset I of H and x,y,z ∈ H, we consider the following conditions:

(x◦ y)◦ z⊆ I, y◦ z⊆ I⇒ x◦ z⊆ I (2.15)
(x◦ y)◦ z⊆ I, y◦ z� I⇒ x◦ z⊆ I (2.16)
(x◦ y)◦ z� I, y◦ z⊆ I⇒ x◦ z⊆ I (2.17)
(x◦ y)◦ z� I, y◦ z� I⇒ x◦ z⊆ I (2.18)
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Definition 1 ([3, 6]). Let I be a nonempty subset of a hyper BCK-algebra H and
0 ∈ I. If it satisfies (2.15) (resp. (2.16), (2.17) and (2.18)), then we say that I is a
positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) (resp. (⊆,�,⊆), (�,⊆,⊆)
and (�,�,⊆)) for all x,y,z ∈ H.

Molodtsov ([14]) defined the soft set in the following way: Let U be an initial
universe set and E be a set of parameters. Let P(U) denote the power set of U and
A⊆ E.

Definition 2 ([14]). A pair (λ,A) is called a soft set over U, where λ is a mapping
given by

λ : A→P(U).

In other words, a soft set over U is a parameterized family of subsets of the uni-
verse U . For ε ∈ A, λ(ε) may be considered as the set of ε-approximate elements
of the soft set (λ,A). Clearly, a soft set is not a set. For illustration, Molodtsov
considered several examples in [14].

Definition 3 ([15]). Let U be an initial universe set and E be a set of parameters.
Let F (U) denote the set of all fuzzy sets in U . Then a pair (λ̃,A) is called a fuzzy soft
set over U where A⊆ E and λ̃ is a mapping given by λ̃ : A→ F (U).

In general, for every parameter u in A, λ̃[u] is a fuzzy set in U and it is called fuzzy
value set of parameter u.

Given a fuzzy set µ in a hyper BCK-algebra H and a subset T of H, by µ∗(T ) and
µ∗(T ) we mean

µ∗(T ) = inf
a∈T

µ(a) and µ∗(T ) = sup
a∈T

µ(a). (2.19)

Definition 4 ([2]). A fuzzy soft set (λ̃,A) over a hyper BCK-algebra H is called

• a fuzzy soft hyper BCK-ideal based on a paramenter u ∈ A over H (briefly,
u-fuzzy soft hyper BCK-ideal of H) if the fuzzy value set λ̃[u] : H→ [0,1] of
u satisfies the following conditions:

(∀x,y ∈ H)
(

x� y ⇒ λ̃[u](x)≥ λ̃[u](y)
)
, (2.20)

(∀x,y ∈ H)
(

λ̃[u](x)≥min{λ̃[u]∗(x◦ y), λ̃[u](y)}
)
. (2.21)

• a fuzzy soft weak hyper BCK-ideal based on a paramenter u ∈ A over H
(briefly, u-fuzzy soft weak hyper BCK-ideal of H) if the fuzzy value set
λ̃[u] : H→ [0,1] of u satisfies condition (2.21) and

(∀x ∈ H)
(

λ̃[u](0)≥ λ̃[u](x)
)
. (2.22)
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• a fuzzy soft strong hyper BCK-ideal over H based on a paramenter u in A
(briefly, u-fuzzy soft strong hyper BCK-ideal of H) if the fuzzy value set
λ̃[u] : H→ [0,1] of u satisfies the following conditions:

(∀x,y ∈ H)
(

λ̃[u](x)≥min{λ̃[u]∗(x◦ y), λ̃[u](y)}
)
, (2.23)

(∀x ∈ H)
(

λ̃[u]∗(x◦ x)≥ λ̃[u](x)
)
. (2.24)

If (λ̃,A) is a fuzzy soft (weak, strong) hyper BCK-ideal based on a paramenter u
over H for all u ∈ A, we say that (λ̃,A) is a fuzzy soft (weak, strong) hyper BCK-ideal
of H.

3. FUZZY SOFT POSITIVE IMPLICATIVE HYPER BCK-IDEALS

In what follows, let H be a hyper BCK-algebra unless otherwise specified.

