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ABSTRACT

The conflict between individual and collective interests is in the heart of every social dilemmas established by evolutionary game
theory. We cannot avoid these conflicts but sometimes we may choose which interaction framework to use as a battlefield. For
instance some people like to be part of a larger group while other persons prefer to interact in a more personalized, individual
way. Both attitudes can be formulated via appropriately chosen traditional games. In particular, the prisoner’s dilemma game is
based on pair interaction while the public goods game represents multi-point interactions of group members. To reveal the
possible advantage of a certain attitude we extend these models by allowing players not simply to change their strategies but
also let them to vary their attitudes for a higher individual income. We show that both attitudes could be the winner at a specific
parameter value. Interestingly, however, the subtle interplay between different states may result in a counterintuitive evolutionary
outcome where the increase of the multiplication factor of public goods game drives the population to a fully defector state. We
point out that the accompanying pattern formation can only be understood via the multipoint or multi-player interactions of
different microscopic states where the vicinity of a particular state may influence the relation of two other competitors.

Introduction
Evolutionary game theory provides an efficient mathematical tool to describe the conflicts of interest between individuals
or competitors1–3. This framework is proved to be extremely useful in broad variety of scientific disciplines. Examples can
be given starting from the tiny scale of viruses or bacterias, via plants, animals till human societies4–8. But complex and
spatially structured interactions of companies or countries also raise critical problems, like climate change or depletion of
natural resources, where the importance of this approach is indisputable9–17. The mentioned conflicts can be described by
appropriately chosen elements of a payoff matrix where the utility of a certain strategy depends on the strategy choice of the
partner. In the so-called social dilemma games the actors may choose between two conceptually different strategies, called
as cooperator and defector states. While the former invests some effort into the common interest the latter does not, but only
enjoys the benefit of the other’s contribution. Hence it pays individually not to cooperate, but if all actors behave rationally then
an undesired end, frequently called as the tragedy of the commons, is inevitable18. Not surprisingly, due to the importance
of the problems, we can witness a very intensive research activity in the last decades where scientists try to identify possible
mechanisms, escape routes and conditions which promote cooperation and maintain a sustainable state for systems having
limited resources19–31.

According to the traditional approach the conflict can be handled in the form of pair interactions between competitors,
or alternatively we assume multi-point interactions where actors benefit can only be calculated on the basis of simultaneous
decisions of a smaller group. In social dilemmas the first description is used in prisoner’s dilemma game or snow-drift games,
while public goods game represents the latter approach32, 33.

It is our everyday life experience that people are different and some of them like to participate in large scale joint ventures
while others prefer to focus on face to face, hence limited or personalized interactions. To make a distinction between these
postures we will call these preferences as “alone" and “together" attitudes respectively. Let us emphasize that in our belief the
referred “alone" direction is not equivalent to the so-called “loner" strategy frequently used in evolutionary game theory34–37.
While the latter expresses a situation when a player does not properly interact with anybody else, hence its payoff is independent
of the strategy choice of other players. In our present case, however, what we call “alone" attitude covers exactly the way how
conflicts are treated for instance in the prisoner’s dilemma game. Here an actor interacts with others individually, behaves as a
defector or cooperator, and its payoff does depend on the strategy choice of the other. When a player represents “together"
attitude then multi-point or group-like interactions are preferred. This situation is grabbed by a public goods game where



the simultaneous strategy decisions of group members determine the individual payoff of every related actors. It is also a
reasonable assumption that the above described preferences are not necessarily fixed, but they may also change similarly to the
applied strategies. This presumption establishes a simple four-state model where both individual strategy and attitude co-evolve
during a microscopic adoption. In this way we can study the vitality of different combination of strategies and attitudes in the
framework of an evolutionary game model. As we will show, “together" attitude can dominate the population if the external
circumstances provide safety condition for the cooperator strategy. In other words, when the multiplication factor, which is
the key parameter of public goods game, is large enough then only “together" attitude survives. However, the general role of
the mentioned parameter is less straightforward, because in some cases the system evolves into a full defection state when
we increase the value of the multiplication factor. The explanation of this counterintuitive behavior is based on a delicate
interaction of competing states where the vicinity of a third party may change the relation of competing states.

