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GLOBAL ATTRACTOR FOR THE TIME DISCRETIZED
MODIFIED THREE-DIMENSIONAL BENARD SYSTEMS
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Abstract. In this paper, we aim to study the existence of global attractors for the time discretized
modified three-dimensional (3D) Bénard systems. Using the backward implicit Euler scheme, we
obtain the time discretization systems of 3D Bénard systems. Then, by the Galerkin method and
the Brouwer fixed point theorem, we prove the existence of the solution to this time-discretized
systems. On this basis, we proved the existence of the attractor by the compact embedding
theorem of Sobolev. Finally, we discuss the limiting behavior of the solution as N tends to
infinity.
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1. INTRODUCTION

In this work, we study the following 3D Bénard system:

% vt Fy([ V) (- V)u-+ &0 = £(2) - V.

div u =0, (1D
ulaq =0,

9o — Ao+ (u-V)o = g(x)

ot ’ (1.2)
0[aq =0,

where Q C R? be a bounded smooth domain; u = u(t,x), ® = o(t,x) and
p = p(t,x) denote velocity, temperature and pressure of the fluid, respectively;
v >0, £ € R? are constants; f: Q — R3, g1 Q — R are given functions, and for

N
N> 1, Fy(r) :min{l,—}.
r

It is well-known that the Bénard system is a dynamic model describing the rate,
pressure and temperature of incompressible fluids that are coupled by Navier-Stokes
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equations and convection diffusion equations. This problem is fundamentally im-
portant and of both theoretical and practical interest. In recent years, many important
achievements have been made in the study of the Bénard system, of which the study
of the solution and attractor of the Bénard system is a very important part. For ex-
ample, in [10], the authors proved the existence of global solution of the equation
(1.1)-(1.2) on channel-like domains by the Galerkin method, then they constructed
the global @ attractor of this systems. To date, many studies have investigated the
case of Fy = 1 in the equation (1.1)-(1.2), for example, see [8,9, 1, 12]. In [&], au-
thors introduced a class of functions which are strongly continuous with respect to the
second component of the vector. Then they prove the existence of solutions for the
3D Bénard system, and construct a multi-valued semi-flow generated by such solu-
tions. Moreover, they obtain the existence of a global ¢ attractor for the weak-strong
topology. In [12], authors investigate the regularized 3D Bénard problem. Using the
averaging technique which will give us the properties of the mean characteristics of
the flow, they prove that the global existence and uniqueness of the solutions, and
then obtain the existence of the global attractor. In [9], authors study the asymptotic
behaviour of weak solutions for the 3D Bénard problem. They first show some reg-
ularity properties of the weak solutions of this systems. Then they construct a one
parameter family of multi-valued semi-flow and obtain the existence of a global at-
tractor with respect to the weak topology of the phase space. In [11], authors first
establish an energy inequality in the space L* for a broader class of weak solutions.
Using this inequality, they prove the existence and connectedness of a global attractor
in the space H,, x L? for the corresponding m-semi-flow.

It is well-known that the discretization method is the basic method to solve the
problems of continuum mechanics, which is a method to approximate the physical
quantities in continuum mechanics with finite parameters. The laws of continuum
mechanics are generally described by differential equations and integral equations.
The discretization method approximates the original problem by transforming it into
an algebraic equation with finite parameters. The discretization of differential equa-
tion mainly refers to the discretization of time and space. The usual discretization
methods include finite difference method, finite element method, weighted residual
method and so on (see [1,2,4,6,7,14,16]). In [5], the modified 3D Navier-Stokes
equations were discretized on the time by finite difference method, then the existence
of the global attractor was proved. In the literature [15], the Benjamin-Bona-Mahony
equation was discretized on the time by the Crank-Nicolson scheme. Then, using the
Galerkin method and the Brouwer fixed point theorem, authors proved that the ex-
istence of the solution to this time discretized system. Furthermore, authors showed
that the existence of attractor by Sobolev’s compact embedding theorem.

The main purpose of this paper is to investigate the long time dynamical behavior
of the solution of the discretized, modified 3D Bénard system (1.1)-(1.2) by the idea
in [5,15].
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Let us firstly introduce some notations. Set
H = {u € (LA())%,divu=0, u-n=0on ag},
V= {u e (HY(Q)),divu= o},

with norms || - ||, ||| - ||| and scalar products (-,), ((+,-)) (the same notations for norms
and scalar products also apply to L?(Q), H} (Q)), where, n is the unit outward normal
on 0Q. Let

b(u,v,z) = /Q

and by (u,v,z) = Fy(||Vv]|)b(u,v,z). Thanks to Poincaré inequality, we can put

3 av, 3 0w
Z uigzjdxa C(u70)an) _Lizluizhindx’

i,j=1 !

((,v)) = (Vu, V), el = Vel

We denote by P the Leray projection of L?>(Q))? onto H and by 7 the Leray pro-
jection of L?(Q))? onto L?(Q). And we denote by D(A) the domain of the Stokes
operator A| = —PA in H, and by D(A;) the domain of A, = —TA in L?(Q). Obvi-
ously, Ay : V — V*, Ay : H} (Q) — H~!(Q) are linear continuous operators and such
that

<A1uﬂv>V7V* = (VM,VV), <A2('07n>H(}(Q),H*1(Q) = (VO), Vﬂ%

where, u,v € V0,1 € H(} (Q). From the regularity theory for the Stokes equation,
it is proved in [13] that D(A;) = HZ(Q)3 NV, D(A;) = H*(Q) N H(Q), and the
following holds true

D(A)) CVCH, D(A) C HY(Q) c L*(Q).
Therefore,
1 1
lulll < —=[|Awull, Yue D(A1),  [|o|| < —=|A0], Yo e D(A2),
\/X] \/7\-2
1 1
full < —=Illulll, YueV, o] < —lo|], Yo <€ Hy(Q),
A1 A2

where, A; > 0, A, > 0 are the first eigenvalues of the Stokes operator A, A,, respect-
ively.

We introduce two bilinear operators B: VxV — V*and C: Vx H} (Q) - H1(Q),
defined as:

<B(M,V),Z>V7V* = b(u,v,2), <C(u7(‘))7n>1—[6(§2)7H*1(Q) = c(u,0,M),
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where, u,v,z € V, @,1 € H}(Q). From [5],

1
1 3 4 3
b, v, 2)| < o[l |* ([l [*WIVIILII Mzl YV, vz eV,

1 1
|b(u,v,2)| < Cb|||MHl2 HAlu\Lz vz, VueD(A),vEVZEH, (3
|b(u,v,2)| < Collul|* [|[Avul|*[[VI[[[[z]], Vu e D(A1),veV,zeH,
b(u,v,v) =0, Yu,v€V.
Therefore,

by(u,v,v) =0, Vu,vyeV and (By(u,v),2)yy- = bn(u,v,2), Yu,v,z€V.

