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Abstract. The boundary-value problem for a second order singularly perturbed Fredholm integro-
differential equation was considered in this paper. For the numerical solution of this problem,
we use an exponentially fitted difference scheme on a uniform mesh which is succeeded by the
method of integral identities with the use of exponential basis functions and interpolating quad-
rature rules with the weight and remainder terms in integral form. Also, the method is first order
convergent in the discrete maximum norm. Numerical example shows that recommended method
has a good approximation characteristic.
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1. INTRODUCTION

Fredholm integro-differential equations (FIDEs) have in large quantities applica-
tions in every branches of science. FIDEs arise from the mathematical modeling of
many scientific phenomena, such as the study of fluid, physics, chemistry, biology,
mechanics, astronomy, potential theory, electrostatics, control theory of industrial
mathematics and chemical kinetics [13, 14, 18]. On the other hand, FIDEs are quite
difficult to find exact solutions. For this reason, numerical methods play a significant
role in this problems, for example, in [5, 8–11](see, also references therein).

Below, the boundary-value problem for a singularly perturbed Fredholm integro-
differential equation(SPFIDE) is considered:

Lu :=− εu′′+a(x)u+λ

l∫
0

K(x,s)u(s)ds = f (x), x ∈ (0, l) ,

u(0) =A, u(l) = B,

(1.1)

where ε ∈ (0,1] is a perturbation parameter, λ is real parameter. We assume that
a(x)≥ α > 0, f (x) and K(x,s) are the sufficiently smooth functions satisfying certain
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regularity conditions to be specified. The solution u(x) of (1.1) has in general a
boundary layer near x = 0 and x = l.

Singularly perturbed differential equations are typically characterized by a small
parameter ε multiplying some or all of the highest order terms in the differential equa-
tion. This problem undergo rapid changes within very thin layers near the boundary
or inside the problem domain, so most of the conventional methods fail when this
small parameter approaches to zero. These singularly perturbed differential equations
arise in the modeling of various modern complicated processes, such as reaction-
diffusion processes, epidemic dynamics, high Reynold’s number flow in the fluid
dynamics, heat transport problem. For more details on singular perturbation, one can
refer the books [4, 15–17, 19] and the references therein. Survey of some existence
and uniqueness results of singularly perturbed equations can be found in [7, 15–17].

In recent years, there has been a growing interest in the numerical solution of integ-
ral equations. The Adomian decomposition method for solving linear second-order
FIDEs is presented in [10]. Qing Xue et al. [20] studied on an improved reproducing
kernel method to find the numerical solution of FIDE type boundary value prob-
lems. Emamzadeh and Kajani [6] used a numerical method for solving the nonlinear
Fredholm integral equation. Jackiewicz et al. [9] proposed several approaches to the
numerical solution of a new FIDEs modelling neural networks. Gegele et al. [8]
presented some approximation methods to solve higher order linear FIDEs. Karimi
and Jozi [11] proposed a new numerical method for solving system of linear Fred-
holm integral equations of the second kind.

The above mentioned papers, related to FIDEs were concerned only with the regu-
lar cases. Also, current studies for the numerical solution of SPFIDEs have not wide-
spread yet. Various difference schemes for singularly perturbed integro-differential
equations and problems with integral boundary condition were investigated in [3,12].

In this paper, we present fitted type difference scheme on an uniform mesh for the
numerical solution of the problem (1.1). The difference scheme is constructed by the
method of integral identities with the use exponential basis functions and interpol-
ating quadrature rules with the weight and remainder terms in integral form [1]. To
approximate the integral part of (1.1), the composite right-side rectangle rule with the
remainder term in integral form is being used.

The organization of the paper is as follows. In Section 2, we state some signific-
ant properties of the exact solution. In Section 3, we describe the finite difference
discretization and appropriate mesh. The error analysis for the approximate solution
is presented in Section 4. Uniform convergence is proved in the discrete maximum
norm. Numerical results are given in Section 5 to support the predicted theory. The
paper ends with a summary of the main conclusions.

