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Abstract. Third-order Jacobsthal polynomial sequence is defined in this study. Some properties
involving this polynomial, including the Binet-style formula and the generating function are also
presented. Furthermore, we present the modified third-order Jacobsthal polynomials, and derive
adaptations for some well-known identities of third-order Jacobsthal and modified third-order
Jacobsthal numbers.
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1. INTRODUCTION

The Jacobsthal numbers have many interesting properties and applications in many
fields of science (see, [1]). The Jacobsthal numbers (Jn)n≥0 are defined by the recur-
rence relation

J0 = 0, J1 = 1, Jn+2 = Jn+1 +2Jn, n≥ 0. (1.1)
Another important sequence is the Jacobsthal–Lucas sequence. This sequence is
defined by the recurrence relation jn+2 = jn+1 +2 jn, where j0 = 2 and j1 = 1.

In Cook and Bacon’s work [5] the Jacobsthal recurrence relation is extended to
higher order recurrence relations and the basic list of identities provided by A. F.
Horadam [9] is expanded and extended to several identities for some of the higher
order cases. In fact, the third-order Jacobsthal numbers, {J(3)n }n≥0, and third-order
Jacobsthal–Lucas numbers, { j(3)n }n≥0, are defined by

J(3)n+3 = J(3)n+2 + J(3)n+1 +2J(3)n , J(3)0 = 0, J(3)1 = J(3)2 = 1, n≥ 0, (1.2)

and
j(3)n+3 = j(3)n+2 + j(3)n+1 +2 j(3)n , j(3)0 = 2, j(3)1 = 1, j(3)2 = 5, n≥ 0, (1.3)

respectively.
Some of the following properties given for third-order Jacobsthal numbers and

third-order Jacobsthal–Lucas numbers are used in this paper (for more details, see
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[2–5]). Note that Eqs. (1.7) and (1.11) have been corrected in [3], since they have
been wrongly described in [5]. Then, we have

3J(3)n + j(3)n = 2n+1, (1.4)

j(3)n −3J(3)n = 2 j(3)n−3, n≥ 3, (1.5)

J(3)n+2−4J(3)n =

{
−2 if n≡ 1 (mod 3)
1 if n 6≡ 1 (mod 3) , (1.6)

j(3)n+1 + j(3)n = 3J(3)n+2, (1.7)

j(3)n − J(3)n+2 =

 1 if n≡ 0 (mod 3)
−1 if n≡ 1 (mod 3)
0 if n≡ 2 (mod 3)

, (1.8)

(
j(3)n−3

)2
+3J(3)n j(3)n = 4n, (1.9)

n

∑
k=0

J(3)k =

{
J(3)n+1 if n 6≡ 0 (mod 3)

J(3)n+1−1 if n≡ 0 (mod 3)
(1.10)

and (
j(3)n

)2
−9
(

J(3)n

)2
= 2n+2 j(3)n−3, n≥ 3. (1.11)

Using standard techniques for solving recurrence relations, the auxiliary equation,
and its roots are given by

x3− x2− x−2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity. Call them
ω1 and ω2, respectively. Thus the Binet formulas can be written as

J(3)n =
2
7

2n−

(
3+2i

√
3

21

)
ω

n
1−

(
3−2i

√
3

21

)
ω

n
2 (1.12)

and

j(3)n =
8
7

2n +

(
3+2i

√
3

7

)
ω

n
1 +

(
3−2i

√
3

7

)
ω

n
2, (1.13)

respectively. Now, we use the notation

Zn =
Aωn

1−Bωn
2

ω1−ω2
=

 2 if n≡ 0 (mod 3)
−3 if n≡ 1 (mod 3)
1 if n≡ 2 (mod 3)

, (1.14)

where A =−3−2ω2 and B =−3−2ω1. Furthermore, note that for all n≥ 0 we have

Zn+2 =−Zn+1−Zn, Z0 = 2, Z1 =−3. (1.15)
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From the Binet formulas (1.12), (1.13) and Eq. (1.14), we have

J(3)n =
1
7
(
2n+1−Zn

)
and j(3)n =

1
7
(
2n+3 +3Zn

)
. (1.16)

A systematic investigation of the incomplete generalized Jacobsthal numbers and
the incomplete generalized Jacobsthal–Lucas numbers was featured in [6]. In [7],
Djordjević and Srivastava introduced the generalized incomplete Fibonacci polyno-
mials and the generalized incomplete Lucas polynomials. In [8], the authors invest-
igated some properties and relations involving generalizations of the Fibonacci num-
bers. In [10], Raina and Srivastava investigated the a new class of numbers associated
with the Lucas numbers. Moreover they gave several interesting properties of these
numbers.

