
BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS

PAOLO ACETO, JEFFREY MEIER, ALLISON N. MILLER, MAGGIE MILLER, JUNGHWAN PARK,
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Abstract. Prime power fold cyclic branched covers along smoothly slice knots all bound rational
homology balls. This phenomenon, however, does not characterize slice knots. In this paper, we
give a new construction of non-slice knots that have the above property. The sliceness obstruction
comes from computing twisted Alexander polynomials, and we introduce new techniques to simplify
their calculation.

1. Introduction

For a knot K ⊂ S3, let Σq(K) denote the q-fold cyclic branched cover of S3 along K. Consider

the set of prime powers Q = {p` | p prime, ` ∈ N}. For q ∈ Q, the three-manifold Σq(K) is a
rational homology sphere – i.e. H∗(Σq(K);Q) ∼= H∗(S

3;Q). It is not hard to see that if K ⊂ S3 is
smoothly slice – i.e. bounds a smooth, properly embedded disk D in the 4-ball D4 – then Σq(K)
bounds a smooth rational homology ball X4, that is, Σq(K) = ∂X4 and H∗(X

4;Q) ∼= H∗(D
4;Q).

Indeed, the q-fold cyclic branched cover of D4 branched along D will be such a four-manifold. It
is natural to ask if the property that all prime power fold cyclic branched covers bound rational
homology balls characterizes slice knots (see e.g. [1, 2]).

To put this question in a more algebraic framework, notice that Σq (−K) = −Σq(K) (where −K
is the reverse of the mirror image of the knot K and −Y is the three-manifold Y with reversed
orientation) and Σq(K1#K2) = Σq(K1)#Σq(K2). Hence the map

K 7→ Σq(K)

descends to a homomorphism C → Θ3
Q, where C denotes the smooth concordance group of knots

in S3, and Θ3
Q is the smooth rational homology cobordism group of rational homology spheres. We

then let

ϕ : C →
∏
q∈Q

Θ3
Q,

be the homomorphism given by

[K] 7→ ([Σq(K)])q∈Q,

and note that [K] ∈ kerϕ exactly when all the prime power fold cyclic branched covers of K bound
rational homology balls. In this article, we give a new construction that yields large families of
knots representing elements in kerϕ.

If K is a knot that is not concordant to its reverse Kr, then K#−Kr is non-slice and represents
a non-trivial element in kerϕ, since Σq(K# −Kr) ∼= Σq(K)# − Σq(K) always bounds a rational
homology ball when q ∈ Q. The existence of such knots was first shown by Livingston; see [26, 27]
for proofs. In particular, recent work of Kim and Livingston implies that kerϕ contains an infinite
free subgroup generated by topologically slice knots of the form K#−Kr [24].

Considerably less seems to be known with regards to finite order elements in kerϕ. Kirk and
Livingston showed that the knot 817, which is negative-amphichiral, is not concordant to its reverse;
hence 817#8r17 represents a nontrivial element of order two in kerϕ [26]; see also, [7]. In the present
article, we extend this result by showing that there exists a subgroup H of kerϕ such that H is
isomorphic to (Z2)5; see Theorem 1.2 below.
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Our examples are constructed as follows. Let Lr be the link depicted in the left diagram of
Figure 1, where the box labeled r ∈ N consists of r right-handed half-twists (and −r denotes
r left-handed half-twists). When r is even, Lr is a knot (a simple generalization of the figure-
8 knot, which is given by L2). As was shown in [6], these knots are rationally slice, non-slice,
and strongly negative-amphichiral and moreover generate a subgroup isomorphic to (Z2)∞ in the
smooth concordance group C. If r = 2m+1 is odd, then Lr is a 2-component link of unknots, which
we redraw in the middle of Figure 1 by braiding component B2m+1 about component A2m+1. The
resulting (2m+ 1)-braid βm is shown in the right diagram of Figure 1.

m
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...

...
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r
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2m+1
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Figure 1. Lr (left) is a knot if r is even and is a 2-component link if r = 2m+ 1 is
odd. The middle diagram shows L2m+1 = A2m+1 ∪ B2m+1 redrawn as (the closure
of) a (2m + 1)-braid with its braid axis. On the right we give the (2m + 1)-braid
βm.

We define Km,n to be the lift of B2m+1 to Σn(A2m+1), which since A2m+1 is an unknot is just
S3. Note that Km,n is a knot if r = 2m + 1 and n are relatively prime. In fact, the description
of Figure 1 shows that Km,n is simply the braid closure of the braid βnm. We use the symmetry
of L2m+1 to show that Σq(Km,n) is diffeomorphic to Σn(Km,q) when n and q are both relatively
prime to 2m + 1. We then use the fact that Km,n is strongly negative-amphichiral to show that
many of these knots represent elements of kerϕ.

Theorem 1.1. If n is an odd prime power which is relatively prime to 2m+1, then [Km,n] ∈ kerϕ.

For instance, if n is an odd prime power and not divisible by 3, then K1,n is contained in kerϕ.
The knots K1,n previously appeared in work of Lisca [30], where it was pointed out that these
knots are strongly negative-amphichiral. Therefore they are of order at most two in C. In addition,
Sartori proved in his thesis [39] that one of these knots (K1,7 in our notation) is not slice; hence,
by Theorem 1.1, this knot spans Z2 ≤ kerϕ. We extend Sartori’s non-sliceness result to show that
some other members of the family represent non-trivial elements in kerϕ; moreover, we show that
representatives of these members are linearly independent. Let Kn denote K1,n, i.e. the closure of

the three-braid (β1)n :=
(
σ1σ

−1
2

)n
and let J := 817#8r17. Recall that 817 is negative-amphichiral

and not concordant to its reverse [26].

Theorem 1.2. The subgroup generated by K7,K11,K17,K23, and J is isomorphic to (Z2)5 ≤ kerϕ.

In general, using twisted Alexander polynomials to show that a fixed knot K is not slice is
not so much technically difficult as computationally intense. Delaying all technical definitions to
Section 3, we say merely that in this context twisted Alexander polynomials are associated to a
choice of q ∈ Q and a map χ : H1(Σq(K);Z) → Zd for some d. In order to use twisted Alexander
polynomials to obstruct a knot K from being slice, one must show that for every subgroup M of
H1(Σq(K);Z) satisfying certain algebraic properties there exists a map χ vanishing on M such that
the resulting twisted Alexander polynomial does not factor in a certain way.

