Miskolc Mathematical Notes

ERRATUM: SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

NECMETTIN ALP

Received 22 May, 2020

Abstract

We have shown that the results of [4] were wrong. Additionally, correct results concerning the Simpson type quantum integral inequalities are proved.

2010 Mathematics Subject Classification: 26D15, 26D10, 26A51, 34A08
Keywords: q-integral inequalities, q-derivative, Convex functions, Simpson's inequalities.

1. Introduction

In 2018 Tunç et al. [4] obtained Simpson's type quantum integral inequalities. Unfortunately, there are many mistakes in the proofs. Many q-integrals are calculated incorrectly. Besides, the results of lemma and theorems are also wrong. In this paper, we show the errors in the [4].

2. Preliminaries and Definitions of q-Calculus

Throughout this paper, let $a<b$ and $0<q<1$ be a constant. The following definitions and theorems for q - derivative and q - integral of a function f on $[a, b]$ are given in [2,3].

Definition 1. For a continuous function $f:[a, b] \rightarrow \mathbb{R}$ then q - derivative of f at $x \in[a, b]$ is characterized by the expression

$$
\begin{equation*}
{ }_{a} D_{q} f(x)=\frac{f(x)-f(q x+(1-q) a)}{(1-q)(x-a)}, x \neq a . \tag{2.1}
\end{equation*}
$$

Since $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, thus we have ${ }_{a} D_{q} f(a)=\lim _{x \rightarrow a}{ }_{a} D_{q} f(x)$. The function f is said to be q - differentiable on $[a, b]$ if ${ }_{a} D_{q} f(t)$ exists for all $x \in[a, b]$. If $a=0$ in (2.1), then ${ }_{0} D_{q} f(x)=D_{q} f(x)$, where $D_{q} f(x)$ is familiar q-derivative of f at $x \in[a, b]$ defined by the expression (see [1])

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad x \neq 0 . \tag{2.2}
\end{equation*}
$$

Definition 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then the q-definite integral on $[a, b]$ is delineated as

$$
\begin{equation*}
\int_{a}^{x} f(t)_{a} d_{q} t=(1-q)(x-a) \sum_{n=0}^{\infty} q^{n} f\left(q^{n} x+\left(1-q^{n}\right) a\right) \tag{2.3}
\end{equation*}
$$

for $x \in[a, b]$.
If $a=0$ in (2.3), then $\int_{0}^{x} f(t)_{0} d_{q} t=\int_{0}^{x} f(t) d_{q} t$, where $\int_{0}^{x} f(t) d_{q} t$ is familiar q definite integral on $[0, x]$ defined by the expression (see [1])

$$
\begin{equation*}
\int_{0}^{x} f(t)_{0} d_{q} t=\int_{0}^{x} f(t) d_{q} t=(1-q) x \sum_{n=0}^{\infty} q^{n} f\left(q^{n} x\right) \tag{2.4}
\end{equation*}
$$

If $c \in(a, x)$, then the q-definite integral on $[c, x]$ is expressed as

$$
\begin{equation*}
\int_{c}^{x} f(t)_{a} d_{q} t=\int_{a}^{x} f(t)_{a} d_{q} t-\int_{a}^{c} f(t)_{a} d_{q} t \tag{2.5}
\end{equation*}
$$

$[n]_{q}$ notation

$$
[n]_{q}=\frac{q^{n}-1}{q-1}
$$

Lemma 1. [3] For $\alpha \in \mathbb{R} \backslash\{-1\}$, the following formula holds:

$$
\begin{equation*}
\int_{a}^{x}(t-a)_{a}^{\alpha} d_{q} t=\frac{(x-a)^{\alpha+1}}{[\alpha+1]_{q}} \tag{2.6}
\end{equation*}
$$

3. ERratum: Simpson type quantum integral inequalities for CONVEX FUNCTIONS

Here, we will show the errors we mentioned above. For example, in Lemma 4 the followin equality is not correct:

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}}(1-t)\left|q t-\frac{1}{6}\right|_{0} d_{q} t & =\int_{0}^{\frac{1}{2}}\left|q t-\frac{1}{6}\right|_{0} d_{q} t-\int_{0}^{\frac{1}{2}} t\left|q t-\frac{1}{6}\right|_{0} d_{q} t \\
& =\int_{0}^{\frac{1}{6 q}}\left(q t-\frac{1}{6}\right)_{0} d_{q} t+\int_{\frac{1}{6 q}}^{\frac{1}{2}}\left(\frac{1}{6}-q t\right)_{0} d_{q} t
\end{aligned}
$$

$$
-\left(\int_{0}^{\frac{1}{6 q}} t\left(q t-\frac{1}{6}\right)_{0} d_{q} t+\int_{\frac{1}{6 q}}^{\frac{1}{2}} t\left(\frac{1}{6}-q t\right)_{0} d_{q} t\right)
$$

Here, for $q \in(0,1), \frac{1}{6 q} \not \leq \frac{1}{2}$. For instance, $q=\frac{1}{6} \rightarrow 1 \not \leq \frac{1}{2}$. So, the proof of Lemma 4 is not correct. Lemma 5 also have the same errors. On the other hand, since Lemma 4 and Lemma 5 are used in proof of Theorem 1, there are errors in this theorem. Moreover, Theorem 2 and 3 have the same mistakes. For instance, because of (2.6), the following equalities are also not true:

$$
\begin{aligned}
& \int_{0}^{\frac{1}{2}}\left|q t-\frac{1}{6}\right|_{0}^{p} d_{q} t=\frac{\left(1+(3 q-1)^{p+1}\right)(1-q)}{6^{p+1} q\left(1-q^{p+1}\right)} \\
& \int_{\frac{1}{2}}^{1}\left|q t-\frac{5}{6}\right|_{0}^{p} d_{q} t=\frac{\left[(5-3 q)^{p+1}+(6 q-5)^{p+1}\right](1-q)}{6^{p+1} q\left(1-q^{p+1}\right)}
\end{aligned}
$$

The integral boundaries that cause all these errors are chosen independently of q.
Now, let show the following Theorem 1 in [4] is not correct. For this, we give an example.

