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Adaptive Image Decomposition into Cartoon and
Texture Parts Optimized by the Orthogonality
Criterion

D. Szolgay, Student Member, IEEE and T. Szirdnyi, Senior Member, IEEE

Abstract—In this paper a new decomposition method is in-
troduced that splits the image into geometric (or cartoon) and
texture parts. Following a total variation based preprocesssing,
the core of the proposed method is an anisotropic diffusion
with an orthogonality based parameter estimation and stopping
condition. The quality criterion is defined by the theoretical
assumption that the cartoon and the texture components of an
image should be orthogonal to each other. The presented method
has been compared to other decomposition algorithms through
visual and numerical evaluation to prove its superiority.

Index Terms—image decomposition, texture segmentation, To-
tal Variation, Anisotropic Diffusion, quality criterion

I. INTRODUCTION

Image decomposition into meaningful components has a key
role in many image processing applications. In this paper,
we focus on decomposition into texture and non-texture (or
cartoon) components. This kind of image decomposition can
be useful for image compression where compressing the
cartoon and the texture components separately can provide
better results [1], for image denoising [2], [3] since zero mean
oscillatory noise can be regarded as a fine texture, image
feature selection [4], 2D and 3D computer graphics and main
edge detection as illustrated in [5], etc.

Recently published algorithms for texture/cartoon decom-
position [4]-[8] are mostly based on total variation (TV)
minimization inspired by the work of Yves Meyer [9]. Total
variation based regularization dates back to Tikhonov [10].
The most widely known form was introduced in image pro-
cessing by Mumford and Shah [11] for image segmentation
and later by Rudin et al. [3] for noise removal through the
optimization of a cost function as follows:

Q Q

where u is the cartoon component of the original image f,
v = f — w is the texture, [, |Du| denotes the total variation
of u in  and X is a regularization parameter. The first
part produces a smooth image with bounded variation upon
energy minimization for the cartoon component, while the
second ensures that the result is close to the initial image.
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The regularization of Rudin et al. [3] (ROF in the following)
was used as an image denoising and deblurring method, since
it removes fine, oscillating, noise-like patterns, but preserves
sharp edges.

In [9] Meyer proposed a different norm for the second,
texture part of (1), which is better suited for oscillatory
components than the standard Lo norm:
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where ||.||. is defined on a suitably defined Banach G space
as follows:
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over all g1 and g, such that v = div(g) where § = (g1, g2).

Other variations of eq.(1) are summarized in [5].

Beside the choice of regularization, other techniques are
used to enhance the quality of the decomposition: in [7],
the authors propose an image decomposition and texture
segmentation method via sparse representation using Principal
Component Analysis (DPCA). In [8], an algorithm (DOSYV) is
introduced to find the optimal value of the fidelity parameter
(A in eq.(1)) based on the observation of Aujol et al. in [12]
concerning the independence of cartoon and texture.

Looking at the palette of the different solutions, we can
see that the decomposition into cartoon and textured partitions
requires tackling the following main issues:

o Adaptive scale definition of texture and cartoon (cc.
outline) details;

« Reasonable process that filters out textured parts while
keeping the main outlines;

¢ Quality criterion for the efficiency of the decomposition:
goal function of the process.

Some aspects of these issues have been addressed in [13]
where preliminary results were introduced. In the following,
we overview the related contributions and then we discuss our
proposed solutions to the above issues.

A. Related Works

In this section, we shortly summarize published results
closely related to the proposed method: non-linear filtering
is introduced in [5], Anisotropic Diffusion in [14]-[16] and
measures of independence in [12], [17], [18].
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1) BLMV Nonlinear Filter: Buades et al. have recently
proposed a non-linear method inspired by eq.(2) (BLMYV filter
in the following) that calculates local total variation (LTV) for
each pixel on f before and after filtering the image with a o
sized low pass filter, L, inspired by Y. Meyer [9]. The relative
difference of the calculated LTVs shows if the observed pixel
is part of the texture or the cartoon, since the oscillatory
parts’ LTV will change radically, while the LTV of the cartoon
parts will be left virtually unchanged (although blurred). The
cartoon image, u is composed based on this information: if the
relative difference is high for a pixel r, then u(r) will be equal
to the low pass filtered (L, *f)(r), otherwise u(r) = f(r). The
results of this simple method are impressive on the presented
examples in [5]: the edges are preserved as long as o is not
too large and the texture components are blurred with L.