Definition 5. Let (λ̃,A) be a fuzzy soft set over H. Then (λ̃,A) is called
• a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) based on

a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper
BCK-ideal of type (⊆,⊆,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u
satisfies the following conditions:

(∀x,y ∈ H) (x� y⇒ λ̃[u](x)≥ λ̃[u](y)), (3.1)

(∀x,y,z ∈ H)(λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.2)

• a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,�,⊆) based
on a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper
BCK-ideal of type (⊆,�,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u
satisfies (3.1) and

(∀x,y,z ∈ H) (λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.3)

• a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆) based
on a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper
BCK-ideal of type (�,⊆,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u
satisfies (3.1) and

(∀x,y,z ∈ H) (λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.4)

• a fuzzy soft positive implicative hyper BCK-ideal of type (�,�,⊆) based
on a parameter u ∈ A over H (briefly, u-fuzzy soft positive implicative hyper
BCK-ideal of type (�,�,⊆)) if the fuzzy value set λ̃[u] : H → [0,1] of u
satisfies (3.1) and

(∀x,y,z ∈ H) (λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}). (3.5)

Theorem 1. Let (λ̃,A) be a fuzzy soft set over H.
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(1) If (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆)
or type (⊆,�,⊆), then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-
ideal of type (⊆,⊆,⊆).

(2) If (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(�,�,⊆), then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal
of type (�,⊆,⊆) and (⊆,�,⊆).

Proof. (1) Assume that (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal
of type (�,⊆,⊆) or type (⊆,�,⊆). Then

λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}
or

λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)},

respectively. Thus (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(⊆,⊆,⊆).

(2) Suppose that (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(�,�,⊆). Then

λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}
and

λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}.

Therefore (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(�,⊆,⊆) and (⊆,�,⊆). �

Corollary 1. If (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(�,�,⊆), then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(⊆,⊆,⊆).

The following example shows that any fuzzy soft positive implicative hyper BCK-
ideal of type (⊆,⊆,⊆) is not a fuzzy soft positive implicative hyper BCK-ideal of
type (�,⊆,⊆).

Example 1. Consider a hyper BCK-algebra H = {0,a,b,c} with the hyper opera-
tion “◦” in Table 1.
Given a set A = {x,y} of parameters, we define a fuzzy soft set (λ̃,A) by Table 2.
Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆).



FUZZY SOFT POSITIVE IMPLICATIVE HYPER BCK-IDEALS OF SEVERAL TYPES 305

TABLE 1. Cayley table for the binary operation “◦”

◦ 0 a b c
0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {b} {0} {0}
c {c} {c} {b,c} {0,b,c}

TABLE 2. Tabular representation of (λ̃,A)

λ̃ 0 a b c

x 0.9 0.8 0.5 0.3
y 0.9 0.7 0.6 0.4

Since

λ̃[x]∗(c◦0) = 0.3 < 0.5 = min
{

λ̃[x]∗((c◦b)◦0), λ̃[x]∗(b◦0)
}
,

it is not an x-fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆), and
thus it is not a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆).

Question.
Is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) a fuzzy
soft positive implicative hyper BCK-ideal of type (⊆,�,⊆)?

The following example shows that any fuzzy soft positive implicative hyper BCK-
ideal of type (⊆,�,⊆) is not a fuzzy soft positive implicative hyper BCK-ideal of
type (�,⊆,⊆) or (�,�,⊆).

Example 2. Consider a hyper BCK-algebra H = {0,a,b} with the hyper operation
“◦” in Table 3.

TABLE 3. Cayley table for the binary operation “◦”

◦ 0 a b
0 {0} {0} {0}
a {a} {0} {0}
b {b} {a,b} {0,a,b}

Given a set A = {x,y} of parameters, we define a fuzzy soft set (λ̃,A) by Table 4.
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TABLE 4. Tabular representation of (λ̃,A)

λ̃ 0 a b

x 0.9 0.5 0.3
y 0.8 0.7 0.1

Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,�,⊆).
Since

λ̃[x]∗(b◦b) = 0.3 < 0.9 = min
{

λ̃[x]∗((b◦a)◦b), λ̃[x]∗(a◦b)
}
,

it is not an x-fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆) and
so not a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆). Also,
since

λ̃[y]∗(b◦b) = 0.1 < 0.8 = min
{

λ̃[y]∗((b◦0)◦b), λ̃[y]∗(0◦b)
}
,

it is not a y-fuzzy soft positive implicative hyper BCK-ideal of type (�,�,⊆) and
so not a fuzzy soft positive implicative hyper BCK-ideal of type (�,�,⊆).