Since Q C R3 is bounded, there exists a constant ¢ > 0, which is only related to €,
such that for all v € H'(Q) [5],
1/2 1/2
M) < el v, Mllzs(ey < ellvil (1.4)
For M, N, p, g € R, there holds [5]
— M—N _
p QIj | - \+|p al

By the notations above, the equations (1.1)-(1.2) can be rewritten in the weak form
as

(1.5)

|Fv(p) — Fn(q)| < |Fu(p) — Fn(q)| <

(1.6)

u +VAju+ By (u,u) +Eo = f(x),
o +A,0+C(u,®) = g(x).

In this paper, we aim to study the existence of global attractors for the time discretized
modified three-dimensional (3D) Bénard systems (1.1)-(1.2). To this end, using the
backward implicit Euler scheme, we obtain the time discretization systems of (1.6):

um_um—l

o VA By (" ") + 80" = f, (1.7)
(Om—(l)mil
e A" ") = g, (1.8)

where k is the time step, and u™ ~ u(t"), @" ~ ®(").

The main results of this paper are as follows. Firstly, by the Galerkin method
and the Brouwer fixed point theorem, we prove the existence of the solution to this
time-discretized systems (1.7)-(1.8).

Theorem 1. Supposing that ug € D(A1), @y € D(A3). Let f € L*(Q)3, g € [*(Q)
be given functions, and let k > 0. Then there is at least one set of solutions
{um, @™} € D(A1) x D(Az) to (1.7)-(1.8) for m > 1 be integers.

On this basis, by the compact embedding theorem of Sobolev, we proved the ex-
istence of the attractor.
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Theorem 2. Supposing that uy € V, @ € H} (Q). Let f € L*(Q)3, g € L*(Q) be
given functions and let k > 0 small enough. Then the C° semigroup S™ defined by the
systems (1.7)-(1.8) has global attractors A in V x H} (Q).

Finally, we discuss the limiting behavior of the solution to (1.7)-(1.8) as N tends
to infinity.

Theorem 3. Supposing that uy € D(A1), @y € D(A3). Let f € L*(Q)3, g € L*(Q)
be given functions, and let k > 0. Then, for m > 1 be integers, the solution sequence
{ u%,(&)ﬂ} v of (1.7)-(1.8) converges to the weak solution of the following equations
when N — oo,

m m—1

+ VA" + B u™) +E0™ = f, (1.9)
mm_mm—l

k

This paper is organized as follows. Section 2 proves the existence of solutions and
completes the proof of Theorem 1. Section 3 proves the boundedness of solution in
phase space. Section 4 proves the continuous dependence of solution on initial value
and parameter N , and establishes a discrete semigroup $” to complete the proof of
Theorem 2. Section 5 discusses the limit behavior of {uj, %} as N tends to infinity
and completes the proof of Theorem 3.

A"+ C(W", ") = g. (1.10)

2. EXISTENCE OF SOLUTIONS

In this section, we construct a weak solution of (1.7)-(1.8) by the Faedo-Galerkin
method and the following Brouwer fixed point principle (see [3], 24-29).

Lemma 1 ([3]). Let X be a finite-dimensional space endowed with a scalar product
[-,+] and consider a continuous mapping F: X — X. Suppose that there exists Ry > 0
such that [F (Up),Up) > 0 for all Uy € X with [Uy,Up] = R3. Then there exists U with
[U,U] < R such that F(U) = 0.

To prove the existence of the solution for (1.7)-(1.8), the following three steps are
required:
Step 1: Construct an approximate solution. Let p > 1 be an integer. For

ul, - um @b -, @™, we can define the approximate solutions of (1.7)-(1.8)

P p
by u) = _Z] gip"ei and @) = 'Zl hi,"e;:
= 1=

m __ ,,m—1

ul’ u m m ..m m

P F VA + By (i 1) + 0 = 2.1
(og—co’”*l S —

-4 zcop+C(up,cop)_g, (2.2)

k
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where g;,"" € R, {e;}*, C D(A;), corresponding to the eigenvectors of the oper-
ator Ay, which are ortho-normal base in H and orthogonal in V; and h;," € R,
{&i}> | C D(A;), corresponding to the eigenvectors of the operator A, which are
ortho-normal base in L?(Q) and orthogonal in H} (Q). Let K, = (e, €2, ,e,) is the
space generated by ey, e, -+, e, and M), = (€1,é,,--- ,é,) is the space generated by
ey, ey, -+, e,, we define operator Q;: K, — K, and Q>: M, — M, satisty

(01(u),v1)) = (,v1) 4+ Vk(Vue, Vi) +kby (1, v1) + k(Ew,vi) — (™1 v1) —k(f,v1);
(Q2(®),12)) = (0,v2) + k(V®, Vv2) + ke (u, @, v2) — (0", v2) — k(g,v2).
To apply Lemma 1, we introduce the operator F (u,®) = (Q1 (1), 02(®))
(F(uvm)a(‘}th)T) - ((Ql (u)vQZ(w»T:(Vlv‘)z)T)
= ((Q1(w),v1)) + (Q2(w),v2)).

Now we need to prove that F (4, ®) is continuous in V. To this end, let u;,uz,v; € K,
and ©,,,v2 € M), we have

F(ul,(,l)l) —F(uz,ﬂ)z), (Vlav2)T>

= ((Ql(ul)aQZ((Ol))T?(V17V2)T) + ((Ql(uz)an((Dz))T,(Vl,vz)T)

= (u1,v1) + Vk(Vuy,Vvy) + kb (uy,ur,vi) + k(Eor,vi) — (u’"*l,vl)
—k(f,v1)+ (01,v2) +k(Vor,Vvp) +ke(uy, o1,v2) — (0)’"*1,\12) —k(g,v2)
~ [(uz,vl)—i-vk(Vuz,Vvl)+kbN(u2,u2,v1)+k(§0)2,v1) — W)

/N

k(1) + (@2,v2) + k(Vans, Vo) +ke(ua, 02, v2) — (01, vy) — k(g,vz)}
= (ug —uz,v1) +Vk(V(u; —uz),Vvy) + k(E(®; — 2),v1)
+k(V(0) — ), Vi) + (0 — 02,v2)
—%—k{bN(ul,ul,vl) —bN(uz,uz,vl)} —i—k{c(ul,ml,vz) —c(uz,wz,vz)} . (2.3)
Here, by using Poincaré inequality, we can get
(g —uz,vi) +Vk(V(uy —uz), V) +k(E(®; — ), vq)
+k(V(0) — ), Vv2) + (@1 — 2, 12)