The right choice of ¢ is important to get the best result,
however, it is possible that there is no such ¢ which elim-
inates all the textures but keeps the non-texture components
on the cartoon. The existence of a content adaptive scaling
parameter can be derived from scale-space theory, as it has
been introduced in the work of Lindeberg [19].

2) Anisotropic Diffusion: The general goal of diffusion
algorithms is to remove noise from an image by using partial
differential equations (PDE). Diffusion algorithms can be
classified as isotropic or anisotropic. Isotropic diffusion can
be described by the following equation:

of (z,y,1)
ot

where f(z,y,t) : R?> — R¥ is the image in the continuous
domain, with (x,y) spatial coordinates, ¢ an artificial time
parameter and V f the image gradient. f(x,y,0) is the original
image. This diffusion is equivalent to using a Gaussian filter
on the image, which blurs not only the noise or texture
components, but the main edges as well.

In [20] Gébor and later in [14] Perona and Malik proposed
anisotropic diffusion (AD) functions that, according to scale-
space theory (see works of Florack [21] or Alvarez, Lions
and Morel [22]) allows diffusion along the edges or in edge-
free territories, but penalizes diffusion orthogonal to the edge
direction:

=V f )

of (x,y,t)
ot

where ||V f|| is the magnitude of the gradient and g¢(.) is the
weighting function that controls diffusion along and across
edges. The discretized form of their diffusion equation is as
follows:

=V- (g IV V) Q)

A
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(6)

where [ is the processed image, («, y) is a pixel position, ¢ now
denotes discrete time steps (iterations). The constant A € R
is a scalar that determines the rate of diffusion, n(z,y) is
the spatial neighborhood of (z,vy), |n(z,y)| is the number of

neighboring pixels. V" ¥) f(x,y,t) is an approximation of
the image gradient at a particular direction:

VI flay,t) = f(@y 1) — fz,y.0), (@, y) € n(z,y)

(N
AD belongs to a theoretically sound scale-space class of
differential processes ensuring the denoising of an image along
with the enhancement of its main structure [23]. We will
show that the AD as proposed by Perona and Malik is not
suitable for cartoon/texture decomposition, since the texture
part might contain high magnitude edges, which would inhibit
the diffusion. As a solution to this problem, the authors of [1]
suggest that the AD algorithm is used with modified weights:
instead of using Hv(x/’y/)f(at,yJ)H as the parameter of the

weighting function, they use the edges of the Gaussian filtered
image, V(G, * f) :

)

[V (G 1) (@ 1y,0) = (Go % 1) (2,9,0)
(Jfl, y/) S 77(337 y)

®)

where G, is a Gaussian filter with ¢ bandwidth and * denotes
the convolution. Using a blurred image to control diffusion
directions will give better results: texture edges will not hinder
the diffusion, but the strong main edges will. Yet the quality
of the solution relies heavily on the o parameter: with small o,
some texture might remain on the cartoon, while with greater
o, some of the cartoon edges will disappear.

In Section II we will propose an algorithm which utilizes
the smoothing property of AD, while it preserves edges based
on whether they belong to a cartoon or texture and not their
level of magnitude.

3) The Use of Independence in Image Decomposition:
The independence of the carton part and the texture/noise part
of the image was used in denoising, decomposition [12] and
restoration [18] algorithms.

In [12], Aujol et al. propose the use of the correlation
between the cartoon and the oscillatory (noise, texture) com-
ponents of a decomposition to estimate the regularization
parameter A. The assumption made in their model is that these
two components are uncorrelated, which makes intuitive sense
(as stated in [8]), since every feature of an image should
be considered as either a cartoon feature or a textural/noise
feature, but not both.

In [18], the Angle Deviation Error (ADE) - introduced in
[17] - is used as a measure of independence to automatically
find the best stopping point for an iterative non-regularized
image deconvolution method. As the deconvolution problem
is ill-posed, after a certain point, further iterations will only
amplify the noise on the estimated image. The heart of the
method in [18] is to find the iteration, where the change of

v (9 (HV(””/*?//)f(:Ly,t)H)) V&) f(z, ythe estimated image in one time step X (t) — X (¢t — 1), and

the estimated image itself (X (¢)) are the most independent of
each other. The described ADE measure is somewhat similar
to correlation [12], but it is based on the pure orthogonality
of two image partitions (e.g. clear image and noise):

(@, P) )‘

ADE(Q, P) = |arcsin (|Q|P|
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where @, P € R™ and (@, P) is their scalar product. This
measure is different from the standard correlation, where zero-
mean vectors are used to calculate the scalar product and the
normalization is done with the vectors’ standard deviation:

COTT(Q P) _ CO’U(Q,P) _ Z?:l(Qz - NQ)(Pz' - ,LLP)
’ B g op N n-oQ-op

(10)
where cov(.) is the covariance over the elements of vectors,
0Q, g and o p, up are the standard deviation and the expected
values of the elements of () and P respectively, and n is the
size of the vectors.