By better understanding the structure of H1(Σq(K);Z) one can sometimes significantly reduce
the number of computations that are necessary. For example, Sartori’s result of [39] that K7 is



BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 3

not slice requires the computation (and subsequent obstruction of factorization as a norm) of 170
different twisted Alexander polynomials, corresponding to order 13 characters vanishing on the 130
different square root order subgroups of H1(Σ7(K7);Z). By careful consideration of the linking
form on H1(Σ3(Kn);Z) and how its metabolizers are permuted by the induced action of order n
symmetry of Kn, we are able to prove that Kn is not slice by computing only two twisted Alexander
polynomials, at least for n = 11, 17, 23. In fact, while we do not include these computations here,
we leave as a challenge for the interested reader to reprove Sartori’s result by following roughly the
same argument below, but computing precisely 3 carefully chosen twisted Alexander polynomials
corresponding to χ : H1(Σ3(K7);Z)→ Z7.

In addition, we overcome the following technical difficulty, which may be of independent interest.
In many settings, the easiest way to compute the homology of a knot’s cyclic branched cover, with
its linking form and module structure, is in terms of some nice Seifert surface. However, the
standard efficient algorithms for computing the twisted Alexander polynomial corresponding to
χ : H1(Σq(K);Z) → Zd require one to compute a map φχ : π1(XK) → GL(q,Q(ξd)[t

±1]) on the
Wirtinger generators for π1(XK). Relating these two perspectives is not entirely trivial, and we
refer the reader to Appendix A for a discussion of this process.

Remark 1.3. One can ask an analogous question in the topological category: Is there a knot that
does not bound any topologically locally flat disk in the 4-ball but all its prime power fold cyclic
branched covers bound topological rational homology balls? It turns out that such examples can
be constructed by using the classical Alexander polynomial. Let {ni} be the set of all natural
numbers divisible by at least 3 distinct primes and Ki be a knot with Alexander polynomial the
nthi cyclotomic polynomial. By Livingston [31], for each i, all the prime power fold cyclic branched
covers along Ki are integral homology spheres. Hence, by Freedman [11, 12], they all bound
topological contractible four-manifolds. On the other hand, since the cyclotomic polynomials are
irreducible, Ki and Kj are concordant if and only if i = j. Hence the knots {Ki} represent distinct
elements in kerϕtop, the topological analogue of kerϕ.

The results discussed in this introduction show that slice knots are not characterized by the
property that each of their prime power fold cyclic branched covers bound rational homology balls.
However, there is a stronger condition that one might posit as a characterization of sliceness. When
a knot is slice, not only do its covers bound rational homology balls, but the deck transformations
of the covers extend over these balls. (Similarly, the lifts of the slice knot to knots in the covers
bound slicing disks in these balls.) This leads us to the following question.

Question 1.4.

(1) Does there exist a non-slice knot K such that Σq(K) bounds a rational homology ball for
each prime power q such that the deck transformations of Σq(K) extend over the rational
homology ball?

(2) Does there exist a non-slice knot K such that Σq(K) bounds a rational homology ball for
each prime power q such that the lift of K to Σq(K) bounds a disk in the rational homology
ball?

We remark that each of the knots Km,n studied in this article, as well as any knot of the
form K# −Kr where K is negative-amphichiral, can be shown to have the desired properties of
Question 1.4(1) when q is odd or the deck transformation is an involution, and the desired properties
of Question 1.4(2) when q is odd.

Lastly, we make a remark on some other sliceness obstructions for Kn, where as above n is
an odd prime power not divisible by 3. Note that Kn is strongly positive-amphichiral hence it is
algebraically slice [32]. Further, Kn is also strongly negative-amphichiral, which implies that it is
rationally slice. Hence the τ -invariant [36], ε-invariant [18], Υ-invariant [37], Υ2-invariant [23], ν+-
invariant [19], ϕj-invariants [9], and s-invariant [38] all vanish for Kn. Moreover, since [Kn] ∈ kerϕ,



4 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

the sliceness obstructions from the Heegaard Floer correction term and Donaldsons diagonalization
theorem (e.g. [16, 20, 29, 33]) applied to the cyclic branched covers of Kn all vanish. As mentioned
above, the fact that the involution induced by the deck transformation on Σ2(Kn;Z) extends to a
rational homology ball (in fact it is a Z2 homology ball) implies that sliceness obstructions such as
[3, 8] vanish.

The paper is organized as follows: in Section 2 we prove Theorem 1.1, and in Section 3 we use
twisted Alexander polynomials to show Theorem 1.2.

Acknowledgements: This project began during a break-out session during the workshop Smooth
concordance classes of topologically slice knots hosted by the American Institute for Mathematics in
June 2019. The authors would like to extend their gratitude to AIM for providing such a stimulating
research environment. PA is supported by the European Research Council (grant agreement No
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Ruberman for helpful conversations. AS was supported by the Élvonal Grant NKFIH KKP126683
(Hungary). Lastly, we thank Charles Livingston for pointing out the relevance of knots which are
not concordant to their reverses to this article.

2. Branched covers bounding rational homology balls

In this section, we will prove Theorem 1.1 after establishing the following two propositions. We
work in the smooth category.

Proposition 2.1. Suppose that n and q are both relatively prime to 2m+ 1. Then Σq(Km,n) and
Σn(Km,q) are diffeomorphic three-manifolds.

Proof. We can realize Σq(Km,n) by first taking the n-fold cyclic branched cover of S3 branched
along A2m+1 and then the q-fold cyclic branched cover branched along the pull-back of B2m+1

of Figure 1. Since the roles of A2m+1 and B2m+1 are symmetric (as shown by the left diagram
of Figure 1), this three-manifold is the same as the q-fold cyclic branched cover branched along
A2m+1, followed by the n-fold cyclic branched cover branched along the pull-back of B2m+1, which
is exactly Σn(Km,q), concluding the argument. �

Proposition 2.2. Suppose that n is relatively prime to 2m + 1. Then Km,n bounds a disk in a
rational homology ball Xm,n with only 2-torsion in H1(Xm,n;Z).

Recall that a knot is called rationally slice if it bounds a smooth properly embedded disk in a
rational homology ball and strongly negative-amphichiral if there is an orientation-reversing invo-
lution τ : S3 → S3 such that τ(K) = K and the fixed point set of τ is a copy of S0 ⊂ K.

Proposition 2.2 follows from the following lemma, which is a special case of [21], together with a
simple observation regarding the knots Km,n.

Lemma 2.3 ([21, Section 2]). If K is a strongly negative-amphichiral knot, then K is slice in a
rational homology ball X with only 2-torsion in H1(X;Z).

Proof. Let τ be the orientation-reversing involution on S3 with τ(K) = K where the fixed point
set is two points. Let MK be the three-manifold obtained by performing 0-surgery on K. Then the
involution τ extends from the exterior of K to a fixed-point free orientation-reversing involution τ̂
on MK .