Notation 1. Throughout the paper, C will denote a generic positive constant inde-
pendent of ε and the mesh parameter and ‖g‖

∞
is the continuous maximum norm on

the corresponding closed interval for any continuous function g(x).
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2. THE CONTINUOUS PROBLEM

Lemma 1. If a, f ∈C1[0, l], ∂sK
∂xs ∈C [0, l]2 ,(s = 0,1) and

|λ|< α

max
0≤x≤l

l∫
0

|K(x,s)|ds

, (2.1)

then for the solution u(x) of the problem (1.1) hold the following estimates

‖u‖
∞
≤C, (2.2)∣∣u′(x)∣∣≤C

{
1+

1√
ε

(
e−

√
αx√
ε + e−

√
α(l−x)√

ε

)}
, x ∈ [0, l]. (2.3)

Proof. Using the maximum principle for the operator L0u = −εu′′+ a(x)u, we
obtain the estimate

||u||∞ ≤ |A|+ |B|+α
−1|| f ||∞ +α

−1|λ| max
0≤x≤l

l∫
0

|K(x,s)| |u(s)|ds

which after taking into account (2.1), leads to (2.2).
Next, we prove the estimate (2.3). Using (2.2) on (1.1) we have

|u′′(x)|= 1
ε

∣∣∣∣∣∣ f (x)−a(x)u(x)−λ

l∫
0

K(x,s)u(s)ds

∣∣∣∣∣∣≤ C
ε
, 0≤ x≤ l.

Moreover, we now proceed with the estimation of |u′(0)|, |u′(l)|. Here we use the
following relation which holds for any function g ∈C2[0, l]:

g′(x) = g[α0,α1]−
α1∫

α0

K0(ξ,x)g′′(ξ)dξ, α0 < α1, (2.4)

where

g(α0;α1) =
g(α1)−g(α0)

α1−α0
,

K0(ξ,x) = T0(ξ− x)− (α1−α0)
−1(ξ−α0)

and

T0(λ) =

{
1, λ≥ 0
0, λ < 0.
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Equality (2.4) with the values g(x) = u(x), x = 0, α0 = 0, and α1 =
√

ε yields

|u′(0)| ≤ u(
√

ε)−u(0)√
ε

−

√
ε∫

0

K0(ξ,0)u′′(ξ)dξ≤ C√
ε
. (2.5)

Similarly, using (2.4) for g(x) = u(x), x = l, α0 = l−
√

ε, and α1 = l we confirm that

|u′(l)| ≤ u(l)−u(
√

ε)√
ε

−
l∫

l−
√

ε

K0(ξ, l)u′′(ξ)dξ≤ C√
ε
. (2.6)

Next, differentiating (1.1), according to (2.5) and (2.6), we get

−εv′′+a(x)v = F(x), v(0) = O
(

1√
ε

)
, v(l) = O

(
1√
ε

)
(2.7)

with

v(x) = u′(x), F(x) = f ′(x)−a′(x)u(x)−λ

l∫
0

∂

∂x
K(x,s)u(s)ds.

By virtue of (2.2) evidently
|F(x)| ≤C. (2.8)

In order to estimate the solution of the problem (2.7), we present it in the form

v(x) = v1(x)+ v2(x),

where the functions v1(x) and v2(x) are the solutions of the following problems re-
spectively:

−εv′′1 +a(x)v1 = F(x),

v1(0) = v1(l) = 0,
(2.9)

−εv′′2 +a(x)v2 = 0,

v2(0) = O
(

1√
ε

)
, v2(l) = O

(
1√
ε

)
.

(2.10)

For the solution of the problem (2.9), using the maximum principle and (2.8), we
have

|v1(x)| ≤ α
−1||F ||∞ ≤C, 0≤ x≤ l. (2.11)

According to the maximum principle, from the problem (2.10), we also conclude that

|v2(x)| ≤ w(x), (2.12)
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where the function w(x) is the solution of the following problem:

−εw′′+αw = 0,

w(0) = |v2(0)|, w(l) = |v2(l)|.
(2.13)

The solution of problem (2.13) is given by

w(x) =
1

sinh
(√

αl√
ε

) {w(0)sinh
(√

α(l− x)√
ε

)
+w(l)sinh

(√
αx√
ε

)}
.