Comparing the two measures, we can see that they are
very similar: if both () and P were zero mean, the two
measures would actually give the same result. However, in
cartoon texture decomposition only the texture part has an
inherent zero mean, while the cartoon does not. This makes
a small difference in the resulting decomposed images in
favor of the ADFE measure, as it will be shown in Section
III; ADFE strengthens the image partitions to being really
independent (geometrical orthogonality in R™), while corr is
for the estimation of regression.

B. The Contribution of the Paper

In the following we will show how independence can
be used to separate better the texture and cartoon parts of
the image by using ADFE orthogonality measure to locally
estimate the best parameter of the BLMV filter. The edge
inhibitions of the AD are initialized by the filtered image. Then
the ADF is calculated again on the diffused image to stop the
diffusion at the point where the orthogonality of cartoon and
texture components is maximal.

To sum up, we offer theoretically clear solutions for the
main issues:

« Adaptive scale definition by using locally optimal BLMV
filter tuned by ADE measure;

« Anisotropic Diffusion, initialized by the new adaptive
BLMV to better separate texture from cartoon;

o Orthogonality criterion for the quality measure of the
decomposition (stopping condition to AD).

In Section II, we overview in detail our proposed solutions
for the above issues. To validate the proposed method, in
Section III, we will show results on real life images, and also
on artificial images where numerical evaluation is possible.

II. CARTOON/TEXTURE DECOMPOSITION USING
INDEPENDENCE MEASURE

In this section, the orthogonality based cartoon/texture de-
composition method is described in detail. The core algorithm
is the AD, which is initialized and stopped using BLMV filter
and ADF independence measure.

A. Locally Adaptive BLMYV filter

As it has been mentioned earlier, the BLMYV filter uses the
same o sized low pass filter for the whole image, while there
is no guarantee for the existence of a single sigma that would

Authors manuscript, published in IEEE TRANSACTIONS ON IMAGE PROCESSING 21:(8) pp. 3405-3415. (2012)

(a) Cartoon with o = 3 (b) Texture with o = 3

(c) Cartoon with o = 4

(d) Texture with o = 4

Fig. 1. The cartoon and texture component of a part of the Barbara image
(see the original in Fig.6(a)) produced by the BLMV method with o = 3 and
o = 4, respectively. Note that the texture of the tablecloth is not completely
removed by the smaller sigma, while the edges of the cover are blurred if we
choose a larger sigma that eliminates the texture from the cover.

remove all texture from the image without blurring the cartoon
edges (see Fig.1.).

We propose the use of different o for the different parts of
the image based on the independence of the removed texture
component and the remaining cartoon component. This theory
is similar to the one proposed in [12], although in our case the
parameter selection has to be locally adaptive. The reason for
this difference lies in the purpose of the methods: while in [12]
the authors’ goal was noise removal, where one can assume
that the parameters of the noise are the same for the whole
image, here we want to remove texture components which may
vary in many aspects (e.g. scale, magnitude) across the image.

To make the filter locally adaptive, BLMV filtered images
were calculated for a given range of the scale parameter:
0; € [s1;82]. Let u,,, vy, denote the cartoon and texture
components of the f input image, produced by the BLMV
filter with o; parameter.

The image is then divided into non-overlapping small cells
(5 pixel by 5 pixel in our experiments), and around each cell a
larger block (21 by 21) is centered, in which the ADE measure
is calculated:

(ug, (z,y)v3, (=, y))
uL ()] [0, (2.9)] )|
(1)
where u®(x,%) and v’(x,y) denote the cartoon and texture
components of the block which is centered around the cell
containing (z,y) pixel.
It is worth noting that the texture component of an image

should have zero mean, since it is the difference of the

ADE(u((,f’y),vgf’y)) = |arcsin (
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textured area and the diffused background. To eliminate the
consequences of the quantization error through the iterations,
the texture component is biassed to be zero mean when the
ADE function is computed.