The rational homology ball X of the lemma is now constructed as follows: Consider the trace
W of the 0-surgery MK , i.e. W is the four-manifold we get from S3× [0, 1] by attaching a 0-framed
2-handle along K ⊂ S3 × {1}. Consider the quotient of W by τ̂ on its boundary component
diffeomorphic to MK . The resulting compact four-manifold X has S3 as its boundary, and K ⊂
S3×{0} is obviously slice in X: the slice disk is simply the core of the 2-handle (trivially extended
through S3 × [0, 1]).
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In order to complete the proof of the lemma, it would be enough to show that H∗(X;Q) =
H∗(D

4;Q) and H1(X;Z) ∼= Z2. For this computation, we consider an alternative description of
X as follows. Factoring MK by the free involution τ̂ we get a three-manifold M , together with a
principal Z2-bundle π : MK →M and an associated interval-bundle Z →M . Note that ∂Z = MK

and that Z retracts to M . Then X is the union of the surgery trace W with Z, glued along MK ,
i.e. the four-manifold obtained by attaching 0-framed 2-handle along the meridian of ∂Z = MK .
The inclusion map i induces the following exact sequence

H1(∂Z;Z)
i∗−→ H1(Z;Z)→ Z2 → 0.

This implies that H1(X;Z) ∼= Z2 since a 2-handle is attached along the generator of H1(∂Z;Z) to
obtain X. �

Figure 2. Reflection to the red dot provides an involution τ : S3 → S3 verifying
that the knot is strongly negative-amphichiral.

Proof of Proposition 2.2. Figure 2 shows that Km,n is strongly negative-amphichiral; indeed, if the
red dot of Figure 2 is in the origin, the knot can be isotoped slightly so that the map v 7→ −v for
v ∈ R3 provides the required τ . Then Lemma 2.3 completes the proof of the proposition. �

We recall a well known lemma of Casson and Gordon and for completeness sketch its proof.

Lemma 2.4 ([5, Lemma 4.2]). Suppose that q = p` is an odd prime power, and K is a knot that is
slice in a rational homology ball X with only 2-torsion in H1(X;Z). Then Σq(K) bounds a rational
homology ball.

Proof. Let D be the disk that K bounds in X and Σq(D) be the q-fold cyclic branched cover of X

branched along D. Consider the infinite cyclic cover, denoted by X̃, of X r D and the following
long exact sequence [34]

· · · → H̃i(X̃;Zp)
tq∗−Id−−−→ H̃i(X̃;Zp)→ H̃i(Σq(D);Zp)→ H̃i−1(X̃;Zp)→ · · ·

Here t∗ is the automorphism induced by the canonical covering translation. Since X is a rational
homology ball with only 2-torsion in the first homology, t∗− Id is an isomorphism. Moreover, with
Zp coefficients we have tq∗ − Id = (t∗ − Id)q. Hence the result follows. �

Proof of Theorem 1.1. If q is an odd prime power, then Proposition 2.2 and Lemma 2.4 together
immediately imply that Σq(Km,n) bounds a rational homology ball.

Suppose now that q = 2`. By Proposition 2.1, we have that Σq(Km,n) is diffeomorphic to

Σn(Km,q). Moreover n was chosen to be an odd prime power, while q = 2` is relatively prime to
2m+ 1. Hence the statement follows from the first case of this proof. �
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3. Sliceness obstructions from twisted Alexander polynomials

The goal of this section is to prove Theorem 1.2. We first prove the following theorem, recalling
that Kn := K1,n.

Theorem 3.1. The knots K11,K17, and K23 are not slice; hence are of order two in C.

The sliceness obstruction we intend to use in the proof of Theorem 3.1 rests on a result of Kirk
and Livingston [25] involving twisted Alexander polynomials. Throughout the rest of the section,

e2πi/d is denoted by ξd, and the three-manifold obtained by performing 0-surgery on K is denoted
by MK . We generally follow the exposition of [17], and refer the reader to that work for more
details.

Definition 3.2. Given a representation α : π1(MK) → GL(q,Q[ξd][t
±1]), the twisted Alexander

module Aα(K) is the Q[ξd][t
±1]-module H1(MK ;Q[ξd][t

±1]q).

Definition 3.3. The twisted Alexander polynomial ∆̃α
K(t) is the generator of the order ideal of

Aα(K); this polynomial is well-defined up to multiplication by units in Q[ξd][t
±1].

Twisted Alexander polynomials generalize the classical Alexander polynomial. If we fix the
representation α0 : π1(MK)→ GL(1,Q[t±1]) (i.e. q = d = 1), then Aα0(K) is the classical (rational)

Alexander module A(K) of K and ∆K(t) := ∆̃α0
K (t) is the classical Alexander polynomial.

We will restrict to a special class of representations as follows. First, choose q ∈ N and a
character χ : H1(Σq(K);Z)→ Zd. Note that H1(Σq(K);Z) ∼= A(K)/〈tq − 1〉 and that a choice of a
meridian for K determines a map from π1(MK) to ZnA(K)/〈tq − 1〉, as discussed in more detail
in Appendix A. The character χ therefore induces αχ : π1(MK)→ GL(q,Q[ξd][t

±1]), and we write

∆̃χ
K(t) := ∆̃

αχ
K (t). This is a very quick explanation of twisted Alexander polynomials, and Friedl

and Vidussi [15] have a survey of twisted Alexander polynomials which we recommend for more
detailed exposition.

The obstruction we will use in the proof of Theorem 3.1 is a generalization of the Fox-Milnor
condition [10], which states that the Alexander polynomial of a slice knot factors as f(t)f(t−1) for
some f(t) ∈ Z[t±1]. First, recall the following definition.

Definition 3.4. We call a Laurent polynomial d(t) ∈ Q(ξd)[t
±1] a norm if there exist c ∈ Q(ξd),

k ∈ Z, and f(t) ∈ Q(ξd)[t
±1] such that

d(t) = ctkf(t)f(t),

where · is induced by the Q-linear map on Q(ξd)[t
±1] sending ti to t−i and ξd to ξ−1

d .

Theorem 3.5 ([25]). Suppose that K ⊂ S3 is a slice knot and q is a prime power. Then there
exists a covering transformation invariant metabolizer P ≤ H1(Σq(K);Z) such that if

χ : H1(Σq(K);Z)→ Zd

is a character of odd prime power order such that χ|P = 0, then ∆̃χ
K(t) ∈ Q(ξd)[t

±1] is a norm. �

Let K ∈ {K11,K17,K23}. We first determine the metabolizers of H1(Σ3(K);Z) and construct
prime order characters vanishing on each metabolizer in Subsection 3.1. We then show that the
corresponding twisted Alexander polynomials of K do not factor as a norm in Section 3.2.

