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Abstract. The investigation of stabilities of various types of equations is an interesting and
evolving research area in the field of mathematical analysis. Recently, there are many research
papers published on this topic, especially mixed type and multiplicative inverse functional equa-
tions. We propose a new functional equation in this study which is quite different from the
functional equations already dealt in the literature. The main feature of the equation dealt in this
study is that it has two different solutions, namely additive and multiplicative inverse functions.
We also prove that the hyperstability results hold good for this equation.
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1. INTRODUCTION

The analysis of stability of Functional Equation (FE) is due to the celebrated query
presented in [32]. An excellent response was presented in [15]. This method of prov-
ing stability result of FE is termed as Hyers-Ulam (H-U) stability which involves a
small positive constant as upper bound. Later, this result influenced many research-
ers to solve stability problems via different directions in [14,20,21] and these results
are respectively called as generalized Hyers-Ulam-Rassias stability, Ulam-Gavruta-
Rassias (U-G-R) stability and Hyers-Ulam-Rassias (H-U-R) stability.

For the first time, the hyperstability results associated with the ring homomorph-
isms were obtained in [5]. Also, the hyperstability of a class of linear functional
equations were dealt in [18]. There are a number of published papers associated with
hyperstability results and stability results via fixed point technique of various FEs,
one may refer to [1–3, 6–10, 13, 17, 19, 25].
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On the other hand, for the first time in this theory, a rational FE of the form

r(x+ y) =
r(x)r(y)

r(x)+ r(y)
(1.1)

was introduced and studied its stability results in [23], where r : R? −→ R is a map-
ping. It is interesting to note that the rational function f (x) = c

x , c being a constant,
is a solution of equation (1.1). Motivated by the equation (1.1), there are numerous
papers published on the problems of solving stability of various multiplicative in-
verse FEs of the type reciprocal-quadratic, reciprocal-cubic, reciprocal-quintic, etc.,
and radical functional equation. The detailed information regarding these results are
available in [4, 11, 12, 16, 22, 24, 26–31].

In an algebraic polynomial equation g(x) = 0, if we replace the variable x by 1
x

and if we get the same equation, then it is called a reciprocal equation. Also, if α is a
root of g(x) = 0, then 1

α
is also a root of g(x) = 0.

These concepts together with the results of equation (1.2) instigated us to deal with
a new FE of the form

h

(
m

∑
j=1

u j

)
+h


m
∏
j=1

u j

m
∑
j=1

m
∏

k=1,k 6= j
uk

=

m
∏
j=1

h(u j)

m
∑
j=1

m
∏

k=1,k 6= j
h(uk)

+
m

∑
j=1

h(u j). (1.2)

One can easily verify that the functions h(u) = u and h(u) = 1
u are solutions of equa-

tion (1.2). We present preliminaries and some basic results connected with (1.2). We
also establish hyperstability results of (1.2) in the setting of real numbers.

Thoughout this paper, let N, N0, Nm0 , R and R? denote the set of all natural num-
bers, the set of all nonnegative integers, the set of all integers greater than or equal to
m0, the set of all real numbers and the set of all non-zero real numbers, respectively.

2. PRELIMINARIES

Here we recall some significant concepts related with hyperstability and fixed point
theorem [8] which are useful to prove our main results of this investigation. The
ensuing three propositions are significant in obtaining the hyperstability results.

(P1) Let A and B be a nonempty set and a Banach space, respectively.
Let h1,h2, . . . ,hk : A−→ A and Q1,Q2, . . . ,Qk : A−→R+ be given mappings.

(P2) Let an operator η : BA −→ BA satisfies the inequality

‖ηα(u)−ηβ(u)‖ ≤
k

∑
i=1

Qi(u)‖α(hi(u))−β(hi(u))‖ (2.1)

for all α,β ∈ BA, u ∈ A.
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(P3) The mapping Γ : RA
+ −→ RA

+ be defined by

Γ∆(u) =
k

∑
i=1

Qi(u)∆(hi(u)) , ∆ ∈ RA
+, u ∈ A. (2.2)

The subsequent theorem is employed in our investigation to claim the persistence
of the distinct fixed point operator η : BA −→ BA.