The o with minimal ADE is chosen to be the parameter for
each pixel in the cell. For the output cartoon image the value
of the pixel, uy(z,y), will be the following:

wal,y) = u e (2,) (12)

o{#¥) = argmin (ADE (u’, (13)

(2,y),v5,(2,9)))
oi€[s1;82]

This cell-based scheme is used to reduce the computational
workload: instead of calculating the block correlation for each
pixel, we calculate it for small cells. To avoid the blocking
effect, a soft Gaussian smoothing was used on the parameter
image of the same size as the input image and conta1n1n§ the
corresponding o value in each (x y) point: p(x,y) = om

For the smoothing Gaussian o = 2pizel was applied w1th
2% (0 *5)+1 window size. However the result is not sensitive
to these numbers within a reasonable range. An example
result of the described method can be seen on Fig.2. and the
corresponding parameter image on Fig.3.

Fig. 2. Cartoon and texture components of the BLMV filtered Barbara image
(Fig.6(a)) with automatic o selection.
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Fig. 3. The parameter map of Barbara image (Fig.6(a)).The brighter pixel
corresponds to greater value used on that location. In this image the value
of o is between 0 and 5 and it is linearly stretched between O and 255 for
demonstration.

B. Anisotropic Diffusion with adaptive BLMV filter and ADE
stopping condition

The above described adaptive BLMV filter (aBLMYV in the
following) clearly performs better than the original one (see
Section III), but it still faces a problem at the borders where
cartoon and texture parts meet: either the cartoon edges are
blurred, or the texture remains on the cartoon component close
to cartoon edges. We propose to use AD initialized with a
cartoon image produced by aBLMV filter and stopped by
ADE measure. AD preserves high magnitude edges and blurs
weaker ones, but obviously a texture can contain strong edges
while a cartoon edge can be weak. As a result, AD may blur
important edges of the cartoon and keep unwanted edges of
the texture.

Similarly to [1], where the diffusion weight function was
calculated on a Gaussian blurred version of the image, we
propose to calculate the g(.) weight function of eq.(6) by using
the aBLM V-filtered image resulting in the following diffusion
equation:

A
[,y t+1) = f(z,y,t) + @l
Z V(z’,y') (g (V(wl’y’)ua(% y))) V(zl’y/)f(xv Y, t)

(«"y")en(z,y)

(14)

Note that the aBLMYV filter, could be easily replaced in
the algorithm by any other method, which blurs the texture
but preserves cartoon edges. We tested various methods, like
simple Gaussian blur or the linear filter used in [5], and we
have found that the aBLMYV filter performs the best. TV based
methods like TVLI [4] and ROF were also tested, but their
results were no better than the result of any of the respective
methods (TVL1 or ROF).

On u, of eq.(12), the texture parts are blurred and they do
not contain strong edges, while the cartoon parts are more or
less preserved. Choosing a low value for the rate of diffusion
(A) means that the diffusion can preserve even the weak edges
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of the cartoon part, but it blurs texture parts completely (since
it is not inhibited by edges). Fig. 4 shows the cartoon and
texture components produced by the method proposed above
(AD with ADE).

To avoid oversmoothing of important edges, the iteration of
the AD must be stopped at the right moment. For this purpose,
we utilize the independence property of cartoon and texture
components in the same manner as we did in Section II-A,
with the difference that here we are searching for the iteration
count ¢ that minimizes ADFE(u;,v;) for each block (the size
of the blocks is 21 by 21 pixels).

The cartoon component of the proposed method is produced
as follows:

(15)

(16)

u(w,y) = f(xayytADE)a
tADE = firgmin (ADE(fb(.’I},y,l),Ub({E,y,Z)))

i=1..ITmax
where f(z,y,tapg) is the (z,y) pixel of the diffused im-
age after t4ppg iterations, I,,,, is the maximum number of
diffusion iterations, f°(x,y,4) and v®(x,y,i) = f(z,y,0) —
fb(z,y,i) are the cartoon and texture components, respec-
tively, of the block that is centered around the cell containing
(z,y) pixel after the ith diffusion iteration.

Fig. 4. The cartoon and texture components of the Barbara image produced
by the proposed anisotropic diffusion model with ADE based stopping
condition.