Methods
For simplicity and for the shake of proper comparison with previous studies we assume that players are distributed on an L×L
square grid where periodic boundary conditions are applied. The actual status of i player is described by two labels. The
first one determines whether player i is cooperator (C) or defector (D). The second label describes whether player i prefers
pair or multipoint (multi-player) interactions. These preferences are denoted by “A” (alone) and “O” (together), respectively.
Therefore the population can be described by a four-state model where every player is in AD, AC, OD, or OC state. For example,
an AD player plays prisoner’s dilemma game with its neighbors exclusively and collects a T temptation value from a cooperator
neighbor, or gets nothing from a defector player. Similarly, an AC player also plays prisoner’s dilemma game with its neighbors
and collects R = 1 payoff from a cooperator neighbor while gets nothing from a defector partner. Shortly, we apply the weak
prisoner’s dilemma game parametrization where R = 1, S = 0, and P = 0 are fixed, while T > 1 is the control parameter
characterizing the strength of the dilemma.
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Figure 1. Average Π payoff values in dependence of cooperation level ρC for prisoner’s dilemma game (filled red box) and
public goods game (open green box). Inset shows the proper values of the original games, while the main plot shows the case
when the payoff values of public goods game are rescaled by an α = 0.266 factor. In this case the accumulated difference
between the payoff values of the games is minimal. The usage of scaled payoff vales makes possible the proper competition
between the “A” and “O” attitudes allocated to the mentioned games.

When a player i is in OC state then it would like to participate in every group ventures where it might be involved. Optimally,
when i is surrounded by “O” players exclusively, player i participates in five public goods games on a square grid. These games
are organized by itself and by its neighbors who have also “O” attitude. But of course, such a joint venture cannot be forced to a
player with “A” attitude, therefore the mentioned player i must play a prisoner’s dilemma game in the latter case. In other words,
in an extreme case a player with “O” attitude might only play prisoner’s dilemma games with its neighbors if it is surrounded
by “A” attitude players exclusively. The definition of the public goods game agrees with the traditional definition33. Namely,
the payoff collected by an OC player from a specific game is Π = (r ·nOC)/nO −1, where nOC is the number of OC players in
the group and nO denotes the number of players in the group who have “O” attitude. Naturally, the minimal value of nO is 2
and it goes up to 5 in the optimal case we mentioned earlier. In case of an OD player the mentioned payoff is Π = (r ·nOC)/nO,
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because this player does not contribute to the common pool.
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Figure 2. Model setup to study the competition of “alone" and “together" attitudes. When calculating the payoff of AD
marked by a yellow background then we sum the payoff elements of four prisoner’s dilemma games played with the neighbors.
Accordingly, Π = 2 ·T +2 ·P for the mentioned player. When we calculate the payoff of OC player also marked by yellow
background then we should consider the fact that two of its neighbors have “alone" attitude, hence OC should play prisoner’s
dilemma game with them. The remaining two neighbors have “together" attitude hence the focal player can play a
three-member public goods game with them in the marked G0 group. The focal player also participates in a three-member
public goods game of G1 group and in a two-member game of G2 group. For the shake of comparable payoff values we
multiply the incomes of public goods games by an α factor. In sum, the total payoff of the mentioned OC player is
Π = S+R+α · (πG0 +πG1 +πG2) = S+R+α · (r ·2/3−1+ r ·2/3−1+ r ·1/2−1). The interactions where prisoner’s
dilemma game is used are marked by dashed while the interactions where public goods game is used are denoted by solid green
links.

We must note, however, that the traditional prisoner’s dilemma game and the public goods game were defined independently
earlier therefore their average payoff values are not comparable. This is illustrated in the inset of Fig. 1 where we plotted
the average payoff values in dependence of the average cooperation level for the classic games. Not really surprisingly, the
average income in the public goods game is significantly higher because players can collect income from five games on a
square grid. Therefore, to make the payoff values comparable and establish a proper competition between attitudes, we should
scale the income of public goods game by an α factor. By using an appropriately chosen value the mentioned payoff values
become comparable as the main plot of Fig. 1 demonstrates. In the rest of this work we will apply the proposed α = 0.266
weighting factor, but emphasize that our qualitative observations remain intact even if we use the original payoff values where
α is formally equal to 1.

To summarize our model definition we plotted a specific configuration in Fig. 2 where we calculated the payoff values
of the marked AD and OC players. As we noted, a player with an “A” attitude always plays prisoner’s dilemma games with
its neighbors even if the latter players may represent alternative attitude. Accordingly, the total income of the mentioned AC
players come from four values (where two of them are zero due to the standard P = 0 parametrization of prisoner’s dilemma
game). Since OC player also has two neighbors who represent “A” attitude therefore two parts of OC’s total payoff come
from prisoner’s dilemma games, too. The remaining three payoff elements are the results of three traditional public goods
games where the focal G0 game contains 3 members and the focal player also participates in a three-member (G1) and in a
two-member (G2) game organized by the neighbors. Importantly, the last three values are multiplied by the above mentioned α

weighting factor.
The microscopic evolutionary dynamics is based on the payoff difference of the neighboring source and target players.