3.1. The metabolizers of H1(Σ3(Kn);Z). We assume that n is odd and not divisible by 3, so
in particular Kn is a knot. Our understanding of H1(Σ3(Kn);Z) and its metabolizers will come
from a computation of the Alexander module and the Blanchfield pairing of Kn. Throughout this
section, we also keep track of the order n symmetry of Kn, which will be useful later on to reduce
the number of twisted Alexander polynomials we must compute.
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Observe that K := Kn has a genus n−1 Seifert surface F , illustrated in Figure 3 for n = 7, which
is invariant under the periodic order n symmetry r : S3 → S3 given diagrammatically by rotating
counterclockwise by 2π/n. We pick a collection of simple closed curves α1, . . . , αn−1, β1, . . . , βn−1

Figure 3. A Seifert surface F for K from two different perspectives.

on F that form a basis for H1(F ;Z) as illustrated in Figure 4. Note that r(αi) = αi−1 and

Figure 4. A basis of curves for H1(F ;Z).

r(βi) = βi−1 for i > 1, while the induced action of r on [α1], [β1] ∈ H1(F ;Z) is given by

r∗([α1]) =

n−1∑
i=1

−[αi] and r∗([β1]) =

n−1∑
i=1

−[βi].

It is straightforward to compute the Seifert matrix A for the Seifert pairing on F with respect

to our fixed basis, and we obtain A =

[
−BT 0
B B

]
, where B is the (n− 1)× (n− 1) matrix with

entries given by Bi,j =


1 i = j

−1 i = j − 1

0 else

. Recall that Blanchfield [4] showed that the Alexander

module A(K) supports a non-singular pairing

Bl : A(K)×A(K)→ Q(t)/Z[t±1]

called the Blanchfield pairing. The pairing can be computed using a Seifert matrix of K as follows,
for more details see [14, 22, 28].

Theorem 3.6 ([14, Theorem 1.3 and 1.4]). Let F be a Seifert surface for a knot K with a collection
of simple closed curves δ1, . . . , δ2g on F that form a basis for H1(F ;Z) and corresponding Seifert
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matrix A. Let δ̂1, . . . , δ̂2g be a collection of simple closed curves in S3 r ν(F ) representing a basis

for H1(S3 r ν(F );Z) satisfying lk(δi, δ̂j) = δi,j (i.e. the Alexander dual basis), where ν(F ) denotes
an open tubular neighborhood F × I. Consider the standard decomposition of the infinite cyclic
cover of the knot exterior as

X∞K =
+∞⋃
i=−∞

(S3 r ν(F ))i,

and let the homology class of the unique lift of δ̂i to (S3 r ν(F ))0 be denoted by di. Then the map

p :
(
Z[t±1]

)2g → A(K)

(x1, . . . , x2g) 7→
2g∑
i=1

xidi.

is surjective and has kernel given by (tA−AT )Z[t±1]2g. Moreover, the Blanchfield pairing is given
as follows: for x, y ∈ Z[t±1]2g we have

Bl(p(x), p(y)) = (t− 1)xT (A− tAT )−1y ∈ Q(t)/Z[t±1],

where · is induced by the Z-linear map on Z[t±1] sending ti to t−i. �

Following the language above, let α̂1, . . . , α̂n−1, β̂1, . . . , β̂n−1 be the Alexander dual basis of

α1, . . . , αn−1, β1, . . . , βn−1 and ai, bi be the homology classes of the unique lifts of α̂i, β̂i, respec-

tively. Note that α̂n−1 and β̂n−1 are illustrated in Figure 4 as small closed curves linking F . By

inspecting the matrix tA−AT , illustrated below for n = 7,

1− t t 0 0 0 0 −1 1 0 0 0 0
−1 1− t t 0 0 0 0 −1 1 0 0 0
0 −1 1− t t 0 0 0 0 −1 1 0 0
0 0 −1 1− t t 0 0 0 0 −1 1 0
0 0 0 −1 1− t t 0 0 0 0 −1 1
0 0 0 0 −1 1− t 0 0 0 0 0 −1
t 0 0 0 0 0 t− 1 1 0 0 0 0
−t t 0 0 0 0 −t t− 1 1 0 0 0
0 −t t 0 0 0 0 −t t− 1 1 0 0
0 0 −t t 0 0 0 0 −t t− 1 1 0
0 0 0 −t t 0 0 0 0 −t t− 1 1
0 0 0 0 −t t 0 0 0 0 −t t− 1


we see that we can use the bolded pivot entries to perform column operations over Z[t±1] to
transform tA−AT to a matrix as below:

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ −t 0 0 0 0 t 1 0 0 0 0
∗ ∗ −t 0 0 0 0 t 1 0 0 0
∗ ∗ ∗ −t 0 0 0 0 t 1 0 0
∗ ∗ ∗ ∗ −t 0 0 0 0 t 1 0
∗ ∗ ∗ ∗ ∗ −t 0 0 0 0 t 1
∗ ∗ ∗ ∗ ∗ ∗ −1 −1 −1 −1 −1 t− 1



.



BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 9

We now use the new bolded entries as pivots to perform column operations to obtain a matrix whose
ith row has a single non-zero entry that occurs in column i+1, for all i = 1, . . . , n−2, n, . . . , 2n−3.
This matrix is of the following form:

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

∗n−1,1 ∗ ∗ ∗ ∗ ∗ ∗n−1,n ∗ ∗ ∗ ∗ ∗
0 −t 0 0 0 0 0 0 0 0 0 0
0 0 −t 0 0 0 0 0 0 0 0 0
0 0 0 −t 0 0 0 0 0 0 0 0
0 0 0 0 −t 0 0 0 0 0 0 0
0 0 0 0 0 −t 0 0 0 0 0 0

∗2n−2,1 ∗ ∗ ∗ ∗ ∗ ∗2n−2,n ∗ ∗ ∗ ∗ ∗



.

Notice that only the ∗-entries with indices have an impact on A(K). In particular, A(K) is
generated by an−1 and bn−1, in the language of the notation introduced just after Theorem 3.6.

For n = 7, 11, 17, 23 one continues to perform column moves until the above matrix is simplified
to the following form: 

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

pn(t) ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 ∗ ∗ ∗ ∗ ∗ pn(t) ∗ ∗ ∗ ∗ ∗



,

where

pn(t) =

(n−1)/2∏
k=0

(
t2 + (ξkn − 1 + ξ−kn )t+ 1

)
.

This and all further computations in Section 3.1 were done in a Jupyter notebook and is available
on the third author’s website. In particular, this implies that ∆Kn(t) = pn(t)2, which one can verify
for general n ∈ N by using the formula for the Alexander polynomial of a periodic knot in terms of
the multivariable Alexander polynomial of the quotient link [35].