In this paper, we introduce the third-order Jacobsthal polynomials and we give
some properties, including the Binet-style formula and the generating functions for
these sequences. Some identities involving these polynomials are also provided.

2. THE THIRD-ORDER JACOBSTHAL POLYNOMIAL, BINET’S FORMULA AND
THE GENERATING FUNCTION

The principal goals of this section will be to define the third-order Jacobsthal poly-
nomial and to present some elementary results involving it.

For any variable quantity x such that x3 6= 1. We define the third-order Jacobsthal
polynomial, denoted by {J(3)n (x)}n≥0. This sequence is defined recursively by

J(3)n+3(x) = (x−1)J(3)n+2(x)+(x−1)J(3)n+1(x)+ xJ(3)n (x), n≥ 0, (2.1)

with initial conditions J(3)0 (x) = 0, J(3)1 (x) = 1 and J(3)2 (x) = x−1.
In order to find the generating function for the third-order Jacobsthal polynomial,

we shall write the sequence as a power series where each term of the sequence cor-
respond to coefficients of the series. As a consequence of the definition of generating
function of a sequence, the generating function associated to {J(3)n (x)}n≥0, denoted
by { j(t)}, is defined by

j(t) = ∑
n≥0

J(3)n (x)tn.

Consequently, we obtain the following result:

Theorem 1. The generating function for the third-order Jacobsthal polynomials
{J(3)n (x)}n≥0 is j(t) = t

1−(x−1)t−(x−1)t2−xt3 .

Proof. Using the definition of generating function, we have

j(t) = J(3)0 (x)+ J(3)1 (x)t + J(3)2 (x)t2 + · · ·+ J(3)n (x)tn + · · · .
Multiplying both sides of this identity by−(x−1)t,−(x−1)t2 and by−xt3, and then
from Eq. (2.1), we have
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(1− (x−1)t− (x−1)t2− xt3) j(t)

= J(3)0 (x)+(J(3)1 (x)− (x−1)J(3)0 (x))t +(J(3)2 (x)− (x−1)J(3)1 − (x−1)J(3)0 (x))t2

(2.2)

and the result follows. �

The following result gives the Binet-style formula for J(3)n (x).

Theorem 2. For n≥ 0, we have

J(3)n (x) =
xn+1

x2 + x+1
−

ω
n+1
1

(x−ω1)(ω1−ω2)
+

ω
n+1
2

(x−ω2)(ω1−ω2)
,

where ω1, ω2 are the roots of the characteristic equation associated with the respect-
ive recurrence relations λ2 +λ+1 = 0.

Proof. Since the characteristic equation has three distinct roots, the sequence
J(3)n (x) = a(x)xn + b(x)ωn

1 + c(x)ωn
2 is the solution of the Eq. (2.1). Considering

n = 0,1,2 in this identity and solving this system of linear equations, we obtain a
unique value for a(x), b(x) and c(x), which are, in this case, (x2 + x+ 1)a(x) = x,
(x−ω1)(ω1 −ω2)b(x) = −ω1 and (x−ω2)(ω1 −ω2)c(x) = ω2. So, using these
values in the expression of J(3)n (x) stated before, we get the required result. �

We define the modified third-order Jacobsthal polynomial sequence, denoted by
{K(3)

n (x)}n≥0. This sequence is defined recursively by

K(3)
n+3(x) = (x−1)K(3)

n+2(x)+(x−1)K(3)
n+1(x)+ xK(3)

n (x), (2.3)

with initial conditions K(3)
0 (x) = 3, K(3)

1 (x) = x−1 and K(3)
2 (x) = x2−1.

We give their versions for the third-order Jacobsthal and modified third-order Jac-
obsthal polynomials.

For simplicity of notation, let

Zn(x) =
1

ω1−ω2

(
(x−ω2)ω

n+1
1 − (x−ω1)ω

n+1
2

)
,

Yn = ω
n
1 +ω

n
2.