Theorem 1. Let the propositions (P1)–(P3) be substantial. Suppose the mappings
ψ : A−→ R+ and let φ : A−→ B satisfy the ensuing two conditions:

‖ηφ(u)−φ(u)‖ ≤ ψ(u), u ∈ A, (2.3)

ψ
?(u) =

∞

∑
n=0

Γ
n
ψ(u)< ∞, u ∈ A. (2.4)

Then, there exists a unique fixed point χ of η such that

‖ψ(u)−χ(u)‖ ≤ ψ
?(u), u ∈ A. (2.5)

Furthermore,
χ(u) = lim

n→∞
η

n
ψ(u) (2.6)

3. BASIC SIGNIFICANT RESULTS CONNECTED WITH EQUATION (1.2)

The following definition will be useful to prove our main results.

Definition 1. A function h : R? −→ R is said to be a Rassias-Ravi reciprocal
function if it satisfies the following general FE:

h(mu)+h
( u

m

)
=

m2 +1
m

h(u) (3.1)

for all u ∈ R? and any integer m.

Remark 1. From the above definition, it is clear that (1.2) satisfies (3.1) by plug-
ging uk = u, for k = 1,2, . . . ,m in (1.2). Hence (1.2) is said to be Rassias-Ravi recip-
rocal functional equation.

Remark 2. When m = 2, (1.2) produces the following equation in two variables:

h(u1 +u2)+h
(

u1u2

u1 +u2

)
=

h(u1)h(u2)

h(u1)+h(u2)
+ [h(u1)+h(u2)].

When m = 3, (1.2) induces the ensuing equation in three variables:

h(u1 +u2 +u3)+h
(

u1u2u3

u1u2 +u1u3 +u2u3

)
=

h(u1)h(u2)h(u3)

h(u1)h(u2)+h(u1)h(u3)+h(u2)h(u3)
+ [h(u1)+h(u2)+h(u3)].
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Remark 3. In this investigation, we assume that
m

∑
j=1

u j,
m

∑
j=1

m

∏
k=1,k 6= j

uk,
m

∑
j=1

m

∏
k=1,k 6= j

h(uk) 6= 0,

for all u j ∈ R?, j = 1,2, . . . ,m.

Theorem 2. A mapping h : R? −→ R satisfying (1.2) also satisfies

h(mpu)+h
( u

mp

)
=

m2p +1
mp h(u) (3.2)

for all u ∈ R? and p > 0 is an integer.

Proof. Firstly, let us consider u for every u j, j = 1,2, . . . ,m in (1.2) to obtain

h(mu)+h
( u

m

)
=

m2 +1
m

h(u) (3.3)

for all u ∈ R?. Next, reinstating u by mu in 3.3 and then multiplying by m2+1
m on its

both sides, we get

m2 +1
m

h(m2u)+
m2 +1

m
h(u) =

(m2 +1)2

m2 h(mu) (3.4)

for all u ∈ R?. On the other hand, replacing u by u
m in (3.3) and then multiplying by

m2+1
m on its both sides, we obtain

m2 +1
m

h(u)+
m2 +1

m
h
( u

m2

)
=

(m2 +1)2

m2 h
( u

m

)
(3.5)

for all u ∈ R?. Now, adding (3.4) with (3.5) and simplifying further, we arrive at

h(m2u)+h
( u

m2

)
=

m4 +1
m2 h(u) (3.6)

for all u ∈ R?. Again, plugging u by mu in (3.6), we get

h(m3u)+h
( u

m

)
=

m4 +1
m2 h(mu) (3.7)

for all u ∈ R?. Also, substituting u by u
m in (3.6), we obtain

h(mu)+h
( u

m3

)
− m4 +1

m2 h
( u

m

)
(3.8)

for all u ∈ R?. Now, summing (3.7) and (3.8) and simplifying further to arrive at

h(m3u)+h
( u

m3

)
=

m6 +1
m3 h(u)

for all u ∈ R?. Proceeding with similar arguments and employing mathematical in-
duction, one can find for any p > 0 integer,

h(mpu)+h
( u

mp

)
=

m2p +1
mp h(u)
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for all u ∈ R?. This completes the proof. �

4. HYPERSTABILITY OF EQUATION (1.2)

In this section, by employing the notions and fixed point theorem proposed in [8],
we establish the hyperstability of (1.2). For the sake of of convenience, let us define
the difference operator Dh(u1, . . . ,um) : R∗×·· ·×R∗︸ ︷︷ ︸

(m times)

−→ R as follows:

Dh(u1,u2, . . . ,um)

= h

(
m

∑
j=1

u j

)
+h

(
∏

m
j=1 u j

∑
m
j=1 ∏

m
k=1,k 6= j uk

)
−

∏
m
j=1 h(u j)

∑
m
j=1 ∏

m
k=1,k 6= j h(uk)

−
m

∑
j=1

h(u j)

for all u1, . . . ,um ∈ R?.

Theorem 3. Let k > 0 and p < 0 be fixed constants. Let there exists n0 ∈ N with
nu ∈R? for u ∈R?, n ∈Nn0 . Suppose a mapping h : R? −→R satisfies the inequality

|Dh(u1,u2 . . . ,um)| ≤ k
m

∑
j=1
|u j|p (4.1)

for all u1, . . . ,um ∈ R?. Then there exists a unique Rassias-Ravi reciprocal function
H : R? −→ R satisfying (1.2) and

|H(u)−h(u)| ≤ m2k
1−m1+p−m1−p +m2 |u|

p (4.2)

for all u ∈ R?.

Proof. Firstly, let us plug u j = u, for j = 1,2, . . . ,m in (4.1) and then multiply by
m

m2+1 on its both sides to get∣∣∣∣ m
m2 +1

h(mu)+
m

m2 +1
h
( u

m

)
−h(u)

∣∣∣∣≤ m2k
m2 +1

|u|p (4.3)

for all u ∈ R?. We can find that there exists an m0 ∈ Nm0 such that
mp

(m2 +1)p < 1 for m≥ m0. (4.4)

Let m ∈ Nm0 be fixed integer. Let us denote

ηα(u) =
m

m2 +1
α(mu)+

m
m2 +1

α

( u
m

)
, u ∈ R, α ∈ RR?

, (4.5)

ψ(u) =
m2k

m2 +1
|u|p , u ∈ R?. (4.6)

Using (4.5) and (4.6), inequality (4.3) can be written as

|ηh(u)−h(u)| ≤ ψ(u), u ∈ R?. (4.7)
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The operator is defined by the following:

Γρ(u) =
m

m2 +1
ρ(mu)+

m
m2 +1

ρ

( u
m

)
, ρ ∈ RR?

+ , u ∈ R? (4.8)

has the form which is defined in (P3) with k = 2 and h1(u) = mu, h2(u) = u
m and

Q1(u) = Q2(u) = m
m2+1 for u ∈ R?. Also, for each α,β ∈ RR?

, u ∈ R?,

|ηα(u)−ηβ(u)|=
∣∣∣∣ m
m2 +1

α(mu)+
m

m2 +1
α

( u
m

)
− m

m2 +1
β(mu)− m

m2 +1
β

( u
m

)∣∣∣∣
≤ m

m2 +1
|(α−β)(mu)|+ m

m2 +1

∣∣∣(α−β)
( u

m

)∣∣∣
≤

2

∑
i=1

Qi(u) |(α−β)hi(u)| . (4.9)

