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Abstract. The binary operation aba, called Jordan triple product, and its variants (such
as e.g. the sequential product

√
ab
√
a or the inverted Jordan triple product ab−1a) appear

in several branches of operator theory and matrix analysis. In this paper we briefly survey
some analytic and algebraic properties of these operations, and investigate their intimate
connection to Thompson type isometries in different operator algebras.

1. Introduction

This paper is of survey character and it is organized as follows.
The first part is involved with the standard K-loop structure on the positive definite cone

of a C∗-algebra. We investigate some analytic and algebraic properties of the sequential
product.

In the second part we point out the geometric origin of the motivation of studying Jordan
triple product isomorphisms. Moreover, as an application we describe the structure of
isometries with respect to a special class of distance measures incorporating the Thompson
part metric as well.

Finally, in the last section the corresponding structural result concerning the Thompson
part metric is also presented in the setting of JB-algebras.

2. The standard K-loop structure on positive definite operators

The operation
√
ab
√
a called sequential product was introduced first by Gudder and

Nagy, originally on the so-called Hilbert space effect algebra meaning the operator interval
[0, I], where I stands for the identity operator on the underlying Hilbert space, with respect
to the usual Löwner ordering. In their quantum mechanical interpretation the operator√
ab
√
a a represents a sequential measurement in which a is performed first and b is second.

In what follows A denotes a unital C∗-algebra, if not stated otherwise, and A−1
+ stands

for its positive invertible elements. Considering the operation a ◦ b =
√
ab
√
a on A−1

+ we

arrive at a rich mathematical object as (A−1
+ , ◦) provides a fundamental example of K-loop.

To recall the concept of K-loop, we note that a set S equipped with a binary operation ?
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is called a quasigroup whenever the equations

(2.1) a ? x = b

(2.2) y ? a = b

have unique solutions in S for every a, b ∈ S. A quasigroup with unit is called a loop. A
loop satisfying the identity

a ? (b ? (a ? c)) = (a ? (b ? a)) ? c

is called a Bol loop. A Bol loop with the so-called automorphic inverse property

(a ? b)−1 = a−1 ? b−1

is called a K-loop, or in another words Bruck loop. Let us mention that the abstract
K-loop structure determines exactly the same structure as the so-called gyrogroups [11].
The theory of such objects has been developed by Ungar [12]. Note that the Einstein
gyrogroup provides a particular important example of gyrogroups, which is defined on the
set of admissible velocities

B = {v ∈ R3 : ‖v‖ < 1}
equipped with the velocity addition

v ⊕ u =
1

1 + 〈v, u〉

(
v +

1

cv
u+

cv
1 + cv

〈v, u〉v
)

where cv = (1− ‖v‖2)−1/2 is the Lorentz factor.
The most challenging part in verifying that (A−1

+ , ◦) is indeed a K-loop is to establish
(2.2), that is, one needs to furnish that the equation

ya−1y = b

has a unique solution y ∈ A−1
+ for every a, b ∈ A−1

+ . This is provided by the Anderson-Trap
theorem which states that the Pusz-Woronowitz geometric mean

a#b = a
1
2 (a−

1
2 ba−

1
2 )

1
2a

1
2

is the unique solution of the equality in question. After examining the standard K-loop
structure, the question arises naturally when (A−1

+ , ◦) became a Moufang loop, that is,
when it satisfies

(2.3) (a ? a) ? b = a ? (a ? b)

(2.4) (a ? b) ? b = a ? (b ? b)

(2.5) a ? (b ? a) = (a ? b) ? a.

The identity (2.3) is always satisfied, but the first two hold exactly when the algebra
A is commutative [2]. Another notable property concerning commutativity is that for
a, b ∈ A−1

+ , we have a ◦ b = b ◦ a if and only if ab = ba, that is, commutativity with
respect to the K-loop product is exactly the same as commutativity with respect to the
usual product of the underlying algebra. The proof of this statement is surprisingly short,
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it rests on Jacobson’s lemma, which asserts that σ(ab) ∪ {0} = σ(ba) ∪ {0}, and further
elementary manipulations.

3. The (inverted) Jordan triple product and generalized Mazur-Ulam type
theorems

Before moving on to the formulation of generalized Mazur-Ulam type theorem, let us
recall the classical version and share some ideas of the proof.