If the diffusion is not stopped automatically, but after fixed
number of iterations, then the texture will not be eliminated

Authors manuscript, published in IEEE TRANSACTIONS ON IMAGE PROCESSING 21:(8) pp. 3405-3415. (2012)

completely from the cartoon or some parts of the cartoon
component will be apparent on the texture image, as it can
be seen on Fig.5.

(a) Cartoon and Texture after 10 iterations

(d) Cartoon and Texture after 100 iterations

Fig. 5. The cartoon and texture components of a part of the Barbara image
produced by the proposed anisotropic diffusion model after 10, 30, 50 and
100 iterations.

III. RESULTS

The evaluation of the quality of cartoon/texture decom-
position is usually done on visual examples, since there
is no generally accepted objective method for ground truth
generation in case of real images. Sometimes it is difficult
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Fig. 7. The artificial images used for numerical evaluation. Left column:
original image, Middle column: cartoon component, Right column: texture
component.

even for a human to decide if a certain part of the image is
texture or not.

Hence, to evaluate the quality of the different methods, we
show the decomposition results of example images (see Fig.6),
but we also evaluate numerically the competing methods on
artificial images (see Fig.7) where the ground truth cartoon
and texture parts are available.

We have compared the proposed method to the following
decomposition methods: BLMV-filter [5], aBLMV-filter (also
proposed in this paper), Anisotropic Diffusion [14], DPCA
[7], DOSV [8], ROF [3], TVL1 [4]. The codes for the above
methods were provided by the authors, and we used them
with the best tuned parameters in each individual test case.
For numerical evaluation, we used the parameters that gave
the best numbers, and in case of subjective evaluation, the
parameters that gave the best visual result. For the proposed
method, we kept all the parameters, except one: the o range
for the aBLMV was changed to the same transparent scale
parameter as it was for the original BLMV. The other param-
eters were set to a constant value: the maximum number of
iterations for the AD was set to 100, the A\ parameter of eq.
(6) was set to 2. Note that A = 2 is a low value, making the
AD very sensitive to edge inhibitions, which helps the better
preservation the cartoon edges. The only parameter that was
not constant during the tests is the [s1, so] range of the 0. The
usual values were s; = 0.5 and sy = 7. The only time when
the values were different was for the City image, where we
set so = 4 to preserve better the cartoon details of the image.

For better visibility, the contrast of the texture images was
linearly stretched on the demonstrated figures.

A. Visual Evaluation on Real Life Images

For the visual evaluation, one has to consider how strong
the remaining cartoon parts on the texture image and the
remaining texture part on the cartoon image are. For a part of
the Barbara image, we can see on Fig.8 that 5 methods (AD,
BLMYV, TVLI1, ROF, DOSV) cannot completely eliminate the
texture from the table cover, while there are cartoon edges
apparent on the texture image. DPCA can eliminate the texture
from the cartoon image, but the image itself becomes less
smooth, and the slow changes of gray level values are also
apparent on the texture image (to observe the differences in
detail please consider viewing the digital version). The BLMV
with adaptive local parameter selection (aBLMV) and the
proposed method eliminate the texture from the cartoon while
virtually no cartoon appear on the texture image (see Fig.8).

On the Geometry image, all the methods eliminate the
texture from the cartoon part, but all of them bring some
cartoon edges on the texture (see Fig.9). Here one should
consider how strong the cartoon edges on the texture image
are, and also how precise the cartoon part is.

The third image shows city towers. This image has precise
edges, which favors the TV based methods, especially ROF
(see Fig.10). However, some artifacts can be seen on cartoon
image of ROF, as the rectangularly shaped cloud at the top of
the building on the left, or the disappearing top of the same
skyscraper. Most of the methods blur some parts of the image,
and almost none of them can eliminate the vertical line texture
from the darkest building.

For the fourth image (Pillars), the question is how well the
pillars are preserved on the cartoon image (or how strong the
edges of the pillars on the texture image are) and how blurred
the greenery in the background is (see Fig.11). Here we can
say that BLMV, DOSV and TVLI produce good results, but
they are outperformed by aBLMYV and the proposed method,
while AD and ROF preforms very poorly: the texture is
slightly blurred on the cartoon image and the edges of the
pillar are already obviously present on the texture part. DPCA
blurs the texture the best (similarly to the proposed method),
but, in the meantime, it brings some strong cartoon edges to
the texture part.