Question.
Is a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆) a
fuzzy soft positive implicative hyper BCK-ideal of type (⊆,�,⊆) or
(�,�,⊆)?

Lemma 1 ([10]). Every fuzzy soft positive implicative hyper BCK-ideal of type
(⊆,⊆,⊆) is a fuzzy soft hyper BCK-ideal.

The converse of Lemma 1 is not true (see [10, Example 3.6]). Using Theorems 1
and Lemma 1, we have the following corollary.

Corollary 2. Every fuzzy soft positive implicative hyper BCK-ideal (λ̃,A) of types
(�,⊆,⊆), (⊆,�,⊆) or (�,�,⊆) is a fuzzy soft hyper BCK-ideal.

We can check that the fuzzy soft set (λ̃,A) in Example 1 is a fuzzy soft hyper
BCK-ideal of H, but it is not a fuzzy soft positive implicative hyper BCK-ideal of
types (�,⊆,⊆). This shows that any fuzzy soft hyper BCK-ideal may not be a fuzzy
soft positive implicative hyper BCK-ideal of types (�,⊆,⊆). Also, we know that
the fuzzy soft set (λ̃,A) in Example 2 is a fuzzy soft hyper BCK-ideal of H, but it is a
fuzzy soft hyper BCK-ideal of type (�,�,⊆). Thus any fuzzy soft hyper BCK-ideal
may not be a fuzzy soft positive implicative hyper BCK-ideal of type (�,�,⊆).
Let (λ̃,A) be a fuzzy soft hyper BCK-ideal of H. If (λ̃,A) is a fuzzy soft positive
implicative hyper BCK-ideal (λ̃,A) of type (⊆,�,⊆), then it is a fuzzy soft positive
implicative hyper BCK-ideal (λ̃,A) of type (⊆,⊆,⊆) by Theorem 1(1). Hence every
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fuzzy soft hyper BCK-ideal of H is a fuzzy soft positive implicative hyper BCK-ideal
(λ̃,A) of type (⊆,⊆,⊆). But this is contradictory to [10, Example 3.6]. Therefore we
know that any fuzzy soft hyper BCK-ideal may not be a fuzzy soft positive implicative
hyper BCK-ideal of type (⊆,�,⊆).

We consider relation between a fuzzy soft positive implicative hyper BCK-ideal of
any type and a fuzzy soft strong hyper BCK-ideal.

Theorem 2. Every fuzzy soft positive implicative hyper BCK-ideal of type
(�,⊆,⊆) is a fuzzy soft strong hyper BCK-ideal of H.

Proof. Let (λ̃,A) be a fuzzy soft positive implicative hyper BCK-ideal of type
(�,⊆,⊆) and let u be any parameter in A. Since x ◦ x� x for all x ∈ H, it follows
from (3.1) that

λ̃[u]∗(x◦ x)≥ λ̃[u]∗(x) = λ̃[u](x).

Taking z = 0 in (3.4) and using (2.10) imply that

λ̃[u](x) = λ̃[u]∗(x◦0)

≥min{λ̃[u]∗((x◦ y)◦0), λ̃[u]∗(y◦0)}

= min{λ̃[u]∗(x◦ y), λ̃[u](y)}.

Therefore (λ̃,A) is a fuzzy soft strong hyper BCK-ideal of H. �

Corollary 3. Every fuzzy soft positive implicative hyper BCK-ideal of type
(�,�,⊆) is a fuzzy soft strong hyper BCK-ideal of H.

The following example shows that the converse of Theorem 2 and Corollary 3 is
not true in general.