Theorem 1. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a q-differentiable function on (a, b) and $0<q<1$. If ${ }_{a} D_{q} f \mid$ is convex and integrable function on $[a, b]$, then we possess the inequality

$$
\begin{align*}
& \frac{1}{6}\left|f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)-\frac{1}{(b-a)} \int_{a}^{b} f(t)_{a} d_{q} t\right| \tag{3.1}\\
& \quad \leq \frac{(b-a)}{12}\left\{\frac{2 q^{2}+2 q+1}{q^{3}+2 q^{2}+2 q+1}\left|{ }_{a} D_{q} f(b)\right|+\frac{1}{3} \frac{6 q^{3}+4 q^{2}+4 q+1}{q^{3}+2 q^{2}+2 q+1}\left|{ }_{a} D_{q} f(a)\right|\right\}
\end{align*}
$$

Example 1. Let choose $f(t)=1-t$ on $[0,1]$ and $f(t)$ satisfies the conditions of Theorem 1. On the other hand, ${ }_{a} D_{q} f\left|=\left|{ }_{a} D_{q}(1-t)\right|=1\right.$ is convex and integrable on $[0,1]$. Then we have

$$
\begin{align*}
& \frac{1}{6}\left|f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)-\frac{1}{(b-a)} \int_{a}^{b} f(t)_{a} d_{q} t\right| \tag{3.2}\\
& \quad=\frac{1}{6}\left|1+2+0-\int_{0}^{1}(1-t)_{0} d_{q} t\right|
\end{align*}
$$

$$
=\frac{1}{6}\left|3-\left(t-\frac{t^{2}}{1+q}\right)_{0}^{1}\right|=\frac{3+2 q}{6(1+q)} .
$$

Also,

$$
\begin{align*}
\frac{(b-a)}{12} & \left\{\frac{2 q^{2}+2 q+1}{q^{3}+2 q^{2}+2 q+1}\left|{ }_{a} D_{q} f(b)\right|+\frac{1}{3} \frac{6 q^{3}+4 q^{2}+4 q+1}{q^{3}+2 q^{2}+2 q+1}\left|{ }_{a} D_{q} f(a)\right|\right\} \\
& =\frac{1}{12}\left\{\frac{2 q^{2}+2 q+1}{q^{3}+2 q^{2}+2 q+1}+\frac{1}{3} \frac{6 q^{3}+4 q^{2}+4 q+1}{q^{3}+2 q^{2}+2 q+1}\right\} \\
& =\frac{1}{36} \frac{6 q^{2}+6 q+3+6 q^{3}+4 q^{2}+4 q+1}{q^{3}+2 q^{2}+2 q+1} \\
& =\frac{1}{36} \frac{6 q^{3}+10 q^{2}+10 q+4}{q^{3}+2 q^{2}+2 q+1} \\
& =\frac{1}{18} \frac{3 q^{3}+5 q^{2}+5 q+2}{q^{3}+2 q^{2}+2 q+1} \tag{3.3}
\end{align*}
$$

As we seen, from (3.2) and (3.3) and for $q \in(0,1)$ we write

$$
\frac{3+2 q}{6(1+q)} \not \leq \frac{1}{18} \frac{3 q^{3}+5 q^{2}+5 q+2}{q^{3}+2 q^{2}+2 q+1} .
$$

For instance, choosing $q=\frac{1}{2}$ we have

$$
\frac{4}{9} \not \leq \frac{7}{54}
$$

Therefore, Inequality (3.1) is not correct.
Similarly, other theorems can be shown to be false.

References

[1] V. Kac and P. Cheung, Quantum calculus. Springer-Verlag New York, 2001. doi: 10.1007/978-1-4613-0071-7.
[2] J. Tariboon and S. K. Ntouyas, "Quantum calculus on finite intervals and applications to impulsive difference equations," Advances in Difference Equations, vol. 2013, no. 1, p. 282, 2013, doi: 10.1186/1687-1847-2013-282.
[3] J. Tariboon and S. K. Ntouyas, "Quantum integral inequalities on finite intervals," Journal of Inequalities and Applications, vol. 2014, no. 1, p. 121, 2014, doi: 10.1186/1029-242X-2014-121.
[4] M. Tunç, E. Gov, and S. Balgecti, "Simpson type quantum integral inequalities for convex functions," Miskolc Math. Notes, vol. 19, no. 1, pp. 649-664, 2018, doi: 10.18514/MMN.2018.1661.

Author's address

Necmettin Alp

Duzce University, Department of Mathematics, Faculty of Science, Konuralp, Duzce, Turkey
E-mail address: placenn@gmail.com