The last image, the Zebra is quite challenging, since the
texture of the Zebra has a wide range of sizes. See results
on Fig.12. AD and ROF preform poorly, since most of the
texture remains on the cartoon, while non-textural parts like
slow changes of gray level values and non-textural parts of
the background are apparent on the texture image. As it was
mentioned earlier, AD is not suited for the tasks, since the
edges of the texture are stronger than some of the cartoon
edges, therefore the cartoon edges are eliminated while the
texture edges are kept unchanged. DOSV cannot eliminate the
larger texture parts without blurring the cartoon. BLMV blurs
the cartoon even more, but it eliminates most of the texture,
although not as efficiently as aBLMV or the proposed method.
TVL1 and DPCA perform similarly: they both eliminate most
of the texture, but a lot of non-textural edges are apparent on
the texture image as well.
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(a) Barbara (787x576, ROIL: 301x301)

(c) City (436x232, ROI: 151x151) (d) Pillar (256x256) (e) Zebra (256x256)

Fig. 6. Images used for visual evaluation. In parentheses after the image name there is the size of the image and the size of the Region of Interest (ROI) if
the latter examples are using only a part of the image.

(b) BLMV [5] (c) aBLMV

(d) DPCA [7] (e) DOSV [8] (f) TVLI [4]

(g) ROF [3] (h) Proposed AD-aBLMV-ADE

Fig. 8. Separation of cartoon and texture components (Barbara)
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(b) BLMV [5] (c) aBLMV

\ 1
4 = 1
Y

« : <

(e) DOSV [8] (f) TVL1 [4]

; < E =
(g) ROF [3] (h) Proposed AD-aBLMV-ADE

Fig. 11. Separation of cartoon and texture components (Pillar)

(d) DPCA [7] (f) TVLI [4]

() ROF [3] (h) Proposed AD-aBLMV-ADE

Fig. 12. Separation of cartoon and texture components (Zebra)
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B. Numerical Evaluation on Artificial Images

Numerical evaluation is a difficult task for cartoon/texture
decomposition since usually there is no ground truth for the
images. For this reason most papers in the field lack this kind
of comparison and rely only on subjective visual evaluation.
We used artificial images for numerical evaluation where
the ground truth is available. The following measures were
calculated to compare quality: edge absolute difference of the
cartoon (ead(u)) and texture (ead(v)) images, the absolute
difference of the cartoon image (ad(u)), and the correlation
coefficient of the estimated texture and the GT texture. We
define these measures as follows:

ead(u) =le(u’) — e(u)|,
ead(v) =le(v’) — e(v)],
ad(u) =|u" — ul, a7
corr(v',v) = cov(v',v)7
Oy Oy

where u and v are the ground truth cartoon and texture
images, u’, v are the cartoon and texture images produced by
a decomposition method and e(.) is the Prewitt edge image
[24]. For ead(u), ead(v) and ad(u), the lower value means
better result, while for the correlation coefficient, the higher
values correspond to better results. In general the proposed
AD-aBLMV-ADE method performs better than the rest (see
TABLE I- 1V).

Scores for the 1st image of Fig.7
ead(u) ead(v) ad(u) corr(v’,v)
AD [14] 0.4585 0.3870 | 3.7430 0.9460
BLMYV [5] 0.8105 | 0.6698 | 4.5584 0.9238
aBLMV 0.7668 | 0.6333 | 4.3541 0.9298
DPCA [7] 0.8322 | 0.6701 5.7892 0.8939
DOSV [8] 0.5556 | 0.5130 | 3.7948 0.9422
TVLI [4] 0.9311 | 0.7802 | 7.9885 0.7893
ROF [3] 0.6683 | 0.5237 | 4.6568 0.9367
AD-aBLMV-ADE || 0.5075 | 0.4532 | 3.6115 0.9479
TABLE I

NUMERICAL RESULTS FOR THE 1ST IMAGE OF FIG.7. THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD.

Scores for the 2nd image of Fig.7
ead(u) ead(v) ad(u) corr(v’,v)
AD [14] 0.5631 | 0.5373 | 2.1536 0.9564
BLMV [5] 0.8393 | 0.7611 | 2.6356 0.9263
aBLMV 0.7922 | 0.7182 | 2.4525 0.9311
DPCA [7] 0.7420 | 0.6596 | 2.8667 0.9361
DOSV [8] 0.4137 | 0.3911 | 1.5184 0.9780
TVLI [4] 0.4339 | 0.3288 | 3.8850 0.8693
ROF [3] 0.5926 | 0.4855 | 2.6941 0.9508
AD-aBLMV-ADE || 0.2782 | 0.2408 | 1.0342 0.9862
TABLE II

NUMERICAL RESULTS FOR THE 2ND IMAGE OF F1G.7. THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD.