Using the above matrix, we obtain for our values of interest that

A(K) ∼= Z[t±1]/〈pn(t)〉 ⊕ Z[t±1]/〈pn(t)〉,
where the two summands are respectively generated by a := an−1 and b := bn−1.

We can also compute the action induced by the order n symmetry r on A(K). In particular, we
can observe that r(α̂n−1) is a curve whose only non-trivial linkage is −1 with αn−1 and +1 with

αn−2. Similar observations can be made for r(β̂n−1), and so it follows that the induced action of r

on [α̂n−1], [β̂n−1] ∈ H1(S3 r ν(F );Z) is given by

r∗([α̂n−1]) = −[α̂n−1] + [α̂n−2] and r∗([β̂n−1]) = −[β̂n−1] + [β̂n−2].
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Therefore, the action of r∗ on the generators of A(K) is given by

r∗(an−1) = −an−1 + an−2 and r∗(bn−1) = −bn−1 + bn−2.

Moreover, by considering the (n− 1)th and (2n− 2)th columns of tA−AT , we obtain the relations

tan−2 + (1− t)an−1 + tbn−1 = 0,

an−2 − an−1 + bn−2 + (t− 1)bn−1 = 0.

Simple algebraic manipulations give us that

r∗(a) = r∗(an−1) = −an−1 + an−2 = −t−1a− b, (1)

r∗(b) = r∗(bn−1) = −bn−1 + bn−2 = t−1a+ (1− t)b. (2)

Moreover, we obtain that if v = f1(t)a+ g1(t)b and w = f2(t)a+ g2(t)b then

Bl(v, w) =

[
f1(t)
g1(t)

]T
·
[
c11 c12

c21 c22

]
·
[
f2(t−1)
g2(t−1)

]
where cij = (t − 1)(A − tAT )−1

(i(n−1),j(n−1)). We remark that the interested reader can use this

formula to algebraically verify the geometrically immediate fact that Bl(r∗(v), r∗(w)) = Bl(v, w)
for all v, w ∈ A(K).

In applying Theorem 3.5 we will take q = 3, that is, we will consider the 3-fold cyclic branched
cover Σ3(K) of S3 branched along K, and will derive the sliceness obstruction from that cover. We
wish to transfer our information about (A(K),Bl) to tell us about (H1(Σ3(K);Z), λ). First, we
have that

H1(Σ3(K);Z) ∼= A(K)/〈t2 + t+ 1〉
∼= Z[t±1]/〈pn(t), t2 + t+ 1〉 ⊕ Z[t±1]/〈pn(t), t2 + t+ 1〉
∼= Zn[t±1]/〈t2 + t+ 1〉 ⊕ Zn[t±1]/〈t2 + t+ 1〉,

where the two summands are generated by the images of a and b (equivalently, lifts of the homology

classes of the curves α̂n−1 and β̂n−1 to the preferred copy of S3 r ν(F ) in Σ3(K)). In particular,
as a group H1(Σ3(K);Z) ∼= (Zn)4, with natural generators the images of a, ta, b, and tb. By a
mild abuse of notation, we blur the distinction between the elements of the Alexander module and
corresponding elements of H1(Σ3(K);Z).

The following result, which is slightly reformulated from [13], lets us compute the torsion linking
form λ with respect to our preferred basis.

Proposition 3.7 ([13, Chapter 2.6]). Suppose that q is a prime power and let x, y ∈ H1(Σq(K);Z).
Choose x̃, ỹ ∈ A(K) which lift x and y, and write

Bl(ỹ, x̃) =
p(t)

∆K(t)
∈ Q(t)/Z[t±1].

Since tq − 1 and ∆K(t) are relatively prime, one can find r(t) ∈ Z[t±1] and c ∈ Z such that
∆K(t)r(t) ≡ c (mod tq − 1). Writing p(t)r(t) ≡

∑q
i=1 αit

i (mod tq − 1), for i = 0, . . . , q − 1 we
obtain

λq(x, t
iy) =

αq−i
c
∈ Q /Z . �

From now on, we take n to be 11, 17, or 23. We expect that the subsequent computations of
this section will hold for general n ≡ 5 (mod 6), but we have not verified these results for n > 23.
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When we apply this process to our formula for Bl, we obtain that with respect to the Zn-basis
{a, ta, b, tb} our linking form is given by the matrix

L =
1

n


−1 −k −k k
−k −1 0 −k
−k 0 1 k
k −k k 1

 ,
where n = 2k + 1.

We now wish to show that there are exactly two orbits of the action of r on the collection
of invariant metabolizers of H1(Σ3(Kn);Z); this will imply later on that the computation of two
twisted Alexander polynomials will suffice to obstruct the sliceness of Kn. Note that our formulas
(1) and (2) hold equally well for the induced action of r on H1(Σ3(K);Z), once we apply the relation
t3 = 1. Recalling that n ∈ {11, 17, 23}, we note that since n ≡ 5 (mod 6) the polynomial t2 + t+ 1
is irreducible in Zn[t±1]. Therefore, since n is also a prime, we see that Zn[t±1]/〈t2 + t + 1〉 has
no non-trivial proper submodules. It follows that there are exactly n2 + 1 order n2 submodules of
H1(Σ3(K);Z): first, for any n0, n1 ∈ Zn we have

Pn0,n1 := spanZn[t±1]{a+ (n0 + n1t)b} = spanZn{a+ n0b+ n1tb, ta− n1b+ (n0 − n1)tb}
and secondly we have

P ′ := spanZ[t±1]{b} = spanZ{b, tb}.
Using the matrix L, we see that λ(b, b) = 1

n 6= 0 ∈ Q /Z, and so P ′ is not a metabolizer. Moreover,
observe that the condition

λ(a+ (n0 + n1t)b, a+ (n0 + n1t)b) = 0 ∈ Q /Z
gives us a 2-variable (n0 and n1) quadratic polynomial over Zn, and hence has at most 2n solutions.

Letting P denote the set of all metabolizers, we have shown that

|P| ≤ 2n.

Moreover, note that the map r∗ acts on P and since n is prime and (r∗)
n = Id, the orbit of a

metabolizer is either of order n or 1.
A short algebraic argument shows that r∗(Pn0,n1) = Pn0,n1 if and only if n0 = n1 = 1. The ‘if’

direction follows immediately from Equation (1) and (2). For the ‘only if’ direction, compute

r(a+ n0b+ n1tb) = (1− n0 + n1)a+ (1− n0)ta+ (−1 + n0 + n1)b+ (−n0 + 2n1)tb

and observe that if this element belongs to Pn0,n1 then by looking at the a and ta coefficients we
see that it must equal

(1− n0 + n1)(a+ n0b+ n1tb) + (1− n0)(ta− n1b+ (n0 − n1)tb).