Hence, taking into consideration (2.10) we obtain

w(x)≤ C√
ε

{
e−

√
αx√
ε + e−

√
α(l−x)√

ε

}
. (2.14)

Finally, the use bounds (2.11), (2.12) and (2.14) in the inequality

|u′(x)| ≤ |v1(x)|+ |v2(x)|
immediately leads to (2.3). �

3. THE MESH AND DISCRETIZATION

Let ωN be an uniform mesh on [0, l]:

ωN =

{
xi = ih, i = 1,2, ...,N−1, h =

l
N

}
and

ω̄N = ωN ∪{x = 0, xN = l}.
To construct the difference scheme for the problem (1.1), we start with the following
identity

χ
−1
i h−1

xi+1∫
xi−1

Lu(x)ϕi(x)dx = χ
−1
i h−1

xi+1∫
xi−1

f (x)ϕi(x)dx, i = 1,2, ..,N−1, (3.1)

with the basis functions

ϕ(x) =



ϕ
(1)
i (x)≡ sinhγi(x−xi)

sinhγih
, xi−1 < x < xi,

ϕ
(2)
i (x)≡ sinhγi(xi+1−x)

sinhγih
, xi < x < xi+1,

0, x /∈ (xi−1,xi+1),

where

γi =

√
a(xi)

ε
, χi = h−1

xi+1∫
xi−1

ϕi(x)dx =
2tanh(γih/2)

γih
.
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We note that the functions ϕ
(1)
i and ϕ

(2)
i are the solutions of the following problems

respectively:

−εϕ
′′+ai(x)ϕ(x) = 0, xi−1 < x < xi

ϕ(xi−1) = 0, ϕ(xi) = 1,

−εϕ
′′+ai(x)ϕ(x) = 0, xi < x < xi+1

ϕ(xi) = 1, ϕ(xi+1) = 0.

By using the method of exact difference schemes (see e.g. [1–3]), it follows that

−χ
−1
i h−1

ε

xi+1∫
xi−1

ϕi(x)u′′(x)dx+χ
−1
i h−1ai

xi+1∫
xi−1

ϕi(x)u(x)dx =

− εχ
−1
i

1+aiε
−1

xi∫
xi−1

ϕ
(1)
i (x)(x− xi)dx

uxx,i

+aiχ
−1
i

h−1
xi∫

xi−1

ϕ
(1)
i dx+h−1

xi+1∫
xi

ϕ
(2)
i dx

ui =−εθiuxx,i +aiui

with

θi =
aiρ

2

4sinh2
(√

aiρ/2
) , ρ =

h√
ε
.

Thereby

χ
−1
i h−1

xi+1∫
xi−1

[
εu′′ (x)+a(x)u(x)

]
ϕi (x)dx =−εθiuxx,i +aiui +R(1)

i (3.2)

with remainder term

R(1)
i = χ

−1
i h−1

xi+1∫
xi−1

[a(x)−a(xi)]u(x)ϕi(x)dx. (3.3)

Further for the right-side in (3.1) we have

χ
−1
i h−1

xi+1∫
xi−1

f (x)ϕi(x)dx = fi +R(2)
i (3.4)

with remainder term

R(2)
i = χ

−1
i h−1

xi+1∫
xi−1

[ f (x)− f (xi)]ϕi(x)dx. (3.5)
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For integral term involving kernel function, we have from (3.1)

χ
−1
i h−1

xi+1∫
xi−1

dxϕi(x)
l∫

0

K(x,s)u(s)ds =
l∫

0

K(xi,s)u(s)ds

+χ
−1
i h−1

xi+1∫
xi−1

dxϕi(x)
l∫

0

[K(x,s)−K(xi,s)]u(s)ds.