Example 3. Consider a hyper BCK-algebra H = {0,a,b} with the hyper operation
“◦” which is given in Table 5. Given a set A = {x,y} of parameters, we define a fuzzy

TABLE 5. Cayley table for the binary operation “◦”

◦ 0 a b
0 {0} {0} {0}
a {a} {0} {a}
b {b} {b} {0,b}

soft set (λ̃,A) by Table 6.
Then (λ̃,A) is a fuzzy soft strong hyper BCK-ideal of H. Since

λ̃[x]∗(b◦b) = 0.5 < 0.9 = min
{

λ̃[x]∗((b◦0)◦b), λ̃[x]∗(0◦b)
}
,



308 S. KHADEMAN, M. M. ZAHEDI, R. A. BORZOOEI, AND Y. B. JUN

TABLE 6. Tabular representation of (λ̃,A)

λ̃ 0 a b

x 0.9 0.1 0.5
y 0.7 0.2 0.6

we know that (λ̃,A) is not an x-fuzzy soft positive implicative hyper BCK-ideal of
type (�,⊆,⊆) and so it is not a fuzzy soft positive implicative hyper BCK-ideal of
type (�,⊆,⊆). Also

λ̃[y]∗(b◦b) = 0.6 < 0.7 = min
{

λ̃[y]∗((b◦b)◦b), λ̃[y]∗(b◦b)
}
,

and so (λ̃,A) it is not a y-fuzzy soft positive implicative hyper BCK-ideal of type
(�,�,⊆). Thus it is not a fuzzy soft positive implicative hyper BCK-ideal of type
(�,�,⊆). Therefore any fuzzy soft strong hyper BCK-ideal of H may not be a
fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆) or (�,�,⊆).

Consider the hyper BCK-algebra H = {0,a,b,c} in Example 1 and a set A = {x,y}
of parameters. We define a fuzzy soft set (λ̃,A) by Table 2 in Example 1. Then (λ̃,A)
is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) and (⊆,�,⊆).
But (λ̃,A) is not a fuzzy soft strong hyper BCK-ideal of H since

λ̃[y](c) = 0.4 < 0.6 = min
{

λ̃[y]∗(c◦b), λ̃[y](b)
}
.

Hence we know that any fuzzy soft positive implicative hyper BCK-ideal of types
(⊆,⊆,⊆) and (⊆,�,⊆) is not a fuzzy soft strong hyper BCK-ideal of H.

Given a fuzzy soft set (λ̃,A) over H and t ∈ [0,1], we consider the following set

U(λ̃[u]; t) :=
{

x ∈ H | λ̃[u](x)≥ t
}

(3.6)

where u is a parameter in A, which is called level set of (λ̃,A).

Lemma 2. If a fuzzy soft set (λ̃,A) over H satisfies the condition (3.1), then
0 ∈U(λ̃[u]; t) for all t ∈ [0,1] and any parameter u in A with U(λ̃[u]; t) 6=∅.

Proof. Let (λ̃,A) be a fuzzy soft set over H which satisfies the condition (3.1). For
any t ∈ [0,1] and any parameter u in A, assume that U(λ̃[u]; t) 6=∅. Since 0� x for
all x ∈ H, it follows from (3.1) that λ̃[u](0)≥ λ̃[u](x) for all x ∈ H. Hence λ̃[u](0)≥
λ̃[u](x) for all x ∈U(λ̃[u]; t), and so λ̃[u](0)≥ t. Thus 0 ∈U(λ̃[u]; t). �

Lemma 3 ([2]). A fuzzy soft set (λ̃,A) over H is a fuzzy soft hyper BCK-ideal of
H if and only if the set U(λ̃[u]; t) in (3.6) is a hyper BCK-ideal of H for all t ∈ [0,1]
and any parameter u in A with U(λ̃[u]; t) 6=∅.
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Theorem 3. If a fuzzy soft set (λ̃,A) over H is a fuzzy soft positive implicative
hyper BCK-ideal of type (⊆,�,⊆), then the set U(λ̃[u]; t) in (3.6) is a positive im-
plicative hyper BCK-ideal of type (⊆,�,⊆) for all t ∈ [0,1] and any parameter u in
A with U(λ̃[u]; t) 6=∅.