Theorem 3.1 (Mazur-Ulam,1932). Let X, Y be real linear normed spaces. Every surjec-
tive isometry T : X → Y is affine.

In the first proof of the Mazur-Ulam theorem, one major step is to show that an isometry
T : X → Y (more precisely, isometric isomorphism) preserves the geometric midpoint, the
arithmetic mean as well. From this it follows that T respects dyadic convex combinations
and thus, by the continuity of the isometry T we infer that T is affine. In this way a
geometric preserver problem in fact can be reduced to an algebraic one. This idea has been
used by Molnár and his coauthors and led us to an amount of generalized Mazur-Ulam
type theorem. Here we present the most general version. To this end, we need the concept
of pointreflection geometries. Let X be a set equipped with a binary operation � which
satisfies the following conditions.

(p1) a � a = a for every a ∈ X ;
(p2) a � (a � b) = b for every a, b ∈ X ;
(p3) the equation x � a = b has a unique solution x ∈ X for any given a, b ∈ X .

Then the pair (X , �) is said to be a point-reflection geometry. The announced Mazur-Ulam
type result of Molnár concerning generalized distance measures 1 reads as follows.

Theorem 3.2 (Molnár, 2015). Assume that (X , �) and (Y, ?) form point-reflection geome-
tries. Let d and ρ be two generalized distance measures on X and Y, respectively. Select
a, b ∈ X and set

La,b := {x ∈ X : d(a, x) = d(x, b � a) = d(a, b)}.
Furthermore, we shall assume the following.

(b1) d(b � x, b � x′) = d(x′, x) for x, x′ ∈ X ;
(b2) sup{d(x, b) : x ∈ La,b} <∞;
(b3) there is a constant K > 1 such that

d(x, b � x) ≥ K · d(x, b), x ∈ La,b.

Suppose that φ : X → Y is a surjective map with

ρ(φ(x), φ(x′)) = d(x, x′), x, x′ ∈ X

and also that

1If X is a set, a function d : X × X → [0,+∞] is called a generalized distance measure if d(x, y) = 0
holds exactly when x = y.
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(b4) the element c ∈ Y with c ? φ(a) = φ(b � a) satisfies ρ(c ? y, c ? y′) = ρ(y′, y) for
y, y′ ∈ Y.

Then we necessarily have
φ(b � a) = φ(b) ? φ(a).

As it is noted in [10], the above theorem is Mazur-Ulam type in the sense that from
this the usual Mazur-Ulam theorem can be concluded with little effort. Indeed, defining
the operations x1 � x2 = 2x1 − x2 and y1 ? y2 = 2y1 − y2 makes the real linear spaces
X,Y point-reflection geometries. Then by the theorem, a real linear isometry T satisfies
T (2x1 − x2) = 2T (x1) − T (x2) which implies that T preserves the arithmetic mean, and
the standard argument at the end of the original proof of the Mazur-Ulam theorem (see
above) can be applied to show that T is affine. In the following we show how the above
Mazur-Ulam type theorems is applicable in the study of certain isometries and distance
measures on the positive definite cones of different operator algebras.

Consider the distance measure between positive operators

dN,f (a, b) = N(f(a−1/2ba−1/2))

where N is a complete, symmetric norm 2 and f :]0,+∞[→ R is a function satisfying

(c1) f(x) = 0 exactly when x = 1;
(c2) there is a real number K > 1 such that |f(x2)| ≥ K · |f(x)| for x ∈]0,+∞[.

Note that from the distance measure dN,f one can recover the usual Thompson metric, by
taking N = ‖ · ‖ and f = log.

Concerning the above type distance measure, it is shown [10] that a so-called generalized
isometry T meaning

dN,f (a, b) = dN,f (T (a), T (b)) for a, b ∈ A−1
+

preserves the inverted Jordan triple product, that is, we have

T (ab−1a) = T (a)T (b)−1T (a)

for every a, b ∈ A−1
+ . Then composing our map with a suitable congruence transforma-

tion (namely, the congruence by the element T (e)−1/2), it can also be assumed that the
transformation in question is a unital Jordan triple isomorphism as well, that is, T (e) = e
and

T (aba) = T (a)T (b)T (a) for a, b ∈ A−1
+ .