Contemplation of the coefficients of b and tb in these two expressions shows that they can only be
equal if n0 = n1 = 1. Moreover, it is not hard to explicitly verify that P−1,−1 is also a metabolizer
and so there are exactly two orbits. We choose a representative metabolizer for each orbit:

P+ := P1,1 = spanZ{a+ b+ tb, ta− b} and P− := P−1,−1 = spanZ{a− b− tb, ta+ b}. (3)

We note for future reference that it is extremely easy to construct a character

χ : H1(Σ3(K);Z)→ Zn
vanishing on P±: choose χ(b) and χ(tb) freely and χ(a) and χ(ta) are determined. In fact, we
choose χ± as follows:

χ±(a) = ±1, χ±(ta) = 0, χ±(b) = 0, and χ±(tb) = −1. (4)

To avoid confusion, we point out here that the ‘d’ of Definitions 3.2 and 3.3 and Theorem 3.5
happens to be n for us.
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3.2. Proof of the main theorems. To apply Theorem 3.5, we must obstruct the existence of
certain factorizations in Q(ξd)[t

±1]. It is easier to obstruct the existence of factorizations in Zp[t±1],
where computer programs are for finiteness reasons capable of proving that no factorization of a
given kind exists, and the following propositions allow us to make this transition.

Proposition 3.8 ([17, Lemma 8.6]). Let d, s be primes and suppose s = kd + 1. Choose θ ∈ Zs
so that θ ∈ Zs is a primitive dth root of unity modulo s. The choice of s and θ defines a map
π : Z[ξd][t

±1]→ Zs[t±1] where 1 is mapped to 1 and ξd is mapped to θ.
Let d(t) ∈ Z[ξd][t

±1] be a polynomial of degree 2N such that π(d(t)) ∈ Zs[t±1] also has degree
2N . If d(t) ∈ Q(ξd)[t

±1] is a norm then π(d(t)) ∈ Zs[t±1] factors as the product of two polynomials
of degree N . �

Proposition 3.9. Given a knot K, a preferred meridian µ0, and a map χ : H1(Σq(K);Z) → Zd
where d is a prime, we obtain as above a reduced twisted Alexander polynomial ∆̃χ

K(t). By rescaling,

assume that ∆̃χ
K(t) is an element of Z[ξd][t

±1].
Let s = kd + 1, θ ∈ Zs, and π : Z[ξd][t

±1] → Zs[t±1] be as in Proposition 3.8. Suppose that

π
(

∆̃χ
K(t)

)
is a degree 2b c(K)−3

2 c polynomial which cannot be written as a product of two degree

b c(K)−3
2 c polynomials in Zs[t±1]. Then ∆̃χ

K(t) ∈ Q(ξd)[t
±1] is not a norm.

Here, degree is taken to be the degree of a Laurent polynomial – i.e. degmax−degmin. Proposition
3.9 is useful for efficient computations, since in our setting det(φχ(g1)) = t−1 and one can compute

π
(

∆̃χ
K(t)

)
=

det
( [
π
(

Φ
(
∂ri
∂gj

))]c
i,j=2

)
(t− 1)2

,

in particular, computing determinants of matrices with entries in Zs[t±1] rather than in Q[ξd][t
±1].

Proof of Proposition 3.9. By Proposition 3.8, to establish our desired result under the above hy-

potheses it suffices to show that the degree of ∆̃χ
K(t) is equal to 2b c(K)−3

2 c, i.e. that the reduced
twisted Alexander polynomial does not drop degree under π. By considering Proposition A.1 and

recalling that we choose φχ(g1) to have determinant equal to t− 1, we see that the degree of ∆̃χ
K(t)

is no more than c(K)− 3 as follows.

The degree of ∆̃χ
K(t) is 2 less than the degree of det

( [
π
(

Φ
(
∂ri
∂gj

))]c
i,j=2

)
. The Wirtinger

presentation of π1(XK) has c(K) generators and c(K) relations of the form ri = gaigbig
−1
ci g

−1
bi

for

some ai, bi, ci. Moreover, since gaigbig
−1
ci g

−1
bi

= 1 one can verify that

∂(gaigbg
−1
c g−1

b ) = ∂((gaigbi)(gbigci)
−1) = ∂(gaigbi)− ∂(gbigci) = ∂(gai) + (gai − 1)∂(gb)− gbi∂(gci).

Therefore for any i, j we have that

Φ

(
∂ri
∂gj

)
=



 1 0 0

0 1 0

0 0 1

 if j = ai,

 0 0 t

1 0 0

0 1 0


 ξ∗d 0 0

0 ξ∗∗d 0

0 0 ξ∗∗∗d

−
 1 0 0

0 1 0

0 0 1

 if j = bi,

 0 0 t

1 0 0

0 1 0


 ξ∗d 0 0

0 ξ∗∗d 0

0 0 ξ∗∗∗d

 if j = ci,
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and is the 3 × 3 zero matrix if j 6∈ {ai, bi, ci}. In particular, Φ( ∂ri∂gj
) has at most one entry which

is of the form αt for α ∈ Q(ξd) and all its other entries are elements of Q(ξd). It follows that the
degree of

det
([
π

(
Φ

(
∂ri
∂gj

))]c
i,j=2

)
is no more than c(K)− 1 and so the degree of ∆̃χ

K(t) is no more than c(K)− 3.

Since polynomials of the form f(t)f(t) certainly have even degrees, either ∆̃χ
K(t) is not a norm,

or we have

2

⌊
c(K)− 3

2

⌋
= deg π

(
∆̃χ
K(t)

)
≤ deg ∆̃χ

K(t) ≤ 2

⌊
c(K)− 3

2

⌋
,

and hence we have equality throughout. �

Table 1 gives the degrees of the irreducible factors of π(∆̃
χ±
Kn

(t)) over Zs[t±1]. We refer the reader
to Appendix A for exposition of the computational details.

n ± s = kn+ 1 θ ∈ Zs degree sequence of π
(

∆̃
χ±
Kn

(t)
)

11 + 23 2 (2,2,3,3,8)

− 2 (4,14)

17 + 103 8 (2,3,9,16)

− 9 (2, 28)

23 + 47 4 (1, 1,11,29)

− 2 (1, 1, 2, 12, 12, 14)

Table 1. The degree sequences of π(∆̃
χ±
Kn

(t)).

We are now ready to embark upon proving the main theorems of this paper.

Proof of Theorem 3.1. Let n ∈ {11, 17, 23} and let K = Kn. Let r : XK → XK denote the order n
symmetry of the knot exterior given in Figure 3 by rotation by 2π/n. As discussed above, r extends
to an order n symmetry of Σ3(K) and induces a covering transformation invariant, linking form
preserving isomorphism r∗ : H1(Σ3(K);Z) → H1(Σ3(K);Z). Let P be a covering transformation
invariant metabolizer of H1(Σ3(K);Z). By the discussion preceding Equation (3), we see that
either P = P+ or there exists some k = 0, . . . , n− 1 such that P = rk∗(P−).