< [Clvill-+ Vil 1]l =l + [Cllvall +KC & v1 -+ Kl ] leor = @ ).
(2.4)

And by the definition of Fy and (1.3), we obtain

by (ur,ur,vi) — by (uz,uz,vi) = En(|[[ur[[])D(ur, ur,vi) — Fy(||lu2|ll) b(u2, u2,v1)
= Fy([l[ur[[[)b(ur — u2,ur,v1) + En(|lluzl|)b(u2, u1 — uz,v1)
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+ Bl 1) = Pl | oz, 1)
< Ny = a1+ s = a4

< [N+ Cllar v 1] e = ezl 25)
On the other hand, for c¢(u, ®,1), we have
le(u, @M)] < lullzs@) VOl 2 (@) Ml @) < Cllulilfoollfinll;
and c(u, m,®) = 0, so we can get

c(ur,®1,v2) —c(uz,2,v2) = c(uy — uz, ®1,v2) + c(uz,®; — 2, v7)

< ol lv2lllller — wa|l| + Cll[uz|[[[[[v2 ] [[l 01 — e2]]-
(2.6)

Thus, by (2.3)-(2.6), we obtain
(Fn,01) = Fluz,02), (v1,2)")
< |Cllvall -Vl [+ VRl [+ Rl w11+ Cllon vzl s =z
o+ |Cllvall +KC 18] |+ llv2 ll + Ckllaz 21 Hleor = 2.

It is easy to know that F(u,®) is continuous in V. Next, let k be small enough such
that 1 — g >0and 1— % |§|2 > 0. For {u,®} € K, x M,, by Cauchy-Schwarz and
Poincaré inequality, we find
(F), (1,0)7) = ((Q1(), 02(@) T, (w,0)T)
= (u,u) +Vk(Vu, Vi) + kb (e, u,u) + k(Eo,u) — (u™ ' u) — k(f,u)
+ (@, 0) + k(Vo, Vo) + ke (1, 0, 0) — (0™, @) — k(g, 0)
Yl 4 K|+ (B, ) — () — k()
+loof* +Kflof|* - (0", @) — k(g,0)
> ]+ V]lull* + o] + K[l — kl[Eo| u]
= [l el — K[ el = o™ [[[|o]] — Kl g | e

k
2 2 2 2
> [lull? + v llul|* + llo]* + K[l —*[HéwH o+ [

Vi A Ve o

_ k 2 2
= (13 P vl + [ 1~ S e ]ku +kflolP
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i TIPS A T o TR L1 oY
var el =k N s
m—1 m—1
> Vil P+ o] 2 — 1 \ﬁ”u - l'ﬂw - ”"jﬁ”u - 'jﬂm I
N T e i e el
— el vl - r]*'”“’”' [k|||co||| L f]

Letr; > 7”,/";]1(%”}0” and rp > 7Hmm;<w;—2k“g”, for any {u,m} € K, x M, with |||ul|| =
and |@||| = r», one has (F(u,),(u,®)") > 0. Thus, from Lemma 1, we can find

(', o) satisfy F(u*, ") = 0, which s (Q1 (1), 0>(*))T = 0, and s0 { g;g’;*)) :(())"

Therefore, the approximate solution {ul’;’, (01’:’} exists.
Step 2: Some priori estimates. For k and m are fixed, we want to get a priori

estimates independent of p. Multiplying the equation (2.1) by ) and the equation
(2.2) by @, we obtain

- — 2 2
12 4 [y 1> + [lady — a1+ oy — @™ | 4 2vk]|ady ]| * + 2] | o}y ]
=2k (f,ull) +2k (g,00) + ">+ [|™ > — 2k (El), )
< 2k £l 1] + 2kl g | |00 1+ 2k (& 1y ey | 4+ [l =1 + [J™ 12

k 2 2, ko 2 2
< — V||| — k||| k o”
_lelfH + V|||, [l +7L2||gH +klleop [[|” + &[] [y
k(& a7 4 fl™ 1P + ™2
Therefore,

(1= k[ED) lly 17 + (1 — K [E]) [}y >
—_ - 2 2
+{ley — "M - ooy — @2 vk [y [+ Kl e

k k _ .
< G+ el 4 e+ o .

Let k be small enough such that 1 —k|§| > 0, one has

1
2 2 —12
[y +H0>’,§’H +1_k|§|||u,”f—u’” I
k
+ g ller oI+ e 11>+ oy 1”
klil klél 1—kl[g]

1 24 2 —12 —12
— + || + [|@™ . 2.7
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Now taking the L? inner product of the equation (2.1) with A; uy, and of the equation
(2.2) with Azco’;‘, we obtain
V| Ay || + k|| Azafy ||
=k (fAv)) +k (g,A200) = (u =" Apuy) — (0 = 01, Az 0]
— kb (), u) Ayl ) — ke (), o, A @) ) — k (), Ay
<k|.fIl HAlu’"H k[l /| A2 [+ [Jaey —u™ = [[|Aray || + [l — ™ | A200fy |

||| ’"III | (- V) iy [ Avuy | + k| (), @y, Asey) | + K[| §ey || [A vy |

<Kl lA ey ||+ kIl A2ep |+ [y — "~ Ay || + |0y — o[ A2ef ]|

N 1 3
k|||um”| Clla Ny 112 Ay |2 + k| e (), @, Ax ) | +k [&] [0 ||| Ay |
14

< KA ]|+ Kl A2l + a2 — = A | + o) — ™[4z |
1 3
+ ORI A1 + e (@, Asasy) | + K 8] o [1A ey

Since

€ 2 2 1
[ (u, 0, A20)] < [[ul] (@) [V 2 () [|A20]| 20y < € | S [ae[[[| o] +2*8||A20)H2 ,

we can get
1Avuy |+ 4200y > < CIL 11>+ Cllgll* + Clluy — ™ |? +Cllady — ™7
2 2 2
+CNK|[lup |1+ ck [&] o |1 +elllay I} 7. (2.8)
By (2.7)-(2.8), we can get
1Ay |1+ A2y 12 < C (A1l gl v, Ay [l =1 o™ {1, N, ) -

Step 3: Passage to the limit. For k and m fixed, from the above inequality we
can see {ug}p, {u)g“}p are bounded in D(A) and D(A;), respectively. Thus one can
extract from {ug}p and {qu}p subsequences respectively, denoted also by {u’;’}p,
{m?}p, such that i) — u™, p — e in D(A}), and @ — ", p — e in D(A3). But,
D(A1) = V and D(A;) < H} () are compact, so uy = u", p—ooinV, and 0y —
", p — o in Hy(Q). Next, we prove that {u™, @™} is the solution of (2.1)-(2.2).
For the purpose, it is enough to show that

;E}le(uP, ul,vi) = by (u”,u™,vy) and hmc(u o, v) =c (", 0", v).