Further using the composite right side rectangle rule, we obtain

l∫
0

K(xi,s)u(s)ds = h
N

∑
j=1

Ki ju j−
N

∑
j=1

x j∫
x j−1

(ξ− x j−1)
∂

∂ξ
[K(xi,ξ)u(ξ))]dξ.

Therefore we get

χ
−1
i h−1

xi+1∫
xi−1

dxϕi(x)
l∫

0

K(x,s)u(s)ds = h
N

∑
j=1

Ki ju j +R(3)
i (3.6)

with remainder term

R(3)
i =χ

−1
i h−1

λ

xi+1∫
xi−1

dxϕi(x)
l∫

0

[K(x,s)−K(xi,s)]u(s)ds

−λ

N

∑
j=1

x j∫
x j−1

(ξ− x j−1)
∂

∂ξ
[K(xi,ξ)u(ξ))]dξ.

(3.7)

The relations (3.2), (3.4) and (3.6) yield the following exact relation for u(xi)

LNui : =−εθiuxx,i +aiui +λh
N

∑
j=1

Ki ju j +Ri = fi, 1≤ i≤ N−1 (3.8)

with remainder term

Ri = R(1)
i +R(2)

i +R(3)
i , (3.9)

where R(k)
i ;(k = 1,2,3) are defined by (3.3), (3.5) and (3.7) respectively. Based on

(3.8) we propose the following difference scheme for approximating (1.1).

LNyi :=− εθiyxx,i +aiyi +λh
N

∑
j=1

Ki jy j = fi, 1≤ i≤ N−1,

y0 =A, yN = B.

(3.10)
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4. ERROR ANALYSIS

From (3.8) and (3.10) for the error of the approximate solution zi = yi−ui we have

LNzi :=− εθizxx,i +aizi +λh
N

∑
j=1

Ki jz j = Ri, 1≤ i≤ N−1,

z0 =0, zN = 0.

(4.1)

where Ri are defined by (3.9).

Theorem 1. Under the conditions of Lemma (2.1) and

|λ|< α

max
1≤i≤N

N

∑
j=1

h|Ki j|
,

the solution of (3.10) converges ε-uniformly to the solution of (1.1). For the error of
approximate solution the following estimate hols

||y−u||∞,ω̄N ≤Ch.

Proof. Applying the maximum principle, from (4.1) we have

||z||∞,ω̄N ≤ α
−1||R−λh

N

∑
j=1

Ki jz j||∞,ωN

≤ α
−1||R||∞,ωN + |λ|α−1 max

1≤i≤N

N

∑
j=1

h|Ki j|||z||∞,ω̄N ,

hence

||z||∞,ω̄N ≤
α−1||R||∞,ωN

1−|λ|α−1 max
1≤i≤N

N

∑
j=1

h|Ki j|

which implies of

||z||∞,ω̄N ≤C||R||∞,ωN . (4.2)

Further we estimate R(1)
i , R(2)

i and R(3)
i seperately. For a(x), by the mean value the-

orem, we have

|a(x)−a(xi)| ≤ |a′(ξi)||x− xi| ≤Ch, xi ≤ ξi ≤ x.
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Thereby for R(1)
i , by a ∈C1[0, l] and (2.2) we get

∣∣∣R(1)
i

∣∣∣≤ χ
−1
i h−1

∣∣∣∣∣∣
xi+1∫

xi−1

[a(x)−a(xi)]u(x)ϕi(x)dx

∣∣∣∣∣∣
≤Chχ

−1
i h−1

xi+1∫
xi−1

ϕi(x)dx =Ch.