Proof. Assume that a fuzzy soft set (λ̃,A) over H is a fuzzy soft positive implic-
ative hyper BCK-ideal of type (⊆,�,⊆). Then 0 ∈ U(λ̃[u]; t) by Lemma 2. Let
x,y,z ∈ H be such that (x◦ y)◦ z⊆U(λ̃[u]; t) and y◦ z�U(λ̃[u]; t). Then

λ̃[u](a)≥ t for all a ∈ (x◦ y)◦ z (3.7)

and

(∀b ∈ y◦ z)(∃c ∈U(λ̃[u]; t))(b� c). (3.8)

The condition (3.7) implies λ̃[u]∗((x◦y)◦ z)≥ t, and the condition (3.8) implies from
(3.1) that λ̃[u](b)≥ λ̃[u](c)≥ t for all b ∈ y◦ z. Let d ∈ x◦ z. Using (3.3), we have

λ̃[u](d)≥ λ̃[u]∗(x◦ z)≥min
{

λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)
}
≥ t.

Thus d ∈U(λ̃[u]; t), and so x ◦ z ⊆U(λ̃[u]; t). Therefore U(λ̃[u]; t) is a positive im-
plicative hyper BCK-ideal of type (⊆,�,⊆). �

The following example shows that the converse of Theorem 3 is not true in general.

Example 4. Consider a hyper BCK-algebra H = {0,a,b} with the hyper operation
“◦” in Table 7.

TABLE 7. Cayley table for the binary operation “◦”

◦ 0 a b
0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {a,b} {0,a,b}

Given a set A = {x,y} of parameters, we define a fuzzy soft set (λ̃,A) by Table 8.

TABLE 8. Tabular representation of (λ̃,A)

λ̃ 0 a b
x 0.9 0.5 0.8
y 0.8 0.3 0.6
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Then

U(λ̃[x]; t) =


∅ if t ∈ (0.9,1],
{0} if t ∈ (0.8,0.9],
{0,b} if t ∈ (0.5,0.8],
H if t ∈ [0,0.5]

and

U(λ̃[y]; t) =


∅ if t ∈ (0.8,1],
{0} if t ∈ (0.6,0.8],
{0,b} if t ∈ (0.3,0.6],
H if t ∈ [0,0.3],

which are positive implicative hyper BCK-ideals of type (⊆,�,⊆). Note that a� b
and λ̃[u](a)< λ̃[u](b) for all u∈ A. Thus (λ̃,A) is not a fuzzy soft positive implicative
hyper BCK-ideal of type (⊆,�,⊆).

Lemma 4 ([3]). Every positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) is
a weak hyper BCK-ideal of H.

Lemma 5 ([8]). Let I be a reflexive hyper BCK-ideal of H. Then

(∀x,y ∈ H)((x◦ y)∩ I 6=∅ ⇒ x◦ y� I). (3.9)

Lemma 6. If any subset I of H is closed and satisfies the condition (2.14), then
the condition (2.12) is valid.

Proof. Assume that x ◦ y� I and y ∈ I for all x,y ∈ H. Let a ∈ x ◦ y. Then there
exists b ∈ I such that a� b. Since I is closed, we have a ∈ I and thus x ◦ y ⊆ I. It
follows from (2.14) that x ∈ I. �

Theorem 4. Let A be a fuzzy soft set over H satisfying the condition (3.1) and

(∀T ∈ P (H))(∃x0 ∈ T )
(

λ̃[u](x0) = λ̃[u]∗(T )
)
. (3.10)

If the set U(λ̃[u]; t) in (3.6) is a reflexive positive implicative hyper BCK-ideal of type
(⊆,�,⊆) for all t ∈ [0,1] and any parameter u in A with U(λ̃[u]; t) 6=∅, then (λ̃,A)
is a fuzzy soft positive implicative hyper BCK-ideal of type (⊆,�,⊆).

Proof. For any x,y,z ∈ H let

t := min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}.