To this end, we calculate as follows
by (4 1) — by (™" i) = Fy (a2 1) b (ot vr) = Ee ([l 1) b (" ™ )
= Fx (Il [l1) [& (s 1y v1) — b (u™ ™ v1)]
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+Ey (g 1) & (™ ™ vi) = Fy ([l [[1) b @™ ™ v1)
:FN(|HMZ’|H) [b(up,u v1) b(um,um,vl)}—|—[FN(|HMZ‘|H) FN(|Hum|||)] (™, u™,v1)

|b( N Vi) — b(u"’,um,v1)|+|||Mp”:l;n:“u H|||b(um,um,\/1)\-

Followmg [ ], one has ‘b(up, p,vl) —b(um,um,vl)‘ — 0, p — . And since
b (™, u™, is bounded uniformly with respect to p, one sees that
y P
[z 1] = 1l

[l

|b(u™,u",vi)| — 0,p — oo.
Therefore, lim by (u?, uy, vl) = by (", 4, vy). Similarly, we can get
p—

[}E&C(” o, ) =c", 0" ).

So {u’”, w’"} is the solution of (1.7)-(1.8). The proof of Theorem 1 is completed. [J

3. BOUNDEDNESS

Let {u’”, 0)’"} be the solution sequence of (1.7)-(1.8), we are going to show that the
boundedness of {u™, @™} in H x L*(), V x Hj (Q) and D(A;) x D(A5) respectively.

3.1. Boundedness in H x L>(Q)

Lemma 2. Let {um, mm}m be the solution sequence of (1.7)-(1.8), constructed in

Theorem 1. Then for all integers m > 1, {um, (Dm} remain bounded in H x L*(Q), in
the following sense,

o™ < K, Ym>1;  (3.1)
Ju™|* < K7, Ym>1. (32
— L—1 5 k

Z.Hmm —o" P+ Z.k|||(°mH\ < )TzllgHz(L—i) +Ki, L>i; (33
m=i m=i

L—1 Lo L—-1 5
2 e = 4 Y v
m=i

m=i
2k|E |2
SKH(L=D) |5 HfH2 'ﬁ' 1, L>i, (34

HgH ; 2||£117 2\&\2
where Ky = ||@°|| + 2 K; = [|u®)* + 2;@ + 273
2

Proof. Taking the L? inner product of the equation (1.8) with 2k®™, we obtain

_ 2 _
lo™ |+ [|o™ — "> + 2kl * = 2k(g, &™) + [|0" " |1?
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gl

i

2 _
< 2k o™ + [l ? < zHgHerkH!w'"!H + (™%
Thus, we can get

77 — k —
oo™ >+ [0 — o™ || + kff| ™| < lelgl\“rllw’" . (3.5)

By Poincaré inequality, we have
1

1
o™ 2 mfl 2 o 2
Using the above inequality recurswely, we find
1 lg]l? 1 IIgH
" < ————||@°|? 1— < J|0||* + 2K, (36

that is, equation (3.1) holds. On the other hand, taking the L? inner product of the
equation (1.7) with 2ku™, we obtain

o™ 1% - e = 0™ - 29K |2 = 2k(f,u™) 4 ™|~ 2k (E0™, u™)
< 2k A | 4 ™1 - 2k Eo™ ||

245
f W™ |||+ ™ 1 2 o™ m
< SN+ e 1+ 25 oy
nm m— ka 111
< 2P vl P+ e P+ 2 g
Combination (3.6) imply that
- - 2k[E|?
P = Pk < P+ 2+ 2

Using Poincaré inequality again, we can get

2k|E|?
&P

2k
14+ VEL m||2 < m—1)2 , <™ 2
O L e e i e

Using the above inequality recursively, we find

2
[l

012 B 1 2|| £ 2|§|2
< vy +[1 (v | vz T

271> 2E)? .
<[l + J’ZJ;”Z +|2§12K =K, (3.8)

that is, the equation (3.2) holds. Adding up (3.5) with m from i to L — 1, we find

L—-1 L—-1
k .
— — 2 . —
o 2+ ) llo" — o™ 1P+ ) ko™l < 2= lIglP(L— i)+ o™ "%
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Combination (3.6) imply that (3.3) holds. Adding up (3.7) with m from ito L — 1, we
find

B L—1 ” . L—1 m i ) 2k 2k 2
=P 3 = R < P ) | S+ 2

Combination (3.8) imply that (3.4) holds. The proof of Lemma 2 is completed. [
3.2. Boundedness in V x H}(Q)

Lemma 3 ([5]). Let {xm}, {ym}, {Zm} be non-negative sequences. Assume that
there are integers my, m| such that, for k > 0,

1
k)’m < 57 Vm > my,
(1 = kym)Xm < Xm—1+kzm, VYm > my+mj.

mx-+mp mx-+mg m*-+nmy
and that for all integers mx >my, kY, ym<ap, k Y zzm<axyk Y x,<as.

m=nuvk m=nx m=nx
Then

X < [k—i-az} &M Vm > mgy+m;.
mi

Lemma 4. Let {u’”, wm}m be the solutions sequence of (1.7)-(1.8), constructed in

Theorem 1. Then for all integers m > 1, {u™, @™} remain bounded in V x Hj(Q), in
the following sense, there exists positive constants C, ay, ap, a3, such that

o™ < K, Vm>1; (3.9)
lu™|]* < Ka, Vvm>1;,  (3.10)
L—1
Z.|||um ) +Z ||A u"|?
m=i
Hsz 13§
<K,+C + K1+ ~ K| (L=ik, L>i>1; (3.11)

L—1 ) 5 L—1 1 5
Y o™ —o™ I+ ) S KllAz0™]]
m=i m=i

k
<kt [l k(e k)| @0, Lziz1 G
where
8 2
2 1,002 2 NC ClE|
Ko 2 WO+ o 17+ K+ ek
Ky & max H|w°|||2+$, [ 8y aa] e, o+ gl }
sh—CKy' Lkmy Ky =M
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L>i>1.

Proof. Taking the L? inner product of the equation (1.7) with 2kAu

2
™11+ [l

469

" we obtain

| 2vk]|A |
_ 2
— )+ 2K A

— 2kby (U™, u" A ™) — 2k(E@™ A u™).