(4.3)

Similarly, for R(2)
i we get ∣∣∣R(2)

i

∣∣∣≤Ch. (4.4)

Finally for R(3)
i , taking into account the boundedness of ∂K

∂x and (2.3) it follows that

∣∣∣R(3)
i

∣∣∣≤χ
−1
i h−1 |λ|

xi+1∫
xi−1

dxϕi(x)
l∫

0

|K(xi,s)−K(x,s)| |u(s)|ds

+ |λ|
N

∑
j=1

x j∫
x j−1

(ξ− x j−1)

∣∣∣∣ ∂

∂ξ
[K(xi,ξ)u(ξ)]

∣∣∣∣dξ

≤ χ
−1
i h−1 |λ|

xi+1∫
xi−1

dxϕi(x)
l∫

0

(x− xi)

∣∣∣∣ ∂

∂ξ
K(ξ,s)u(s)

∣∣∣∣ds

+ |λ|h
l∫

0

∣∣∣∣ ∂

∂ξ
[K(xi,ξ)u(ξ)]

∣∣∣∣dξ

≤Ch |λ|+ |λ|h
l∫

0

{∣∣∣∣∂K(xi,ξ)

∂ξ

∣∣∣∣ |u(ξ)|+ |K(xi,ξ)|
∣∣u′(ξ)∣∣}dξ

≤C

h+h
l∫

0

(
1+

1√
ε

(
e−

√
αξ√
ε + e−

√
α(l−ξ)√

ε

))
dξ

≤Ch.

(4.5)

Thus from (4.3)-(4.5) we see easily the estimate

||R||∞ ≤Ch. (4.6)

The bound (4.6) together with (4.2) completes the proof. �
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5. NUMERICAL RESULTS

Consider the particular problem with

a(x) = 1, K (x,s) = x, f (x) = x− ε+ εe−
x
ε , x ∈ (0,1) ,

λ =
1
2
, A = 1, B = 2− ε+ εe−

1
ε ,

The exact solution is given by

u(x) =
e−

x√
ε + e

x−1√
ε − e

x−2√
ε − e−

x+1√
ε

1− e−
2√
ε

+ x− ε+ εe−
x√
ε .

We define the exact error eh
ε and the computed ε-uniform maximum pointwise error

eh as follows:

eh
ε = ‖y−u‖

∞
, eh = max

ε
eh

ε .

We also define the computed parameter-uniform rate of convergence to be

ph = ln
(

eh/eh/2
)
/ ln2.

The resulting errors eh and the corresponding numbers ph for various values ε and h
are listed in Table 1.

Table 1 Exact errors eh
ε , computed ε-uniform errors eh and convergence rates ph

on ωN .

ε h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512 h = 1/1024
1 0.00343868 0.00198874 0.00110332 0.00060368 0.00030394 0.00015197

0.79 0.85 0.87 0.99 1.00
2−4 0.01032126 0.00605257 0.00338123 0.00185003 0.00094445 0.00047551

0.77 0.84 0.87 0.97 0.99
2−8 0.01125894 0.00660244 0.00368841 0.0020181 0.00103025 0.00051871

0.77 0.84 0.87 0.97 0.99
2−12 0.011200979 0.00656845 0.00366942 0.00200771 0.00102495 0.00051604

0.77 0.84 0.87 0.97 0.99
2−16 0.0112049 0.00657075 0.00367071 0.00200842 0.00102531 0.00051622

0.77 0.84 0.87 0.97 0.99
eh 0.01125894 0.00660244 0.00368841 0.0020181 0.00103025 0.00051622
ph 0.77 0.84 0.87 0.97 0.99

The obtained results show that the convergence rate of difference scheme is essen-
tially in accord with the theoretical analysis.
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6. CONCLUSION

A boundary-value problem for a second order singularly perturbed Fredholm
integro-differential equation has been considered. For the numerical solution of this
problem, we proposed a fitted finite difference scheme on a uniform type mesh. The
difference scheme is constructed by the method of integral identities with the use of
exponential basis functions and interpolating quadrature rules with the weight and
remainder terms in integral form. It is shown that the method displays uniform con-
vergence independently of the perturbation parameter in the discrete maximum norm.
We have implemented the present method on a example. Numerical results were car-
ried out to show the efficiency and accuracy of the method.
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