In the former case, let χ+ be the character defined in Equation (4) and note that χ+ vanishes

on P = P+. Moreover, the computations in Table 1, the observation that 2b c(Kn)−3
2 c = 2b2n−3

2 c =

2(n−2), and Proposition 3.9 together imply that ∆̃χ+

K (t) does not factor as a norm over Q(ξn)[t±1].
In the latter case, let χ− : H1(Σ3(K);Z) → Zn be the character defined in Equation (4) that

vanishes on P−. Since rk∗(P−) = P , we have that χ := χ− ◦ rk∗ vanishes on P . Moreover, since r

is a diffeomorphism of the 0-surgery, we have that ∆̃χ
K(t) = ∆̃

χ−
K (t). So again the computations in

Table 1 and Proposition 3.9 imply that ∆̃χ
K(t) does not factor as a norm over Q(ξn)[t±1].

Therefore, for each invariant metabolizer of H1(Σ3(K);Z) we have constructed a character of
prime power order vanishing on that metabolizer so that the corresponding twisted Alexander
polynomial of K is not a norm. By Theorem 3.5, we conclude that K is not slice. �

Recall that J = 817#8r17. Kirk and Livingston [26] proved J is not slice by showing that for each
invariant metabolizer of P ≤ H1(Σ3(K);Z) ∼= (Z13)4 there exists a character χ : H1(Σ3(J);Z) →
Z13 such that χ|P = 0 and ∆̃χ

K(t) ∈ Q(ξ13)[t±1] is not a norm. Now we are ready to prove our main
theorem.
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Proof of Theorem 1.2. For the duration of this proof we refer to J as K13, apologizing to the reader
for the inconsistency in notation.

Suppose that

K = a7K7#a11K11#a13K13#a17K17#a23K23

is slice for a7, a13, a11, a17, a23 ∈ {0, 1}. If a11 = a13 = a17 = a23 = 0, then Sartori’s work [39]
implies that a7 = 0, since K7 is not slice. So we can assume that there exists i0 ∈ {11, 13, 17, 23}
such that ai0 6= 0.

Let

I := {i ∈ {7, 11, 13, 17, 23} | ai 6= 0}
and P be an invariant metabolizer for H1(Σ3(K);Z).

Since

H1(Σ3(K);Z) ∼=
⊕
i∈I

H1(Σ3(Ki);Z) ∼=
⊕
i∈I

(Zi)4 ,

and 7, 11, 13, 17, and 23 are relatively prime, P ′ := P ∩H1(Σ3(Ki0);Z) is an invariant metabolizer
for H1(Σ3(Ki0);Z).

Moreover, if χ′ : H1(Σ3(Ki0);Z) → Zi0 is a character vanishing on P ′, then we can construct a
character χ vanishing on P by decomposing

H1(Σ3(K);Z) ∼=
⊕
i∈I

H1(Σ3(Ki);Z)

and letting

χ|H1(Σ3(Ki);Z) =

{
χ′ i = i0

0 i 6= i0.

Moreover, for such a character we have ∆̃χ
K(t) = ∆̃χ′

Ki0
(t).

It therefore suffices to show that for any invariant metabolizer of H1(Σ3(Ki0);Z) there exists
a character χ′ to Zi0 vanishing on that metabolizer such that the resulting twisted Alexander

polynomial ∆̃χ′

Ki0
(t) does not factor as a norm over Q(ξi0)[t±1].

This is exactly what we did in the proof of Theorem 3.1 for i0 = 11, 17, 23 and what Kirk and
Livingston did in [26] for the case of i0 = 13 thereby completing the proof. �

Appendix A. Computation of twisted Alexander polynomials

For the purpose of this argument, it is helpful to have the following naming conventions that are
standard in this subfield. Given a knot K in S3 bounding a Seifert surface F , we write:

ν(K) to denote an open tubular neighborhood of K,
ν(F ) to denote an open tubular neighborhood of F ,
XK to denote S3 r ν(K),
Xn
K to denote the n-fold cyclic cover of XK , and

XF to denote S3 r ν(F ).

Given a character χ : H1(Σ3(K))→ Zn, we apply [17] to obtain a representation

φχ : π1(XK)→ GL(3,Q(ξn)[t±1])

as follows. Fix a basepoint x0 in XF and let x̃0 denote the lift of x0 to the 0th copy of S3 r ν(F )
in X3

K ⊂ Σ3(K). Let ε : π1(XK) → Z be the canonical abelianization map, and let µ0 be a
preferred meridian of K based at x0. Given a simple closed curve γ in S3 rK based at x0 and
with lk(K, γ) = 0, we can obtain a well-defined lift γ̃ of γ to Σ3(K), giving a map

l : ker(ε)→ H1(Σ3(K);Z).
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The map l does not in general coincide with our previous method of converting elements of
H1(S3 r ν(F );Z) to elements of H1(Σ3(K);Z), unless γ is actually disjoint from F . In partic-
ular, l(µ0gµ

−1
0 ) = t · l(g) despite the fact that µ0gµ

−1
0 and g certainly represent the same class in

H1(S3 r ν(F );Z).
Our choice of µ0 allows us to define a map

φ : π1(XK)→ ZnH1(Σ3(K);Z)

g 7→ (tε(g), l(µ
−ε(g)
0 g)),

where the product structure on ZnH1(Σ3(K);Z) is given by

(tm1 , x1) · (tm2 , x2) = (tm1+m2 , t−m2 · x1 + x2).

We then define φχ = fχ ◦ φ, where

fχ : ZnH1(Σ3(K);Z)→ GL(3,Q(ξn)[t±1])

(tm, x) 7→

 0 0 t

1 0 0

0 1 0


m  ξ

χ(x)
n 0 0

0 ξ
χ(t·x)
n 0

0 0 ξ
χ(t2·x)
n

 . (5)

Our basepoint x for S3 r ν(K) lies far below the diagram, which we think of as lying almost
in the plane of the page. All of our curves are based at x0, though as usual we sometimes draw
meridians to components of the knots as unbased curves, with the understanding that they are
based via the ‘go straight down to the basepoint’ path.

Figure 5. Wirtinger generators gi.

Let {gi}2ni=1 be the Wirtinger generators for π1(XK , x0), some of which are illustrated in Figure 5,
and µ0 be the preferred meridian that represents g1. In order to compute our desired twisted
Alexander polynomials, we need to know φχ(gi) for all i = 1, . . . , 2n. Since K is the closure of a
3-braid, once we specify the image of the three top strand generators g1, g2, g3 under φχ, the rest of

the computation is simple. In fact, since g2 = g−1
1 g4g1, it suffices to determine the image of g1, g3,

and g4.
By considering Equation (5), we see that φχ(gi) is determined by the tuple

(∗)i :=
(
χ(l(g−1

1 gi)), χ(t · l(g−1
1 gi)), χ(t2 · l(g−1

1 gi)
)
.