The question arises naturally how to proceed? In fact, we have two possibilities. The first
is that we try to describe the Jordan triple isomorphisms directly. This has been done in
[10] in the setting of von Neumann factors that are not of type I2. More precisely, we have
the following result.

Theorem 3.3 (Molnár, 2015). Assume that A,B are von Neumann algebras such that A
is a factor not of type I2. Let T : A−1

+ → B−1
+ be a continuous Jordan triple isomorphism.

Then there is either an algebra ∗-isomorphism or an algebra ∗-antiisomorphism θ : A→ B,

2A norm on the C∗-algebra A is called symmetric if N(axb) ≤ ‖a‖N(x)‖b‖ holds for every a, b, x ∈ A.
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a number ε ∈ {−1, 1} and a continuous tracial 3 linear functional τ : A→ C which is real
valued on the set of self-adjoint elements and τ(e) 6= −ε such that

T (a) = exp(τ(log a))θ(aε)

holds for every a ∈ A−1
+ . If A is of one of the types I∞, II∞, III, then the functional τ

vanishes.

Note that the converse of the above theorem is also true, namely, the last displayed
formula defines a continuous Jordan triple isomorphism. Further we mention that in the
proof a rather strong result on commutativity preserving maps between centrally closed
prime algebras has been applied. This is the main reason why the arguments cannot be
carried out to a more general setting. From the above result it can be derived the following
structure theorem concerning distance measures. For more details we refer the reader to
[10].

Theorem 3.4 (Molnár, 2015). Let A,B be von Neumann algebras with complete, sym-
metric norms N,M , respectively. Assume that f, g :]0,+∞[→ R are continuous functions
both satisfying (c1) and f also fulfilling (c2). Suppose that A is a factor not of type I2. Let
T : A−1

+ → B−1
+ be a surjective map with

dN,f (a, b) = dM,g(T (a), T (b)) for a, b ∈ A−1
+ .

Then there is either an algebra ∗-isomorphism or an algebra ∗-antiisomorphism θ : A→ B,
a number ε ∈ {−1, 1}, an element d ∈ B−1

+ and a continuous tracial linear functional
τ : A→ C which is real valued on the set of self-adjoint elements and τ(e) 6= −ε such that

T (a) = exp(τ(log a))dθ(aε)d

holds for every a ∈ A−1
+ . If A is an infinite factor, then the functional τ is missing.

As for the second possibility, we can apply the so-called commutative diagram argument
involving the original Mazur-Ulam theorem to obtain that

T (a) = exp(h(log a))

for every a ∈ A−1
+ where h is a linear isometry on the set of self-adjoint elements. Once

the structure of h is known, it can be applied to describe T . This was the approach of the
proof of [7, Theorem 4.]. To formulate this result, let us consider the following properties
concerning the continuous function f :]0,+∞[→ R.

(c2’) for some real number c > 0, we have |f(x)| ≥ c outside a neighbourhood of 1;
(c3’) f is differentiable at x = 1 with nonvanishing derivative;
(c4’) |f(t)| 6= |f(t−1)| for some t ∈]0,+∞[.

Theorem 3.5 (Hatori and Molnár, 2017). Let A,B be C∗-algebras. Suppose that T :
A−1

+ → B−1
+ is a surjection, and consider the following statements.

3A functional τ : A→ C is called tracial whenever τ(ab) = τ(ba) holds for all a, b ∈ A.
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1) There are continuous functions f, g :]0,+∞[→ R which satisfy (c1) and (c2’)-(c3’),
and we have

‖f(a−1/2ba−1/2)‖ = ‖g(T (a)−1/2T (b)T (a)−1/2)‖
for every a, b ∈ A−1

+ .

2) There is a Jordan ∗-isomorphism J : A → B, an element d ∈ B−1
+ , a central

projection p and a real number c > 0 such that

T (a) = d(pJ(a)c + p⊥J(a)−c)d

is satisfied for a ∈ A−1
+ .

3) There is a Jordan ∗-isomorphism J : A → B, an element d ∈ B−1
+ and a central

projection p such that

T (a) = d(pJ(a) + p⊥J(a)−1)d

holds for a ∈ A−1
+ .

4) There is a Jordan ∗-isomorphism J : A→ B and an element d ∈ B−1
+ such that

T (a) = dJ(a)d for a ∈ A−1
+

.