(2.4)

Then, we can write

J(3)n (x) =
1

x2 + x+1
(
xn+1−Zn(x)

)
and

K(3)
n (x) = xn +Yn.

Then, Zn(x) =−Zn−1(x)−Zn−2(x), Z0(x) = x and Z1(x) =−(x+1).
Furthermore, we easily obtain the identities stated in the following result:



ON THIRD-ORDER JACOBSTHAL POLYNOMIALS 127

Proposition 1. For a natural number n and m, if J(3)n (x) and K(3)
n (x) are, respect-

ively, the n-th third-order Jacobsthal and modified third-order Jacobsthal polynomi-
als, then the following identities are true:

K(3)
n (x) = (x−1)J(3)n (x)+2(x−1)J(3)n−1(x)+3xJ(3)n−2(x), n≥ 2, (2.5)

J(3)n (x)J(3)m (x)+ J(3)n+1(x)J
(3)
m+1(x)+ J(3)n+2(x)J

(3)
m+2(x)

=
1

(x2 + x+1)2


(1+ x2 + x4) · xn+m+2

−xn+1
(
(1− x2)Zm(x)+ x(1− x)Zm+1(x)

)
−xm+1

(
(1− x2)Zn(x)+ x(1− x)Zn+1(x)

)
+(x2 + x+1)(ωn

1ωm
2 +ωm

1 ωn
2)

 ,
(2.6)

(
J(3)n (x)

)2
+
(

J(3)n+1(x)
)2

+
(

J(3)n+2(x)
)2

=
1

(x2 + x+1)2

 (1+ x2 + x4) · x2n+2

−2xn+1
(
(1− x2)Zn(x)+ x(1− x)Zn+1(x)

)
+2(x2 + x+1)

 ,
(2.7)

and Zn(x) as in Eq. (2.4).

Proof. (2.5): To prove Eq. (2.5), we use induction on n. Let n = 2, we get

(x−1)J(3)2 (x)+2(x−1)J(3)1 (x)+3xJ(3)0 (x) = (x−1)(x−1)+2(x−1)

= x2−1

= K(3)
2 (x).

Let us assume that K(3)
m (x) = (x−1)J(3)m (x)+2(x−1)J(3)m−1(x)+3xJ(3)m−2(x) is true for

all values m less than or equal n≥ 2. Then,

K(3)
m+1(x) = (x−1)K(3)

m (x)+(x−1)K(3)
m−1(x)+ xK(3)

m−2(x)

= (x−1)
(
(x−1)J(3)m (x)+2(x−1)J(3)m−1(x)+3xJ(3)m−2(x)

)
+(x−1)

(
(x−1)J(3)m−1(x)+2(x−1)J(3)m−2(x)+3xJ(3)m−3(x)

)
+ x
(
(x−1)J(3)m−2(x)+2(x−1)J(3)m−3(x)+3xJ(3)m−4(x)

)
= (x−1)J(3)m+1(x)+2(x−1)J(3)m (x)+3xJ(3)m−1(x).

(2.6): Using the Binet formula of J(3)n (x) in Theorem 2, we have

J(3)n (x)J(3)m (x)+ J(3)n+1(x)J
(3)
m+1(x)+ J(3)n+2(x)J

(3)
m+2(x)

=
1

(x2 + x+1)2


(
xn+1−Zn(x)

)(
xm+1−Zm(x)

)
+
(
xn+2−Zn+1(x)

)(
xm+2−Zm+1(x)

)
+
(
xn+3−Zn+2(x)

)(
xm+3−Zm+2(x)

)
 .
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Then, we obtain

J(3)n (x)J(3)m (x)+ J(3)n+1(x)J
(3)
m+1(x)+ J(3)n+2(x)J

(3)
m+2(x)

=
1

(x2 + x+1)2


(1+ x2 + x4) · xn+m+2

−xn+1
(
Zm(x)+ xZm+1(x)+ x2Zm+2(x)

)
−xm+1

(
Zn(x)+ xZn+1(x)+ x2Zn+2(x)

)
+Zn(x)Zm(x)+Zn+1(x)Zm+1(x)+Zn+2(x)Zm+2(x)


=

1
(x2 + x+1)2


(1+ x2 + x4) · xn+m+2

−xn+1
(
(1− x2)Zm(x)+ x(1− x)Zm+1(x)

)
−xm+1

(
(1− x2)Zn(x)+ x(1− x)Zn+1(x)

)
+(x2 + x+1)(ωn

1ωm
2 +ωm

1 ωn
2)

 .