Each term of the right hand side of the above equation can be majorize by (1.3) as

follows

k
2k(f,Ar™) <2k fl[[[Are™]] < *Hfllz + V[ A"

16k

2k| (S0™, A u™ ),<7‘§‘ oo™ 1* +
A" —ZkFN(IIIM”’HI)Ib(M u

1 3
Cllad™ [[* [} Ara™ [+ [l [[[[| A1 26™]

2k |by (u™,u

[l

7
= N[l || 4| A" < vkl A"+

Then
2
2™ |7+ |l

HAlu'"Hz;

valum)|

N8CBk o
L

m_ '"—1m2+2vk||A1u’"||2

<l + 5 HfH2+V’<HA1u’"H2+ V/<||Alu'"||2

N8C3k o 1
o™ ||+

8v’
By (3.1) and (3.2) gives

2
e 11+ [l =

12k
ol (7| +;Hf||2+

102k
< ™=l +;Hf||2

6k o2
Iél lo™* +

| +

HAM’"HZ-

IIA u"|?

NSCk oo 16k o
VAL I+ !&! ™[>
NSCSk 16k

(3.13)

1
which together with |[||u™||| < —kHAlu’"H gives

2 1
e I+l — w1+ S

Therefore

VkA m m—
[1+ l]w I < =+ E 2+

Vk?n]
e 12 < =11+ = ||f||2

N8C8k 16k
8v7 Kl |<:| K.

N8C8k 16k
+ et Ki B K,
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which is

1 11112 1 k. ., N8C3% 16k
gl P+ [P+ N K+ 2 kP
1+ Y 1+ %4 |V 8v

Using the above inequality recursively, we find

2
[l 1" <

2
I <

[l

1)1 + :
(1+Vk7\.1) vkk (1+Vk7\.1)
N8C®k - 16k

« [Vuf||2+ g Kl]

gv7 1T
N8C8k 16k . »
our i+ IEPK

S +ka Hfuz

2 N8 C ClEI?
<[l o ||f|!2+ K7+ Vo,

K £ K. (3.14)

Therefore, we get (3.10), and u™ is bounded in V.
Taking the L? inner product of the equation (1.8) with 2kA, ", we find

12
o™ I + o™ — & ||” + 2k 420" |2
= [l + 2k (g, A20") — 2ke (", " Az oo™
1m2 1
< [llo™ | +ngH2+kHA20)m|!2+Csz|||0)’”IHZ+QkHAzw’"HZ-
Taking k small enough such that 1 — CK>k > 0, we obtain

1 11112 )
(1—Csz)IIIme\2+EkHAzwmllzwL|||0)’”—60" HIE < o™ I +kllgl?, (3.15)

which, together with |||@”||| < ||, leads to

Az
-
1 ok ek o [P + o~ < [l 4kl G0

There are two cases to discuss the above inequality (3.16):
Case 1: If %7\,2 > CK,, whichis 1+ %Mk— CK>k > 1, then from (3.16), one has

1 k

2
" 2< O)m—] + 2.
[ o vorsarerovi A R o vwsmrerard
Using the above inequality recursively, we find
1 2
2
ll™ || < i el
(1+ 57\.2/( — CKxk)™
1

lel?

+ - —
1 —CK, (1+ 3ok — CKok)™
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1

2
<Nl + 15— sl
1 —CK,

Case 2: If %7»2 < CK;, whichis 1 + %7\.2](— CKk < 1, then from (3.16), one gets

2 12
[1—k(CKz — 322)] oo™ ([ < [ll™ " [II" +Kllg .
In the following, we will use Lemma 3 to discuss the above inequality. Let
X = |||, ym = CK — A2, zm = ||g||*. Obviously, {xi}, {¥m}. {zm} are non-
negative sequences, and there exists mg, m such that
1 1
kym :CKZk_Ek}\Q < 57 Vm > my,
(1 _k_)’m)xm < Xp—1 +kZm, Vm > mgy+my,

and that for all integers m+* > myg, from (3.3), we get

mx-+mj m*-+n

k'Y =k ), [CKx—3h] =k(m +1)[CKr— o] <au,
m=mx m=nux

mx+mj mx+my ) 5

kY =k Y llgl* =k(m+1)llg]* <ar,

m=msx m=mx

mx—4-m mx—+n
kY m=k Y [lo"*< <% HgH (mi+1) +Ki < as.

m=m#x m=mnx

By Lemma 3, we get

a
o < | 2 ], o
1

. 1 m 1 mo-+mq
When m < mo-+my, there is |1+ $Aok = CKok| " = [1+ Dok —CKok| ", thus

1
llo™|* < (=50
(14 3ok — CKok)motm
1 5 1
7llgH i —1
CK; — (1 +*7\.2k—CK2k)m0+m1
< o’ +K HgH2 Vm < mo+m;.

Above all, we get (3.9), that is, ®™ is bounded in H0 (Q).
Next, adding up (3.13) withm =i, i+ 1, —1, we find

L—1
—1m2
Ml =+ 3 Ml — = e +Z HAlu'"H2
m=i
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N8C8kK* N 16k EPK
vl 1Ty -

Together with (3.14), leads to (3.11). Using (3.5)-(3.6) and (3.15), we obtain

i—1m2 N
<P =) SR

1 2
2 _
oo™ +§kHA20)mHz+H|0)m—mm i
_ 2 2
< oI+ kllgP + CKakllj6™]|
12 k
< [l "I +Kligll? + CKa [Mug\mq} |

Adding up the above inequality withm =1i,i+1,---, L—1, we get
2 N 2, v ] 2
o™ 1™+ X lllo™ — o™ 17+ 3 Skl
m=i m=i

i— 2 . k
<o I+ (L -1 [kug\|2+c1<z (M!\gHerlﬁﬂ |

Together with (3.9), one obtains (3.12). Above all, we have {u’”, 0)’”} is bounded in
V x H} (Q). The proof of Lemma 4 is completed. O

3.3. Boundedness in D(A;) x D(A2)
Lemma 5. Assuming that f € L*(Q)3, g € L*(Q), ug € D(A;), 0 € D(A;). Let
{um, (z)’"}m>l be the solutions sequence of (1.7)-(1.8). Then there exist positive con-

stants  Co = Co(V,N, [€|.K1, Ko, K3, [|A1| [|A20°|L,[I£1]. llgl)) and  Ku =
Ky (kava}Vla;\‘ZvNa ’(t:’v HMOH7 ”0‘)0H7 Hf”7 |gH) such that

1 0 1 0

u' —u 0 —o
< Cp; 3.17
Z +‘ p <G (3.17)
Mm_umfl 2 0\)m_('omfl 2
—|| <K 1. 3.18
k H k S K4, m> ( )
Proof. Letu=u' —u’, ® = o' — ®°, then from (1.7)-(1.8), one obtains

%+VA1u+VA1u0+BN(u+u0,u+u0)+§(0)+0)0) = (3.19)

0
T + A0+ A20° + Clu+u’, 0+ o) = g. (3.20)

Taking the scalar product of the equation (3.19) with Aju, we obtain

2
el

. +V||Au|]> = (f — VA1, Ayu) — by (u+u® u+u®, Aju) — Eo+E®, Au).