Since
m

m2 +1

(
m2p +1

mp

)
< 1, we have

ψ
?(u) =

∞

∑
n=0

Γ
n
ψ(u) =

∞

∑
n=0

m2k
m2 +1

(
m

m2 +1

(
m2p +1

mp

))n

|u|p

=
m2k

1−m1+p−m1−p +m2 |u|
p . (4.10)

Owing to Theorem 1, there exists a unique solution H : R? −→ R of the equation

H(u) =
m

m2 +1
h(mu)+

m
m2 +1

h
( u

m

)
(4.11)

such that the inequality (4.2) holds. Moreover,

H(u) = lim
n→∞

η
nh(u). (4.12)

In order to show that H satisfies (1.2), we find that

|ηnDh(u1,u2, . . . ,um)| ≤ k
(

m
m2 +1

)n(m2p +1
mp

)n m

∑
j=1
|u|p (4.13)

for all u1, . . . ,um ∈ R?, and n ∈ N0. Suppose n = 0, then (4.13) becomes (4.1). So,
let us fix n ∈ N0 and suppose that (4.13) holds for n and u1, . . . ,um ∈ R?. Then∣∣ηn+1Dh(u1,u2, . . . ,um)

∣∣
=
∣∣∣ m
m2 +1

η
nh

(
m

∑
j=1

mu j

)
+

m
m2 +1

η
nh

(
m

∑
j=1

u j

m

)

+
m

m2 +1
η

nh

(
∏

m
j=1 mu j

∑
m
j=1 ∏

m
k=1,k 6= j muk

)
+

m
m2 +1

η
nh

(
∏

m
j=1

u j
m

∑
m
j=1 ∏

m
k=1,k 6= j

uk
m

)
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− m
m2 +1

η
n

(
∏

m
j=1 h(mu j)

∑
m
j=1 ∏

m
k=1,k 6= j h(muk)

)
− m

m2 +1
η

n

(
∏

m
j=1 h

(u j
m

)
∑

m
j=1 ∏

m
k=1,k 6= j h

(uk
m

))

− m
m2 +1

η
n

m

∑
j=1

h(mu j)−
m

m2 +1
η

n
m

∑
j=1

h
(u j

m

)∣∣∣
≤ k
(

m
m2 +1

)n(m2p +1
mp

)n
[

m
m2 +1

m

∑
j=1

∣∣u j
∣∣p + m

m2 +1

m

∑
j=1

∣∣∣u j

m

∣∣∣p]

≤ k
(

m
m2 +1

)n+1(m2p +1
mp

)n+1 m

∑
j=1

∣∣u j
∣∣p . (4.14)

Hence through induction method, the above inequality (4.14) implies that (4.13)
holds good for all u j ∈R?, for j = 1,2, . . . ,m. By letting n to ∞ in (4.13), we can find
that H satisfies (1.2). This completes the proof. �

In the sequel, we provide two examples for the non-stability of equation (1.2).

Example 1. Let A = [−1,1]\{0} and let h : A−→R be defined by h(u) = u, u∈ A.
Then for u j ∈ A, j = 1,2, . . . ,m such that

m

∑
j=1

u j,
m

∑
j=1

u j

m
,

m

∏
j=1

mu j,
m

∏
j=1

u j

m
,

∏
m
j=1 mu j

∑
m
j=1 ∏

m
k=1,k 6= j muk

,
∏

m
j=1

u j
m

∑
m
j=1 ∏

m
k=1,k 6= j

uk
m
∈ A,

|Dh(u1,u2, . . . ,um)| ≤
m

∑
j=1

∣∣u j
∣∣p ,

with p < 0, but h does not satisfy (1.2).

The following theorem contains the hyperstability involving product of different
powers of norms. The proof is obtained by similar arguments as in Theorem 3. Hence
we omit the proof and provide only the statement.