Then λ̃[u]∗((x◦y)◦z)≥ t and so λ̃[u](a)≥ t for all a∈ (x◦y)◦z. Since λ̃[u]∗(y◦z)≥ t,
it follows from (3.10) that λ̃[u](b0) = λ̃[u]∗(y ◦ z) ≥ t for some b0 ∈ y ◦ z. Hence
b0 ∈U(λ̃[u]; t), and thus U(λ̃[u]; t)∩ (y ◦ z) 6= ∅. Since U(λ̃[u]; t) is a positive im-
plicative hyper BCK-ideal of type (⊆,�,⊆) and hence of type (⊆,⊆,⊆), U(λ̃[u]; t)
is a weak hyper BCK-ideal of H by Lemma 4. Let x,∈ H be such that x� y. If
y ∈ U(λ̃[u]; t), then λ̃[u](x) ≥ λ̃[u](y) ≥ t by (3.1) and so x ∈ U(λ̃[u]; t), that is,
U(λ̃[u]; t) is closed. Hence U(λ̃[u]; t) is a hyper BCK-ideal of H by Lemma 6.
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Since U(λ̃[u]; t) is reflexive, it follows from Lemma 5 that y◦ z�U(λ̃[u]; t). Hence
x ◦ z ⊆U(λ̃[u]; t) since U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type
(⊆,�,⊆). Hence

λ̃[u](a)≥ t = min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

for all a ∈ x◦ z, and thus

λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)}

for all x,y,z ∈ H. Therefore (λ̃,A) is a fuzzy soft positive implicative hyper BCK-
ideal of type (⊆,�, ⊆). �

Corollary 4. Let A be a fuzzy soft set over H satisfying the condition (3.1) and
(3.10). For any t ∈ [0,1] and any parameter u in A, assume that U(λ̃[u]; t) is nonempty
and reflexive. Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(⊆,�,⊆) if and only if U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type
(⊆,�,⊆).

Theorem 5. If a fuzzy soft set (λ̃,A) over H is a fuzzy soft positive implicative
hyper BCK-ideal of type (�,⊆,⊆), then the set U(λ̃[u]; t) in (3.6) is a positive im-
plicative hyper BCK-ideal of type (�,⊆,⊆) for all t ∈ [0,1] and any parameter u in
A with U(λ̃[u]; t) 6=∅.

Proof. Let (λ̃,A) be a fuzzy soft positive implicative hyper BCK-ideal of type
(�,⊆,⊆). Then 0 ∈U(λ̃[u]; t) by Lemma 2. Let x,y,z ∈H be such that (x◦y)◦ z�
U(λ̃[u]; t) and y◦ z⊆U(λ̃[u]; t). Then

(∀a ∈ (x◦ y)◦ z)(∃b ∈U(λ̃[u]; t))(a� b), (3.11)

which implies from (3.1) that λ̃[u](a) ≥ λ̃[u](b) for all a ∈ (x ◦ y) ◦ z. Since y ◦ z ⊆
U(λ̃[u]; t), we have

λ̃[u](a)≥ t for all a ∈ y◦ z. (3.12)

Let c ∈ x◦ z. Then

λ̃[u](c)≥ λ̃[u]∗(x◦ z)≥min{λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)} ≥ t

for all x,y,z ∈H by (3.4), and thus c ∈U(λ̃[u]; t). Hence x◦ z⊆U(λ̃[u]; t). Therefore
U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type (�,⊆,⊆). �

The converse of Theorem 5 is not true as seen in the following example.



312 S. KHADEMAN, M. M. ZAHEDI, R. A. BORZOOEI, AND Y. B. JUN

Example 5. Consider the hyper BCK-algebra H = {0,a,b} and the fuzzy soft set
(λ̃,A) in Example 2. Then

U(λ̃[x]; t) =


∅ if t ∈ (0.9,1],
{0} if t ∈ (0.5,0.9],
{0,a} if t ∈ (0.3,0.5],
H if t ∈ [0,0.3]

and

U(λ̃[y]; t) =


∅ if t ∈ (0.8,1],
{0} if t ∈ (0.7,0.8],
{0,a} if t ∈ (0.1,0.7],
H if t ∈ [0,0.1],

which are positive implicative hyper BCK-ideals of type (�,⊆,⊆). But we know
(λ̃,A) is not a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆).

Lemma 7 ([8]). Every reflexive hyper BCK-ideal I of H satisfies the following
implication:

(∀x,y ∈ H) ((x◦ y)∩ I 6=∅⇒ x◦ y⊆ I)

Lemma 8 ([7]). Every positive implicative hyper BCK-ideal of type (�,⊆,⊆) is
a hyper BCK-ideal.