(3.21)
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Taking the scalar product of the equation (3.20) with A,®, we find

(O]
ol [ +]|Ar0]* = (g — A20°,4,0) — c(u+u’, 0+ 0°, A, ). (3.22)
Putting together (3.21) and (3.22), one obtains
!HMIII2 [llo]]®
- T v+ Ao

= (f = VA, A1u) + (g — Ar0°,A20) — (Eo +E’, A1)
—by(u+ 1l u+u Aju) — c(u+u’, 0+ 0°, A,0).
By (3.1) and (3.9)-(3.10) gives
bon (e +u® u+ u® Ayu) | = Fiy(Jf|lu+ |6+ u®,u+u®, Ayu)|
< Fyv(llu+ ) e u°) - 9 (14 %) [ [|A

< Fy ([l 1) e+ 2|2V (i +-1°) [ A ]
__CN
= [l uOll

1
< N+l A (u+ ) |2 Ay

1
0 0112 0y 4
[+ u”[[[[[Jee + 2| [[ A1 (e +27) || 2| Ay

< ONKS [[Ayul}? +CNK; A0 314 u;
(f = VA1, Ayu) < [ FIA ]l +]/A ;) 1Ay
(8- 420°,4,0) < [[g]l[1420]] + [ 420"] 14200
e+ 1,0+ 0, 4,0)] < Cllu 0! [[4>0]] < CKZK? [[450)];
o+ &, Ayu)] < JE] |0 1A rul] < [EIKF [Au].
Therefore, one has

2
el |||0>H|
k k
< A IA vl + VAL A ru]| + gl |A20] + [A20°]|A20]|

+llAl? + [ Ax0]

1 3 1
+CNK; | Ayul|> +CNK; | A1u®]|2 | Ayul
11 1
+CK; K3 || A0 + [EIKT [|Aul],
which, together with Young’s inequality, leads to

2
[ HIwIH
k k
< C|IfIP+v|Aul]> +C|lg|* +C||Ar°| 2

+CllAu|* +CllAro]®
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1
+CNK> +CNK7 ||A1u°|| + CK> K5 + C[E| K. (3.23)
From (1.7)-(1.8), one has
1_.0
- ku = —VAu' —By(u',u') — €' + f,
(01 _0)0
. = -A0' —-Cu',0') +g.
Thus
ul —u® o' —o’
i

<V[Au |+ (A" |+ [1By (', ul) || + [t o) [ + € | + (1] + I8l
< V[l +v[Al ]|+ [ Az0] + |A20°]

+ By (!, u )| +[IC(ut, )|+ (&l |+ £+ 18]l
< V[l +v[Al]| + [ Az0] + |A20°]

3 1
+CNI[lu |17 A |2 + e 1l I + & " ||+ A1+ gl
1 1
< V[ Arul| + VA || +[|Az0]| + [|420°|| + CNK [|A ]2
1 1 11 1
+ONK; |42 + K5 K5+ [EIKT + /11 + gl
Which together with (3.23), gives the desired result, that is

l/t] *MO 0)1 7(00
e R s LIRS N PN NN D
Then (3.17) is holds.
m m—1 m m—1
— 0" —00
Form > 1, let u” = % 0 = == in (1.7)-(1.8), we obtain
MT_MT71 m 1 m .m m—1 _m—1 m
T—FVAlu* —1—% [By(u",u™) =By (u" ' u" )] + &) =0, (3.24)
(Dm_wm—] 1
% + A0 + - [C", ™) —Cu" " o™ )] =0. (3.25)

Taking the scalar product of the equation (3.24) with 2ku], and taking the scalar
product of the equation (3.25) with 2k, we obtain

a2 -l = 22 2k [ | 4 | + (|0 — o7 4 2| |

= [lu 7HI? = 26w (" u™ 1) + 26w (" ") = 2k (el )

+ o™ 12 = 2 (™, 0™, ") 4 2¢ (@™ 0™ o). (3.26)
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We now majorize the right-hand side of (3.26). By (1.3) and (3.10), one gets
26y (W™ ™ W) — 2bn (W™ W™ u™)
= 2Fn ([l Db G ul) = 2By (| b (™ ™ )
=2 [En(ll" ") = En((llu™ D] o™t " )
+ 2y ([l I]) [B(u ”"l,u’"‘l,u’f) b(u’" W]

< 2 [Fn(lllw™ "1 = Ew (Jlle" )] b( Ll
+ 2FN ([l (D 1kb @ u™ )|
[ — I~
SCWW” ol 1 ke P [ [
CNk 1 3 1 3
+WIIMTWIHui”III“IIIM’"\IIIIMT!\4IHui”III“

1
< CREk|u™ | [l || + CNl | |[l |2,
— k(B u™) < 2k| (™, u)| < 2K[E[| | [l

Together with (3.9), one has
2™ 0" @) = 2¢(u™, @™, ") < 2|c(ku™, @™, )|
< CRll [l el < CRERIu |07
Thus, from (3.26) and above inequality, by Young’s inequality, we obtain
a2 <+ e = w1 - 2k |2+ 7 P + o — o[ + 2kl
< a2+ R el )+ N )
- 2K[g) e a2+ o 12+ CRE Rl |
< el [+ Okl + 2kl + CHl |
Therefore
(1—=Ch) (JJu|I? + | 12) < flae = |12 + =% (3.27)
Using the above inequality (3.27) recursively, we find

1

m|2 m||2
P —
2+ ol < g

ez |? + [leo3 %) -

Obviously, whenm < Mo =ent { £}, then ||u||>+||@?? is bounded, where ent { -}

is the entire part of £ with T an arbitrarily fixed constant. Let x,, = [|u”||* +||0™|%,
m = C, z = 0, then by Lemma 2-3 and equation (3.27), we see that ||u”||> + || @™
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is bounded as m > M(. Thus we have
| 2