More precisely, a player i adopts the strategy s j from player j with the probability

W =
1

1+ exp[(Πi −Π j)/K]
, (1)
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where K quantifies the noise of imitation process38. Importantly, players can also adopt an attitude from each other where they
use the same imitation probability defined by Eq. 1. These processes, however, are independent from each others, otherwise we
may observe artificial consequence of coupled imitation processes. At the beginning of the Monte Carlo (MC) simulations we
distribute both C, D strategies and “A”, “O” attitudes randomly among players who are on a square grid. During an elementary
process we randomly select a target player i and a neighboring player j. When the corresponding payoff values are calculated
then we determine the imitation probability defined by Eq. 1. After target player adopts the strategy and/or attitude of source
player with the imitation probability. This step is repeated L×L times, which establishes a MC step. In our simulations we
typically applied L = 600 system size and 50000 MC steps to reach the stationary state, but in the vicinity of transition points
we checked our data to avoid finite-size problems. To obtain comparable results with previous studies39, 40 we used K = 0.5
noise level, but we have checked other values to confirm the robustness of our observations.

In the following we explore how different combination of strategies and attitudes compete and interact where the main
parameters are the control parameters of the original games, that is the T temptation to defect for the prisoner’s dilemma and
the r multiplication factor for the public goods game.

Results
Before presenting the evolutionary outcomes of spatially structured populations we note that in a well-mixed system cooperators
cannot survive if T > 1 in the prisoner’s dilemma game or if r < G in the public goods game where G denotes the actual size
of the group. On square lattice the critical temptation value is T = 1.0655 where cooperators die out in the homogeneous
prisoner’s dilemma game and the minimal multiplication factor is r = 3.74 which is necessary for cooperators to survive in the
public goods game39, 41. Importantly, if we apply the earlier mentioned α = 0.266 weighting factor for the public goods payoff
values then this critical r value shifts to r = 4.33.
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Figure 3. Phase diagram of the four-state model in dependence of the key parameters of basic games. r denotes the
multiplication factor of the public goods game, while T is the temptation to defect for the prisoner’s dilemma game. At low r
values those states which represent pair interactions prevail. As we increase r, both attitudes, hence pair and multi-point
interactions, coexist. Interestingly, as we support cooperation by increasing r further the system evolves onto a full defection
state. Cooperation can only recovered for very high r values when the traditional public goods game with multi-point
interactions prevail.

When we extend our traditional models and allow them to compete for space, the resulting behavior is more complicated,
which is summarized in a phase diagram shown in Fig. 3. Here we present the evolutionary outcomes on the plain of T − r key
parameters. When the multiplication factor r is small then the system evolves into the traditional prisoner’s dilemma game
where only those players are present who prefer to play a game via pair interactions. In this case only the T temptation value
matters and if it is not too large then cooperators can coexist with defectors. If we increase the value of multiplication factor
then a new kind of solution emerges: both types of attitudes survive in a complex pattern. Interestingly, as we will point out
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later, the larger multiplication factor does not involve increased cooperation level and higher well-being for players. Actually,
the opposite is true. What is more, by increasing r further the population evolves into a full defection state! And this sad
destination can only be avoided if r becomes significantly higher. In the latter case, however, our extended system evolves into
the traditional model of public goods game where only players with “O” attitude are present.
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Figure 4. Fractions of microscopic states in dependence of multiplication factor r at temptation value T = 1.03. The cross
section of the phase diagram illustrates nicely that there are continuous phase transitions between different phases. In the
coexistence phase between 3.57 < r < 3.92 the fraction of OC state increases first while the portions of AD and AC decrease
simultaneously. Above a critical r value OC starts falling, which eventually leads the population to a full defector state.