We provide conditions for a fuzzy soft set to be a fuzzy soft positive implicative
hyper BCK-ideal of type (�,⊆,⊆).

Theorem 6. Let A be a fuzzy soft set over H satisfying the condition (3.10). If
the set U(λ̃[u]; t) in (3.6) is a reflexive positive implicative hyper BCK-ideal of type
(�,⊆,⊆) for all t ∈ [0,1] and any parameter u in A with U(λ̃[u]; t) 6=∅, then (λ̃,A)
is a fuzzy soft positive implicative hyper BCK-ideal of type (�,⊆,⊆).

Proof. Assume that U(λ̃[u]; t) 6= ∅ for all t ∈ [0,1] and any parameter u in A.
Suppose that U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type (�,⊆
,⊆). Then U(λ̃[u]; t) is a hyper BCK-ideal of H by Lemma (8). It follows from
Lemma (3) that (λ̃,A) is a fuzzy soft hyper BCK-ideal of H. Thus the condition
(3.1) is valid. Now let t = min

{
λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)

}
for x,y,z ∈ H. Since

(λ̃,A) satisfies the condition (3.10), there exists x0 ∈ (x ◦ y) ◦ z such that λ̃[u](x0) =

λ̃[u]∗((x ◦ y) ◦ z) ≥ t and so x0 ∈U(λ̃[u]; t). Hence ((x ◦ y) ◦ z)∩U(λ̃[u]; t) 6= ∅ and
so (x◦y)◦ z�U(λ̃[u]; t) by Lemma 7 and (2.6). Moreover λ̃[u](c)≥ λ̃[u]∗(y◦ z)≥ t
for all c ∈ y ◦ z, and hence c ∈U(λ̃[u]; t) which shows that y ◦ z ⊆U(λ̃[u]; t). Since
U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type (�,⊆,⊆), it follows that
x◦ z⊆U(λ̃[u]; t). Thus λ̃[u](a)≥ t for all a ∈ x◦ z, and so

λ̃[u]∗(x◦ z)≥ t = min
{

λ̃[u]∗((x◦ y)◦ z), λ̃[u]∗(y◦ z)
}
.
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Consequently, (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(�,⊆,⊆). �

Corollary 5. Let A be a fuzzy soft set over H satisfying the condition (3.10). For
any t ∈ [0,1] and any parameter u in A, assume that U(λ̃[u]; t) is nonempty and
reflexive. Then (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of type
(�,⊆,⊆) if and only if U(λ̃[u]; t) is a positive implicative hyper BCK-ideal of type
(�,⊆,⊆).

Using a positive implicative hyper BCK-ideal of type (⊆,⊆,⊆) (resp., (⊆,�,⊆),
(�,⊆,⊆) and (�,�,⊆)), we establish a fuzzy soft weak hyper BCK-ideal.

Theorem 7. Let I be a positive implicative hyper BCK-ideal of type (⊆,⊆,⊆)
(resp., (⊆,�,⊆), (�,⊆,⊆) and (�,�,⊆)) and let z ∈ H. For a fuzzy soft set
(λ̃,A) over H and any parameter u in A, if we define the fuzzy value set λ̃[u] by

λ̃[u] : H→ [0,1], x 7→
{

t if x ∈ Iz,
s otherwise, (3.13)

where t > s in [0,1] and Iz := {y ∈ H | y ◦ z ⊆ I}, then (λ̃,A) is a u-fuzzy soft weak
hyper BCK-ideal of H.

Proof. It is clear that λ̃[u](0) ≥ λ̃[u](x) for all x ∈ H. Let x,y ∈ H. If y /∈ Iz, then
λ̃[u](y) = s and so

λ̃[u](x)≥ s = min
{

λ̃[u](y), λ̃[u]∗(x◦ y)
}
. (3.14)

If x◦ y * Iz, then there exists a ∈ x◦ y\ Iz, and thus λ̃[u](a) = s. Hence

min
{

λ̃[u](y), λ̃[u]∗(x◦ y)
}
= s≤ λ̃[u](x). (3.15)