Theorem 4. Let k > 0 be a fixed constant. Let p j ∈ R, j = 1,2, . . . ,m such that
p = ∑

m
j=1 pi < 0. Let h : R? −→ R satisfy the following inequality

|Dh(u1,u2, . . . ,um)| ≤ k
m

∏
j=1

∣∣u j
∣∣p j

for all u j ∈ R?, j = 1,2, . . . ,m. Then there exists a unique Rassias-Ravi reciprocal
function H : R? −→ R satisfying (1.2) and

|H(u)−h(u)| ≤ mk
1−m1+p−m1−p +m2 |u|

p

for all u ∈ R?.
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5. CONCLUSION

So far various forms of additive FEs and multiplicative inverse FEs are considered
in this research field to obtain their stability results through different methods. For
the first time, a new FE with additive function and multiplicative inverse function is
proposed in this paper and its hyperstability results are proved via fixed point method.

REFERENCES

[1] L. Aiemsomboon and W. Sintunavarat, “On new hyperstability results for the generalized p-radical
functional equation in quasi-Banach spaces with the illustrative example.” Results in Fixed Point
Theory and Applications, vol. 2019, no. 2019012, pp. 1–14, 2019.

[2] Y. Aribou, H. Dimou, and S. Kabbaj, “Generalized hyperstability of the cubic functional equation
in ultrametric spaces.” Linear and Topological Algebra, vol. 8, no. 2, pp. 97–104, 2019.

[3] A. Bahyrycz and M. Piszczek, “Hyperstability of the Jensen functional equation.” Acta Math.
Hungarica, vol. 142, no. 2, pp. 353–365, 2014, doi: 10.1007/s10474-013-0347-3.

[4] A. Bodaghi and B. V. Senthil Kumar, “Estimation of inexact reciprocal-quintic and reciprocal-
sextic functional equations.” Mathematica, vol. 49, no. 82, pp. 3–14, 2017.

[5] D. G. Bourgin, “Approximately isometric and multiplicative transformations on continuous func-
tion rings.” Duke Math. J., vol. 16, pp. 385–397, 1949.

[6] J. Brzdek, “Hyperstability of the Cauchy equation on restricted domains.” Acta Math. Hungarica,
vol. 141, no. 1-2, pp. 58–67, 2013, doi: 10.1007/s10474-013-0302-3.

[7] J. Brzdek, “Remarks on hyperstability of the Cauchy functional equations.” Aequ. Math., vol. 86,
pp. 255–267, 2013, doi: 10.1007/s00010-012-0168-4.

[8] J. Brzdek, J. Chudziak, and Z. Pales, “A fixed point approach to stability of functional equations.”
Nonlinear Anal., vol. 74, no. 17, pp. 6728–6732, 2011, doi: 10.1016/j.na.2011.06.052.

[9] J. Brzdek and K. Cieplinski, “A fixed point approach to the stability of functional equations in
non-Archimedean metric spaces.” Nonlinear Anal., vol. 74, no. 18, pp. 6861–6867, 2011, doi:
10.1016/j.na.2011.06.050.

[10] L. Cadariu, L. Gavruta, and P. Gavruta, “Fixed points and generalized Hyers-Ulam stability.” Abst.
Appl. Anal., vol. 2012, no. 712743, pp. 1–12, 2012, doi: 10.1155/2012/712743.

[11] H. Dutta and B. V. Senthil Kumar, “Geometrical elucidations and approximation of some func-
tional equations in numerous variables.” Proc. Indian Natn. Sc. Acad., vol. 85, no. 3, pp. 603–611,
2019, doi: 10.16943/ptinsa/2019/49584.

[12] A. Ebadian, S. Zolfaghari, S. Ostadbashi, and C. Park, “Approximation on the reciprocal func-
tional equation in several variables in matrix non-Archimedean random normed spaces.” Adv.
Difference. Equ., vol. 314, pp. 1–13, 2015, doi: 10.1186/s13662-015-0656-7.

[13] E. Gselmann, “Hyperstability of a functional equation.” Acta Math. Hungarica, vol. 124, no. 1-2,
pp. 179–188, 2009, doi: 10.1007/s10474-009-8174-2.
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