Figure 4 helps to understand this highly counterintuitive system behavior where we present the stationary factions of all
microscopic states in dependence of the multiplication factor. This plot suggests that the portion of OC state increases first when
we enter the 4-state phase but above a critical r value it starts falling again and diminishes when we reach the full defection
state. This non-monotonous r-dependence of OC portion is the key feature which helps to understand the main mechanism that
is responsible for the unexpected system reaction on enlarged r parameter. It is important to note that AC and OC players can
coexist with each other in the absence of the other two states when r is small. It is because OC players cannot really enjoy
the advantage of “O” attitude for r values. But this relation changes qualitatively when r exceeds a certain value. In the latter
case neighboring OC players can support each other so effectively that they can dominate AC players. As a result, AC and OC
players cannot coexist anymore but the latter state prevails. The value of this threshold r value agrees qualitatively with the
position where the portion of OC starts decaying again. Perhaps this argument may sound unreasonable because we would
expect better conditions for OC for higher r values. But it is true that the success of OC over AC involves the former cooperators
global decline. Namely, the value of r is still not large enough for OC players to fight effectively against OD players. As we
mentioned earlier, r > 4.33 is necessary for stable coexistence in the pure public goods game. Hence OC players, who beat AC
fellows, remain alone against OD, and become vulnerable. In other words, the active presence of AC players is essential for OC
players to survive at such a small r value.

To confirm our argument in Fig. 5 we present two representative pattern formation processes at two different values of r,
which highlight the crucial role of OC players. For a clear demonstration of leading mechanisms we here used a prepared initial
state where different microscopic states are arranged onto homogeneous patches42, 43. This pattern is shown in the left column
of Fig. 5. For a proper comparison we apply the same initial state for small and higher values of multiplication factor, too.
When r is small, shown in the top row, light blue OC players can coexist with dark blue AC players in the absence of the other
two states. This solution is marked by white ellipses in panel (b). We should not forget, however, that dark blue AC and dark
red AD players can coexist because of the relatively low value of temptation T . This solution gradually displaces the light red
OD domains as shown by an ellipse in panel (c). Since OD cannot exploit AC players better than AD state therefore OD has
no advantage over AD, hence the random change will gradually destroy the homogeneous domain of OD state. Similarly, the
mixture of AC and OC cannot be stable against the mentioned AC +AD composition because a full cooperator state is unstable
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Figure 5. Time evolution of the pattern formation at two representative values of multiplication factor r when T = 1.03. The
common prepared initial state is shown in the left side where we arranged homogeneous patches of competing states denoted
by different colors. As in previous plots, dark colors mark players having “A” attitude, wile light colors denote players with “O”
attitude. Furthermore different shades of red color mark defector strategies, while various blue colors for cooperator strategies.
The legend for the microscopic states are shown in the middle row of the plot. The top row from panels (b) to (d) illustrates
how the initial patchwork evolves at small (r = 3.4) multiplication factor. Here, as white ellipses shown in panel (b), AC and
OC players can coexist due to the low value of r. Because of the modest temptation value AD and AC states can coexist and this
mixed phase gradually beat OD players. This process is marked by a white ellipse in panel (c). In the final state only players
with “A” attitude can survive. When r is higher, as shown in the bottom row, OC beats AC who gradually diminishes. This is
shown by a white ellipse in panel (e). The lonely OC, however, becomes vulnerable against OD and the previously victorious
domains of OC players gradually shrink. In the absence of other states AD and OD would be neutral, but the vicinity of
cooperators helps the latter to beat the former defector state. This is shown by a white ellipse in panel (f). Finally, only defector
state survive, but a slow voter-like stochastic dynamics will drive the system onto a homogeneous state.

at these parameter values. As a result, the system eventually evolves into the traditional prisoner’s dilemma game where only
players with “A” attitude are present. This final state is shown in panel (d).

The relation of OC and AC players is qualitatively different at higher r value, which has a significant consequence on the
final outcome. This process is shown in the bottom row. Due to the higher r value OC players can support each other more
effectively and they gradually crowd out AC players. This process is illustrated by a declining island of dark blue AC state and
marked by an ellipse in panel (e). But light blue OC cannot be happy too long because they become vulnerable against light red
OD players. We should note that the value of r is still too small to ensure a stable coexistence between different players with
“O” attitude. Consequently, the fat light blue OC domain starts shrinking, as it is illustrated by panel (f). Notably, defectors
with different attitudes are neutral to each other: in the absence of cooperators there is no one to exploit, hence zero payoff
difference in Eq. 1 dictates a random adoption of an attitude between defector players. There is however, a slight asymmetry
which gives an advantage to OD: when cooperators are still alive then their vicinity offers a higher propagation chance to OD.
Note that AC or OC would coexist with AD because they should play the traditional prisoner’s dilemma game with the latter
player. But OD propagates more efficiently in cooperator domains which results in a higher portion of OD when only defectors
remain. This stage is shown in panel (g). We stress that, however, this is not the final state because the surface-tension free
voter-model like coarsening will result in a homogeneous final destination44. Indeed, this is a logarithmically slow process
where the attitude which has larger initial are has a higher chance to prevail45, 46.