Then we have 1)=⇒2). If f = g, we have 1) =⇒3). Moreover, if f = g and (c4’) holds,
then 1)⇐⇒4).

Here the result of Kadison on linear norm isometries between self-adjoint parts of C∗-
algebras has been employed, which asserts that any such map is necessarily implemented
by a Jordan ∗-isomorphism and a multiplication by a central symmetry.

Note that the above result significantly extends the former structural result [6, Theorem
5] on Thompson isometries on the spaces of positive invertible elements where only the
function f = g = log appeared. In addition, the original formulation of the above men-
tioned Hatori-Molná theorem contains further characterizations of Jordan ∗-isomorphisms
incorporating the spectrum and the spectral radius as well. For more details see [7, (4.1)
and (4.2) in Theorem 4.].

We remark that the proof techniques surveyed in the current section with smaller mod-
ifications can be applied to obtain structural result on isometries of certain compact Lie
groups. As for investigations in this direction, we mention the publications [1, 3, 4, 5].

4. Thompson isomeries of JB algebras

In the previous section the structural results were formulated for C∗-algebras or for
certain class of von Neumann algebras. Very recently Lemmens, Roelands and Wortel [9]
pointed out that as for the structural result concerning the Thompson isometries the C∗-
algebra setting is slightly restrictive, since the result of Hatori and Molnár remains valid
in the more abstract setting of JB algebras too. Recall that a Jordan algebra (A, ◦) is a
commutative, not necessarily associative algebra such that

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2
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holds for every element a, b ∈ A. A JB algebra is a normed, complete real Jordan algebra
satisfying

‖a ◦ b‖ ≤ ‖a‖ · ‖b‖

‖a2‖ = ‖a‖2

‖a2‖ ≤ ‖a2 + b2‖
for all a, b ∈ A. Important examples of JB algebras are given by the Euclidean Jordan
algebras and by the self-adjoint part of a C∗-algebra whenever it is equipped with the
Jordan product a ◦ b = (ab+ ba)/2.

Denote by JB[a, e] the JB algebra generated by a and the unit element e. Then the
spectrum of a consists of those real numbers λ such that a−λe is not invertible in JB[a, e].
An element with nonnegative spectrum is called positive. The cone of positive elements is
denoted by A+ and its interior, which consists of positive elements with strictly positive
spectrum, is denoted by A◦+. In any JB algebra A◦+ makes A an order unit space with
order unit e, that is, we have

‖a‖ = inf{t > 0: − te ≤ a ≤ te}.

So the Thompson metric dT can be defined on A◦+ as follows. For a, b ∈ A◦+, we set

M(a/b) = inf{t > 0: a ≤ tb}

and then

dT (a, b) = log max{M(a/b),M(b/a)}.
In terms of the quadratic representation, one can derive a straightforward formula for dT .
To do so, define the triple product {., ., .} as

{a, b, c} := (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c)

for every a, b, c ∈ A. Then the linear transformation Ua : A→ A which is given by

Uab := {a, b, a}

is called the quadratic representation of a, and we can write

dT (a, b) = ‖ logU
b−

1
2
a‖

for every a, b ∈ A◦+. In [9] the authors achieved the following result concerning Thompson
isometries in the setting of JB algebras.

Theorem 4.1 (Lemmens, Roelands and Wortel, 2018). Let A,B be JB algebras. A map
T : A◦+ → B◦+ is a bijective isometry with respect to the Thompson metric if and only if
there is a Jordan isomorphism J : A → B, an element b ∈ B◦+, and a central projection p
such that

T (a) = Ub(pJ(a) + p⊥J(a)−1)

for all a ∈ A◦+
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The proof basically follows the arguments given in [6], but it is adjusted to the setting
of JB algebras. For instance, the Jordan triple product is replaced by Uab, the Pusz-

Woronowitz geometric mean turns to U
a
1
2
(U

a−
1
2
b)

1
2 and so on. Moreover, the proof rests

heavily on the forthcoming result [8, Theorem 1.4] on bijective linear isometries of JB
algebras, which plays the role of Kadison’s result on linear norm isometries of self-adjoint
elements.

Theorem 4.2 (Isidro and Rodriguez-Palacios, 1995). Let h : A→ B be a bijective linear
isometry. Then h(a) = sJ(a) where s is a central symmetry and J : A → B is a Jordan
isomorphism.
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