We now describe (∗)1, (∗)3, and (∗)4, and use the above discussion to compute φχ(gi) for each
Wirtinger generator gi. We obtain immediately that

(∗)1 = (χ(l(g−1
1 g1)), χ(t · l(g−1

1 g1)), χ(t2 · l(g−1
1 g1))) = (0, 0, 0) ∈ Z3

n.
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Given a simple closed curve γ based at x0 and disjoint from F , recall that we obtain a curve γ̃ in
Σ3(K) by lifting γ to our preferred copy of S3 r ν(F ). As before, we let a denote the homology

class of the lift of α̂n−1 and b denote the homology class of the lift of β̂n−1 in H1(Σ3(K);Z). Let γa
be a simple closed curve that represents g1g

−1
4 and γ−a be its reverse, chosen to be disjoint from F

as in Figure 5. Then we have that −a = [γ̃a] ∈ H1(Σ3(K);Z) and

a = [γ̃−a] = l(g4g
−1
1 ) = l(g1(g−1

1 g4)g−1
1 ) = t · l(g−1

1 g4) ∈ H1(Σ3(K);Z).

Therefore

(∗)4 = (χ(l(g−1
1 g4)), χ(t · l(g−1

1 g4)), χ(t2 · l(g−1
1 g4))) = (χ(t−1 · a), χ(a), χ(t · a))

= (−χ(a)− χ(t · a), χ(a), χ(t · a)) ∈ Z3
n.

Similarly, let γb be a simple closed curve that represents g4g3g
−1
1 g−1

4 and is disjoint from F , as in
Figure 5. So we have that

b = [γ̃b] = l(g4g3g
−1
1 g−1

4 ) = t · l(g3g
−1
1 ) = t · l(g1(g−1

1 g3)g−1
1 ) = t2 · l(g−1

1 g3) ∈ H1(Σ3(K);Z).

Hence

(∗)3 = (χ(l(g−1
1 g3)), χ(t · l(g−1

1 g3)), χ(t2 · l(g−1
1 g3))) = (χ(t · b), χ(t2 · b), χ(b))

= (χ(t · b),−χ(b)− χ(t · b), χ(b)) ∈ Z3
n.

We can now straightforwardly compute φχ(gi) for the rest of the Wirtinger generators gi.
The following well-known result (see e.g. [17, 25]) reduces computation of twisted Alexander

polynomials to Fox calculus and matrix algebra.

Proposition A.1 ([17, Section 9]). Let π1(XK) = 〈g1, . . . , gc : r1, . . . , rc〉 be a Wirtinger presenta-
tion . Assume that φχ : π1(XK)→ GL(q,F[t±1]) is induced by a non-trivial character χ, and there
is a natural extension Φ: Z[π1(XK)] → Mq(F[t±1]) where Mq(F[t±1]) is the set of q by q matrices
with entries from F[t±1]. Then the reduced twisted Alexander polynomial of (K,χ) is

∆̃χ
K(t) =

det
( [

Φ
(
∂ri
∂gj

)]c
i,j=2

)
(t− 1) det(φχ(g1)).

�

The following computations of the irreducible factors of the polynomials π(∆̃χ±

K (t)) ∈ Zs[t±1]
were done in Maple worksheets that are available on the third author’s website.

(n,±, s, θ) Irreducible factors

(11,−,23,2)

degree 4 : t4 + 17t3 + 4t2 + 17t+ 1

degree 14 : t14 + 7t13 + 5t12 + 7t11 + 7t10 + 22t9 + 22t8 + 7t7

+22t6 + 22t5 + 7t4 + 7t3 + 5t2 + 7t+ 1

(11,+,23,2)

degree 2 : t2 + 13t+ 1, t2 + 3t+ 11

degree 3 : t3 + 14t2 + 3, t3 + 22t2 + 22t+ 22

degree 8 : t8 + 22t7 + 4t6 + 14t5 + 3t4 + 3t3 + 16t2 + t+ 20
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(n,±, s, θ) Irreducible factors

(17,+,103,8)

degree 2 : t2 + 98t+ 5

degree 3 : t3 + 12t2 + 36t+ 93

degree 9 : t9 + 33t8 + 94t7 + 32t6 + 61t5 + 20t4 + 63t3 + 48t2 + 19t+ 94

degree 16 : t16 + 74t15 + 26t14 + 92t13 + 31t12 + 85t11 + 86t10 + 34t9 + 35t8

+67t7 + 99t6 + 64t5 + 67t4 + 11t3 + 95t2 + 8t+ 19

(17,−,103,9)

degree 2 : t2 + 13t+ 1

degree 28 : t28 + 61t27 + 97t26 + 22t25 + 25t24 + 27t23 + 73t22 + 47t21 + 79t20 + 31t19

+99t18 + 36t17 + 54t16 + 40t15 + 40t14 + 40t13 + 54t12 + 36t11 + 99t10

+31t9 + 79t8 + 47t7 + 73t6 + 27t5 + 25t4 + 22t3 + 97t2 + 61t+ 1

(23,+,47,4)

degree 1 : t+ 21, t+ 29

degree 11 : t11 + 37t10 + 43t9 + 5t8 + t7 + 42t6 + 34t5 + 43t4 + 5t3 + 34t2 + 44t+ 9

degree 29 : t29 + 25t28 + 9t27 + 19t26 + 38t25 + 46t24 + 27t23 + 40t22 + 41t21 + 18t20

+17t19 + t18 + 34t17 + 6t16 + 21t15 + 25t14 + 18t13 + 25t12 + 34t11 + 9t10

+12t9 + 41t8 + 46t7 + 10t6 + 40t5 + 21t4 + 10t3 + t2 + 40t+ 13

(23,−,47,2)

degree 1 : t+ 46, t+ 46

degree 2 : t2 + t+ 1

degree 12 : t12 + 3t11 + 27t10 + 19t9 + 38t8 + 25t7 + 25t6 + 40t5 + 16t4 + 25t3

+44t2 + 28t+ 23, t12 + 38t11 + 6t10 + 44t9 + 15t8 + 14t7 + 44t6

+44t5 + 18t4 + 9t3 + 40t2 + 41t+ 45

degree 14 : t14 + 2t13 + 2t12 + 43t11 + 42t10 + 36t9 + 30t8 + 33t7 + 30t6

+36t5 + 42t4 + 43t3 + 2t2 + 2t+ 1
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