Summing up, the competition of the “alone" and “together" attitudes depends sensitively on the relationship of OC and AC
players. When the multiplication factor of public goods game is low then these players can coexist, which prevents OD players
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to spread fast. As a result, the stability of players with “alone" attitude can manifest and the final state is characterized by the
coexistence of AC and AD players. But if we support OC players by increasing the multiplication factor then we may reach an
undesired evolutionary outcome. Indeed, OC can dominate AC in the latter case, but it becomes vulnerable against OD players
hence defection can prevail. In between the mentioned solutions there is a parameter region where all the assumed microscopic
states coexist.
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Figure 6. The average income for the whole population in dependence of multiplication factor r at different temptation values.
The applied T values are marked in the legend. Π is constant for small r values because only “A” players, who play prisoner’s
dilemma game, are present. Interestingly, the emergence of “together" attitude is detrimental for small r values, because the
4-state solution provides a lower general income for players. This undesired consequence can only be fixed for high r values
when the traditional public goods game represented by “O” players becomes dominant.

Interestingly, however, the presence of the ”together" attitude at low r values does not really serve the population. This
anomaly can already be seen in Fig. 4 where the total fraction of cooperator states cannot be elevated by increasing r in the
4-state phase. But this counter-intuitive behavior can be made more visible if we present the average general income of players
in dependence of the multiplication factor. This is shown in Fig. 6 for different temptation values. These curves underline
the unexpected consequence of the emerging “O” attitude more dramatically: in sharp contrast to all previous experiences,
the increase of r results in a lower general income of players and drives the population toward an undesired evolutionary
outcome. And this solution can only be avoided for even higher r values when the system evolves into the two-state version of
the traditional public goods game.

Discussion
Is it a generally valid recommendation to be part of a group or sometimes is it better to fight alone when we face a conflict that
is represented by a social dilemma? Motivated by this question we here studied an extended model system where both attitudes
are present beside the traditional defector and cooperator strategies. In particular, some players prefer to interact individually
via pair interactions, hence they are tagged by an “alone" (“A”) attitude, but others favor multi-point interactions by having a
“together" (“O”) character. While the original conflict between individual and collective interests is preserved, these preferences
can be handled via a traditional prisoner’s dilemma and a public goods game respectively. Our principal goal was to explore
how these attitudes interact if we allow them to change via the widely applied imitation process driven by individual payoff
difference of source and target players.

We note that the simultaneous usage of different games was already used by some previous works47, 48. But in these cases
the application of diverse payoff elements was a predefined microscopic rule which was assigned to specific players or the usage
of alternative payoff elements were the subject of a time-course49–53. In our present case, however, the application of different
payoff elements is the consequence of a natural evolutionary process which is driven by an individual imitation procedure.
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In the extended system the two classical games emerge as extreme cases at different edges of the parameter range and their
simultaneous presence are detected at an intermediate parameter interval. Interestingly, this mixed state, which evolved via
individual success of strategies and attitudes, offers a lower general income for the whole population. This phenomenon and the
resulting pattern formation can be explained as a subtle interplay between cooperator strategies of different individual attitudes.
Importantly, the spatial character of population has a key function in the emergence of these solutions, because the vicinity
of a third-party has a crucial role in how the relation of competing microscopic states may change and alter the evolutionary
path54–56. This feature can be detected in several alternative systems and will always inspire future studies of networked or
spatially organized populations.

Interestingly, our extended model offers cooperator strategy to survive for smaller synergy factor values which cannot be
observed in the traditional model where only public goods game is considered. For a fair competition of attitudes represented
by different games, we applied scaled, or weighted values for public goods game to ensure comparable incomes for both games.
Interestingly, our qualitative observations remain intact when we apply the original unweighted payoff values of the public
goods game. In the latter case the only difference is the parameter range where the 4-state solution emerges moves toward
smaller r values and evidently the size of the coexistence phase shrinks significantly. For example for T = 1.02 this interval is
between 2.16 < r < 2.28. In sum, our observations fit nicely into previous research experiences which highlight that multi-state
spatial population offer novel system behaviors that cannot be detected in well-mixed or unstructured systems and new kind of
solutions emerge which would not exist otherwise57–62.
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