Assume that x◦ y⊆ Iz and y ∈ Iz. Then

(x◦ y)◦ z⊆ I and y◦ z⊆ I. (3.16)

If I is of type (⊆,⊆,⊆), then x◦ z⊆ I, i.e., x ∈ Iz. Thus

λ̃[u](x) = t ≥min
{

λ̃[u](y), λ̃[u]∗(x◦ y)
}
. (3.17)

The condition (3.16) implies that (x ◦ y) ◦ z� I and y ◦ z� I by (2.6). Hence, if I
is of type (�,�,⊆), then x ◦ z ⊆ I, i.e., x ∈ Iz. Therefore we have (3.17). From
the condition (3.16), we have (x ◦ y) ◦ z ⊆ I and y ◦ z� I. If I is of type (⊆,�,⊆),
then x ◦ z ⊆ I, i.e., x ∈ Iz. Therefore we have (3.17). From the condition (3.16), we
have (x ◦ y)◦ z� I and y◦ z ⊆ I. If I is of type (�,⊆,⊆), then x ◦ z ⊆ I, i.e., x ∈ Iz.
Therefore we have (3.17). Therefore (λ̃,A) is a u-fuzzy soft weak hyper BCK-ideal
of H. �
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Theorem 8. Let (λ̃,A) be a fuzzy soft set over H in which the nonempty level
set U(λ̃[u]; t) of (λ̃,A) is reflexive for all t ∈ [0,1]. If (λ̃,A) is a fuzzy soft positive
implicative hyper BCK-ideal of H of type (�,⊆,⊆), then the set

λ̃[u]z := {x ∈ H | x◦ z⊆U(λ̃[u]; t)} (3.18)

is a (weak) hyper BCK-ideal of H for all z ∈ H.

Proof. Assume that (λ̃,A) is a fuzzy soft positive implicative hyper BCK-ideal of
H of type (�,⊆,⊆). Obviously 0 ∈ λ̃[u]z. Then (λ̃,A) is a fuzzy soft hyper BCK-
ideal of H, and so U(λ̃[u]; t) is a hyper BCK-ideal of H. Let x,y ∈ H be such that
x ◦ y ⊆ λ̃[u]z and y ∈ λ̃[u]z. Then (x ◦ y) ◦ z ⊆U(λ̃[u]; t) and y ◦ z ⊆U(λ̃[u]; t) for all
t ∈ [0,1]. Using (2.6), we know that (x ◦ y) ◦ z� U(λ̃[u]; t). Since U(λ̃[u]; t) is a
positive implicative hyper BCK-ideal of H of type (�,⊆,⊆), it follows from (2.17)
that x◦ z ⊆U(λ̃[u]; t), that is, x ∈ λ̃[u]z. This shows that λ̃[u]z is a weak hyper BCK-
ideal of H. Let x,y∈H be such that x◦y� λ̃[u]z and y∈ λ̃[u]z, and let a∈ x◦y. Then
there exists b ∈ λ̃[u]z such that a� b, that is, 0 ∈ a ◦ b. Thus (a ◦ b)∩U(λ̃[u]; t) 6=
∅. Since U(λ̃[u]; t) is a reflexive hyper BCK-ideal of H, it follows from (H1) and
Lemma 7 that (a◦ z)◦ (b◦ z)� a◦b⊆U(λ̃[u]; t) and so that a◦ z⊆U(λ̃[u]; t) since
b◦ z ⊆U(λ̃[u]; t). Hence a ∈ λ̃[u]z, and so x ◦ y ⊆ λ̃[u]z. Since λ̃[u]z is a weak hyper
BCK-ideal of H, we get x∈ λ̃[u]z. Consequently λ̃[u]z is a hyper BCK-ideal of H. �

Corollary 6. Let (λ̃,A) be a fuzzy soft set over H in which the nonempty level
set U(λ̃[u]; t) of (λ̃,A) is reflexive for all t ∈ [0,1]. If (λ̃,A) is a fuzzy soft positive
implicative hyper BCK-ideal of H of type (�,�,⊆), then the set

λ̃[u]z := {x ∈ H | x◦ z⊆U(λ̃[u]; t)} (3.19)

is a (weak) hyper BCK-ideal of H for all z ∈ H.
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