2
Wt — " — mm—l
T < e L L )
(3.28)
Then (3.18) is holds. The proof of Lemma 5 is completed. U

Theorem 4. Assuming that f € L*(Q)3, g € L*(Q), ug € D(A}), @ € D(A3). Let
{um,wm}m>1 be the solution sequence of (1.7)-(1.8). Then there exists a positive
constant C such that, Ym > 1,

A ™ ||* + ||A20™|* < Ks. (3.29)

Proof. From (1.7)-(1.8), we obtain

u™ _um—l

VAlum:—T—BN(um,um)—ﬁwm—i-f, (3.30)
m _ ym—1
A" = _(D kO) _C(um’mm) +g. (3.31)

Two sides of equation (3.30) and (3.31) multiply by Aju™ and A,®™ respectively, and
then integrate gives
viAu”|? + [ Az0" |
um_umfl 'O)m_mmfl
[ ][
—c(u™, 0" A") — (E@™, A1u™) + (f,A1u™) + (g,A200™)

m

,Alu’"] — ,Azcom] —by(u™ u™ Ayu™)

w" — 1
k

. CN |
il

+ [[€o0™ [[|Ared™ || + [ F1[l|A 1™ | + Il g ]| A200™ ]

wmn — 1 " — "t
k k

+Clllu™ ([ lloo™ 1Az 0™ [ + [|Ee0™ [[[[Area™ (| + [| fI[[[A 1™ [ + [ g | A2 0™ ]

By Young’s inequality, one gets

" — mmfl
k

A +'

[A20™

| (@™ - V)u [ A ]| + Cl| ™ [} 0™ [ | A200™

1 3
< 142" ||+ CN ||| 2 | Aru™|2

A +'

2
+C

2
2
+Clflu™]

u" — ! " — " !

RS
+Clllu™ [ ll™ >+ CIEP (™ 1> +CIIFII* +Cllg®

< CK4+CK2 + CK2K3 + CIE|*Ki + C| f|* +Cllg* £ Ks.

The proof of Theorem 4 is completed. O

lAn |2 + [l A2™|* < €
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4. GLOBAL ATTRACTOR

In this section, we first prove that continuous dependence of solutions on initial
data and V.

Lemma 6. Assuming that M, N >0, f € L? (9)3, gel? (Q), u(l), ug € D(Ay), and
o), 09 € D(A,).

Let {uT,(DT}m be the solution of (1.7)-(1.8), with initial condition {u?,m?} and
parameter N.

Let {ug,w’f}m be the solution of (1.7)-(1.8), with initial condition {ug,mg} and
parameter M.
Then there exists C, Cs, aj, a, az, such that

1 2 2

2 2

[l — ' [||” + [[| @} — 3] < [\Huﬁ’—u‘%!H +|Hw?—603M
%

kCK: 1
e [C [1=NP2, m <o @)
2 2 3
o =1+ o = 0 < [m +a3) e, V> Mo, (42)
where My = ent (%), T is an arbitrarily fixed constant.
Proof. Letu]! = u' —uy', o) = @' — 5 in (1.7)-(1.8), we obtain
MT_”T_l m m .m m m m
T—i—vA]u* + By (', u]') — By (5, uy ) + E' =0, 4.3)
o™ _mmfl
. p +A0" + C(u]', 0") — C(uf, 0y) = 0. (4.4)

Taking the scalar product of (4.3) with 2kAu”’, we find
12 12 .
Ml = e~ e — M)+ 29k A |2
= 2% [bM(u’Z",ug’,Alu;”) —bN(uT,u';l,Alu:f)} —2k(Ee™, Au™)
= 2kFy (|||uz'|[1)b (', u5', Ay
— 2kEy (|[lu Db (uf' ui', Arul') — 2k(Ef!, Aul')
= 2k | Fag (1 1) — F (a1 | b’ ' A
= 2kFy ([||uz'|[o (' w5, Ayu)
— 2kFn (|t IDD(u], u A ull') — 2k(Eif, Arull). (4.5)

From (1.3) and Lemma 1, one has

1 1
Ea ([l 1D (i 165, Aridf)| < Clllad (1= a2 N1 A v |2 | A v

l ’"|||
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= CM||u)|2 A3
(1) 1B, ™ Agae™)| < B, ™, Agud™)|
< Al 1A
and
a3 1) = Bl )b (15 Agad?)
B [|M—N|+|||ua"
= Al

< 1M N+ ] 1A A

BT g A
|l naee

From (4.5) and above inequality, we obtain
2 _ 2 _ 2
a2 |1 = a2 1 o — a1 + 2| Al |2

L 3
< 2KC[IM = N| + [l [T A ey [[[[A e[| + 2KCM[|ad? ]2 [ A a2
+ 2kC|A [ [[[a ][] A e[| 4 2| G0 [ | A ']
KCIM N> KCljlu?||®

< [ROMZNE | KO s + ke -+ ke
1 &
kM4c4 m 3ke3 kC? m
e e P e
+ke4uA1u'"|rZ+ @ ol +Resl v 4.6)

Taking the scalar product of (4.4) with 2kA,®”, we find

e 17 = Moo= 17+ oo — 2" + 2k 4200
=2k[c(uy, 05, Ar0)") — c(u]', 0], A2 0]")].  (4.7)
By Young’s inequality and (3.9)-(3.10) gives
|c(uy', 05, Ar@]") — c(uf', 0, A2 00|
= (a2, Ax0l") — (a0, Az a) — (i &, Aseo)|
= (1, @ As0) + (a0 A
< Cllads [ [l [[[ [ Az e’ || + CHl e[|l o' ][l A 2005 |

<[5 I PO+ 5 laaet P
7
€[5 PO IP + e ]

<[5 Kall? I + 4z ]
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+C *IIIM’"IH K3+ IIAzw’"II

CK2 2
\H o[l + e \HMTH\ +C(es+&7) | A0 ||,

Thus, from (4.7), we have

7 m—11[2 m—11|2
o 1% = ez 117+ e — e =] ” + 2k [ Az
CK, CK;
<2k[7\|| o”||? + . [l I* + C(es +&7) [ A2 07|17 |. (4.8)

From (4.6) and (4.8), we get
2 12 12
e 1%+ 2 — e~ 1 = o= 1+ o — w1
- [l — @ 1|* 4 2vkl|A |2 + 2k Ape |

kC|M—N*  kC||u™||?
AL BT -+ e +aceniana P

€]
kMACH ) 3ke} kC? 5
+ el +—3||A1u;"||2+—||A1u WAL
3
ke Ay + ”5’ mmm||| + ke 4P
P22+ 2 P+ Cles + ) 4202