Then, we obtain the Eq. (2.7) if m = n in Eq. (2.6). �

3. SOME IDENTITIES INVOLVING THIS TYPE OF POLYNOMIALS

In this section, we state some identities related with these type of third-order poly-
nomials. As a consequence of the Binet formula of Theorem 2, we get for this se-
quence the following interesting identities.

Proposition 2 (Catalan-like identity). For a natural numbers n, s, with n ≥ s, if
J(3)n (x) is the n-th third-order Jacobsthal polynomials, then the following identity

J(3)n+s(x)J
(3)
n−s(x)−

(
J(3)n (x)

)2

=
1

(x2 + x+1)2

 xn+1 (xs− x−s)XsZn+1(x)
−xn+1 (2+ xsXs+1− x−sXs−1)Zn(x)

−(x2 + x+1)X2
s


is true, where Zn(x) as in Eq. (2.4), Xn =

ωn
1−ωn

2
ω1−ω2

and ω1, ω2 are the roots of the
characteristic equation associated with the recurrence relation x2 + x+1 = 0.

Proof. Using the Eq. (2.4) and the Binet formula of J(3)n (x) in Theorem 2, we have

J(3)n+s(x)J
(3)
n−s(x)−

(
J(3)n (x)

)2

=
1

(x2 + x+1)2

{ (
xn+s+1−Zn+s(x)

)(
xn−s+1−Zn−s(x)

)
−
(
xn+1−Zn(x)

)2

}
=

1
(x2 + x+1)2

{
−xn+1 (xsZn−s(x)+ x−sZn+s(x)−2Zn(x))

+Zn+s(x)Zn−s(x)− (Zn(x))
2

}
.

Using the following identity for the sequence Zn(x):

Zn+s(x) = XsZn+1(x)−Xs−1Zn(x),
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where Xs =
ωs

1−ωs
2

ω1−ω2
and X−s =−Xs. Then, we obtain

J(3)n+s(x)J
(3)
n−s(x)−

(
J(3)n (x)

)2

=
1

(x2 + x+1)2

 xn+1 (xs− x−s)XsZn+1(x)
−xn+1 (xsXs+1− x−sXs−1−2)Zn(x)

−(x2 + x+1)X2
s

 .

Hence the result holds. �

Note that for s = 1 in the Catalan-like identity obtained, we get the Cassini-like
identity for the third-order Jacobsthal polynomial. Furthermore, for s= 1, the identity
stated in Proposition 2, yields

J(3)n+1(x)J
(3)
n−1(x)−

(
J(3)n (x)

)2

=
1

(x2 + x+1)2

 xn+1
(
x1− x−1

)
X1Zn+1(x)

−xn+1
(
x1X1+1− x−1X1−1−2

)
Zn(x)

−(x2 + x+1)

 .

and using X0 = 0 and X1 = 1 in Proposition 2, we obtain the following result.

Proposition 3 (Cassini-like identity). For a natural numbers n, if K(3)
n is the n-th

third-order Jacobsthal numbers, then the identity

J(3)n+1(x)J
(3)
n−1(x)−

(
J(3)n (x)

)2

=
1

(x2 + x+1)2

{
xn
(
(x2−1)Zn+1(x)+ x(x+2)Zn(x)

)
−(x2 + x+1)

}
.

is true.

The d’Ocagne-like identity can also be obtained using the Binet formula and in
this case we obtain

Proposition 4 (d’Ocagne-like identity). For a natural numbers m, n, with m ≥ n
and J(3)n (x) is the n-th third-order Jacobsthal polynomial, then the following identity

J(3)m+1(x)J
(3)
n (x)− J(3)m (x)J(3)n+1(x)

=
1

(x2 + x+1)2

{
xm+1 (Zn+1(x)− xZn(x))

−xn+1 (Zm+1(x)− xZm(x))+(x2 + x+1)Xm−n

}
is true.