We have also compared the proposed method using ADE
to the case when correlation is used instead as an indepen-
dence measure. It shows that the pure orthogonality criterion

Scores for the 3rd image of Fig.7
ead(u) ead(v) ad(u) corr(v’,v)
AD [14] 0.3279 | 0.2386 | 1.7500 0.9678
BLMYV |[5] 0.4363 | 0.3229 | 1.8498 0.9661
aBLMV 0.3703 | 0.3037 | 1.5932 0.9811
DPCA [7] 0.5535 | 0.4322 | 2.3272 0.9658
DOSV [8] 0.3217 | 0.2788 | 1.6535 0.9826
TVLI [4] 0.5589 | 0.4391 | 2.2239 0.9681
ROF [3] 0.5105 | 0.4064 | 2.3239 0.9658
AD-aBLMV-ADE || 0.2682 | 0.2385 | 1.2826 0.9876
TABLE III

ARE HIGHLIGHTED IN BOLD.

NUMERICAL RESULTS FOR THE 3RD IMAGE OF FIG.7. THE BEST RESULTS

Scores for the 4th image of Fig.7
ead(u) ead(v) ad(u) corr(v’,v)
AD [14] 0.4019 | 0.3268 1.6902 0.9949
BLMYV [5] 0.4479 | 0.3147 1.4710 0.9974
aBLMV 0.3979 | 0.2805 1.4539 0.9974
DPCA [7] 0.6842 | 0.5437 | 9.2985 09118
DOSV [8] 0.3564 | 0.3090 1.2509 0.9984
TVLI [4] 0.6917 | 0.4942 | 29.2620 0.7246
ROF [3] 0.2829 | 0.2846 | 2.3199 0.9926
AD-aBLMV-ADE || 0.1610 | 0.1304 | 1.2245 0.9985
TABLE IV

NUMERICAL RESULTS FOR THE 4TH IMAGE OF FIG.7. THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD.

Comparison of independence measures
ead(u) ead(v) ad(u) corr(v’,v)
97.34% | 97.31% | 98.73% | 100.06%

TABLE V

RATIO OF THE ERROR RATES AND THE CORRELATION OF ADE BASED VS.
CORRELATION BASED CALCULUS. THE RESULTS OBTAINED BY ADE ARE
BETTER THAN THE ONES OBTAINED BY CORRELATION: THE ABSOLUTE
DIFFERENCES HAVE DECREASED WHILE THE CORRELATION COEFFICIENT
HAS SLIGHTLY INCREASED.

performs slightly better than the correlation based comparison
(see TABLE V).

As a drawback of the proposed method, we have to mention
that the block based computation of ADE might cause prob-
lems at the borders and might oversmooth small and weak
cartoon parts, as it can be seen on the City image, where the
top of the building is hardly recognizable. Also it could fail
preserving cartoon edges in regions where both cartoon and
texture edges are present.

The computational time is also increased compared to the
fast BLMV, TVL1 and ROF methods, but it is faster than
DPCA or DOSV (see TABLE VI).

[ Computational Time |

AD [14] 3.3
BLMV [35] 0.90
aBLMV 8.8
DPCA [7] 271.5
DOSV [8] 710.7
TVLI [4] 0.47
ROF [3] 1.3
AD-aBLMV-ADE | 21.3
TABLE VI

COMPUTATIONAL TIME (IN SECONDS) OF THE DIFFERENT METHODS FOR
THE CITY IMAGE (436X232) ON A PENTIUM IV 2 GHZ NOTEBOOK WITH
3GB MEMORY.
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IV. CONCLUSION

In this paper, we have introduced novel, theoretically sound
solutions for the main issues of cartoon/texture decomposition,
using anisotropic diffusion with ADE based iteration stopping.
To initialize the diffusion inhibitions of AD, we used BLMV
[5] nonlinear filter with adaptive parameter selection based on
ADE calculus. Numerical results and visual comparisons show
that the proposed method works with high efficiency and in
quality it outperforms other algorithms introduced in recent
years.
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