Ks+ (kCS] —l—kCSz)HAlllTHZ

{kC\M—N! kCHIui"IH
< +
€] €
kM4C4

3ke3 ,  kC? 2
[l |]* + 23||A1MT|| JFEKSIHMT\H
mi|2 ’&’2 mi| 2 mi|2
+ kea||Arull | +—\Hw* 17+ kes[|Aru ||
€5\

w2, CKs
e > + 7IIIMTH|2 +C(es+&7) 20>

2k [CK2

M K5 K3 }

= PR+ 5+ T 2] A PAC (e e + e tes)

CK5

FlarPre[&2 4 B HA WkCles + 1)+ XK -2,

That is

(1= kC(Ks +M*+ K3)] a2 | + [ 1 = kC Kz + @)} o2
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—1m2 12
e — 27U e — 7|+ KCl|A Y|P + kCApe |
—1m?2 12
< M7+ T + kCKs [M — NI (4.9)
2
LetC*:min{l—kC(K5+M4—|—K3), l—kC(K +m)},then

kCK5

1 2 2
2 2 — _
oI+ Mo 1 < - [z P e~ 1)+ == g =P

Using the above inequality recursively, we find

kCK. 1
2 2 5
Iz + 11 < g (I + ] + {5 =N | =1

*

Since 0 < C, < 1, for m < Mo = ent { L}, one has

1 2 2 kCK: 1
2 2 5
P+ o < 5 [ + 1 l1”] + T o — NP [—1]

*

For m > Mo, let C,. = max {C(K5 LMY LK), C (K2 n %) } From (4.9), one has

2 2 —12 —1y2 2
(1= kCu) [l |1+ (1 = kCus )1 < a2l + =" [|” + kCKs [M — N
Let x,u = [[u?[||* + | @ ]|I%, ym = Cus, zm = CKs M — N|*. Obviously, {x }, {vm},

{Zm} are non-negative sequences, and for k > 0,

1
kym:kC**<§, VYm > 2,

(1= kyp)Xm < Xm—1 +kzpm, VYm>M—1.

For all integers m, > 2, by Lemma 4, we get

my+mj
k Z ym:k(MO_z)C**SaT;
M=y
M+ 2
kY zm=k(Mo—2)CKs|M—N|" < a5;
m=my
My—+my my+mg 5
kY xm=k Y (lluf =5 P+ lof —o8]])
mM=nm m=my
my+m; ’ 2 5 2
<k ) (CHlu’l”IH + Clluz' ||| + Clll '] +C!Hw’z"\||)
m=my

my+mj
<kC Y (Kr+Ky+K3+K3) <kC(My—2)(K,+K3) < a3.

MmM=my
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*

Thus, x,, < [k(Mao3—3) +a§} e*1, which is
mi||2 m |2 a§ x| da}
o < | I,
I+ < |+«
The proof of Lemma 6 is completed. U

Proof of Theorem 2. Above, we show that the continuous dependence of solutions
on initial value and parameter N. It can be seen under the above conditions, when
determining the initial value and the parameter N, the system (1.7)-(1.8) has a unique
solution. Therefore, we can define a C® semigroup S™, acting on the phase space
V x H} (Q), and defined as follows:

S (uo,(oo) = (um,wm), VYm > 0.
From Lemma 4, the semigroup ™ has a bounded absorbing set in V x H} (Q):
2 2
By = { (4",07) €V x HY@), [l > + || < Ko+ Ks }.

And from Theorem 4 we can know that $” is bounded in D(A;) x D(A2), and using
Sobolev embedding theorem to know that S is compact in V x H(} (Q). Hence, S"
has a global attractor 4 in V x H} (Q). The proof of Theorem 2 is completed. O

5. LIMITING BEHAVIOR FOR N — oo

One sees from Lemma 2 that
2k[E|?
V7L1

For m and k fixed, let {u}, o}, be the solution of (1.7)-(1.8), then

2k k
2 2 *
R e = R M TR PR

V?\.l

Thus the sequence {ul’(’,, 0)1"\}} y 1s bounded in V' x H} (Q) uniformly in N. Therefore,
we can extract from {ul’G, (01’3} v & subsequence still denoted by {ul’G, (01’3} y such that
uyy — u", as N = e in V, and off — ®", as N — o in H(} (Q). As the injection
V < H and H} (Q) = L*(Q) both are compact, we have u — u™, as N — oo in H,
and @ — @" as N — oo in L?(Q).

We shall show that

Jim By (Db, ) = (" "), v € D(AY),
—>00

C C 1 2k|§|2

mj|2 m|2 2 2 *
+ [||w < — + — +— |1+ Ki+K7|.
H‘MN||| H| NH| = VZ) | ||f|| V72 HgH vk |:< 1 1

Al]im C(ulfy, 0y, ve) = c(u™, @™, v,), Y, € H2(Q).
—»00

Indeed, a simple computation gives
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Fy(luy )0 (uy, uy,v) — b(™ ,u™,v)
= [FN(”’I”%HD - l]b(ulnévu]rsav) ‘*‘b(”%auzn\?,V) - b(umvum7v>'

N
First, by the definition of Fy, we have Fy(|||u}|||) = min { 1, mmm} < 1. And from
Uy

the above inequality we can see

=

N 2 2, 1 2k|§|2 1
1 Ki+K .
1
- 2 2, 1 2k[E|? ne
Hence, if N > ||fH o0 HgH +3k 1+ Vi Ky +K;| ¢ ,wefind that
1

Fy(|[|uy|l) = 1. Therefore, A%lm FN(|||uN|||) = 1. Next, from (1.3), we obtain
—00
b(uy, upy,v) < C!HM?&Hl!HMz"GHlHAIVH

v C ey (1 25 g
<o P+ e+ g | (14250 ) i | )

showing that b(uyy, u};, v) is bounded uniformly with respect to N, so

lim [Fyy ([[|uy[ll) — 1]b6(uy, uy,v) = 0.
N—roo

Using the strong convergence of u}; in H, we can prove as in [13], that b(u}}, u}j,v) —
b(u™,u",v), as N — oo. Thus Al/im Fn (||| ||DD(upy, uly, v) = b(u™,u™,v), ¥v € D(A;).
—>00

Similarly, we have Al]im c(ult, @ v,) = c(u™, 0", v,), Vv, € H*(Q). Therefore,
—>00

{uf, @}, converges to the weak solution of the following equations when N — oo,

U — um—l
— + VA" + B u") +E0" = f
wm_o)m—l (51)
R — +A0" 4+ C(u™, 0™) =g.
Thus, we have completed the proof of Theorem 3. U
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