Proof. Using the Eq. (2.4) and the Theorem 2, we get the required result. �

In addition, some formulae involving sums of terms of the third-order Jacobsthal
polynomial sequence will be provided in the following proposition.
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Proposition 5. For a natural numbers m, n, with n ≥ m, if J(3)n (x) and K(3)
n (x)

are, respectively, the n-th third-order Jacobsthal and modified third-order Jacobsthal
polynomials, then the following identities are true:

n

∑
s=m

J(3)s (x) =
1

3(x−1)


(3x−2)J(3)n (x)+(2x−1)J(3)n−1(x)

+xJ(3)n−2(x)− J(3)m+2(x)
+(x−2)J(3)m+1(x)+(2x−3)J(3)m (x)

 , (3.1)

n

∑
s=0

K(3)
s (x) =

1
x−1

 xn+1 +2x−3 if n≡ 0 (mod 3)
xn+1 + x−2 if n≡ 1 (mod 3)

xn+1−1 if n≡ 2 (mod 3)
. (3.2)

Proof. (3.1): Using Eq. (2.1), we obtain
n

∑
s=m

J(3)s (x) = J(3)m (x)+ J(3)m+1(x)+ J(3)m+2(x)+
n

∑
s=m+3

J(3)s (x)

= J(3)m (x)+ J(3)m+1(x)+ J(3)m+2(x)+(x−1)
n−1

∑
s=m+2

J(3)s (x)

+(x−1)
n−2

∑
s=m+1

J(3)s (x)+ x
n−3

∑
s=m

J(3)s (x)

Then,
n

∑
s=m

J(3)s (x) = (3x−2)
n

∑
s=m

J(3)s (x)+ J(3)m+2(x)− (x−2)J(3)m+1(x)− (2x−3)J(3)m (x)

− (3x−2)J(3)n (x)− (2x−1)J(3)n−1(x)− xJ(3)n−2(x).

Finally, the result in Eq. (3.1) is completed.
(3.2): As a consequence of the Eq. (2.4) of Theorem 2 and

n

∑
s=0

Ys =
n

∑
s=0

(ωs
1 +ω

s
2)

=
ω

n+1
1 −1
ω1−1

+
ω

n+1
2 −1
ω2−1

=
1
3
(Yn−Yn+1)+1,

we have
n

∑
s=0

K(3)
s (x) =

n

∑
s=0

xs +
n

∑
s=0

Ys

=
xn+1−1

x−1
+

1
3
(Yn−Yn+1)+1
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=
1

x−1

 xn+1 +2x−3 if n≡ 0 (mod 3)
xn+1 + x−2 if n≡ 1 (mod 3)

xn+1−1 if n≡ 2 (mod 3)
.

Hence, we obtain the result. �

For example, if n≡ 0(mod 3) we have that xn+1 +2x−3 is divisible by x−1.
For negative subscripts terms of the sequence of modified third-order Jacobsthal

polynomial we can establish the following result:

Proposition 6. For a natural number n and x3 6= 0 the following identities are
true:

K(3)
−n (x) = K(3)

n (x)+ x−n− xn, (3.3)

3n

∑
s=0

K(3)
−s (x) =

1
x−1

(
3x−2− x−3n) . (3.4)

Proof. (3.3): Since Y−n =Yn, using the Binet formula stated in Theorem 2 and the
fact that ω1ω2 = 1, all the results of this Proposition follow. In fact,

K(3)
−n (x) = x−n +Y−n

= x−n + xn +Yn− xn

= K(3)
n (x)+ x−n− xn.

So, the proof is completed.
(3.4): The proof is similar to the proof of Eq. (3.1) using Eq. (3.3). �

4. CONCLUSION

Sequences of polynomials have been studied over several years, including the
well-known Tribonacci polynomial and, consequently, on the Tribonacci-Lucas poly-
nomial. In this paper, we have also contributed for the study of third-order Jacobsthal
and modified third-order Jacobsthal polynomials, deducing some formulae for the
sums of such polynomials, presenting the generating functions and their Binet-style
formula. It is our intention to continue the study of this type of sequences, exploring
some their applications in the science domain. For example, a new type of sequences
in the quaternion algebra with the use of these polynomials and their combinatorial
properties.
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