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0 A NOTE ON THICKNESS OF KNOTS

ANDRÁS I. STIPSICZ AND ZOLTÁN SZABÓ

Abstract. We introduce a numerical invariant β(K) ∈ N of a knot K ⊂ S3

which measures how non-alternating K is. We prove an inequality between
β(K) and the (knot Floer) thickness th(K) of a knot K . As an application
we show that all Montesinos knots have thickness at most one.

1. Introduction

A knot K ⊂ S3 is alternating if it admits a diagram with the property that when
traversing through the diagram, we alternate between over- and under-crossings.
(An intrinsic definition of alternating knots have been recently found by Greene and
Howie [4, 5].) A diagram of K partitions the plane into domains (the connected
components of the complemet of the projection), and the alternating property can
be rephrased by saying that on the boundary of each domain each edge connects
an under-crossing with an over-crossing. Indeed, this observation provides a way
to measure how far a knot is from being alternating. We introduce the following
definition:

Definition 1.1. Suppose that D is the diagram of a given knot K ⊂ S3 . A
domain d of D is good if any edge on the boundary of d connects an over- and an
undercrossing. The domain d is bad if it is not good. The number of bad domains
of the diagram D is denoted by B(D) .

Obviously the diagram D is alternating iff B(D) = 0. Indeed, by taking

β(K) = min{B(D) | D diagram for K}

we get a knot invariant, which satisfies that β(K) = 0 if and only if K is an
alternating knot. As it is typical for knot invariants given by minima of quantites
over all diagrams, it is easy to find an upper bound on β(K) (by determining B(D)
for a diagram of K ), but it is harder to actually compute its value.

As it turns out, knot Floer homology provides a lower bound for β(K) through the

thickness of K . Recall that ĤFK(K), the hat-version of knot Floer homology of
K is a finite dimensional bigraded vector space over the field F of two elements. By

collapsing the Maslov and Alexander gradings M and A on ĤFK(K) to δ = A−M

we get a graded vector space ĤFK
δ

(K). The thickness th(K) of K is the largest
possible difference of δ -gradings of two homogeneous (nonzero) elements of this
vector space. It is known that for an alternating knot K the δ -graded Floer
homology is in a single δ -grading (determined by the signature of the knot), hence
if K is alternating, then th(K) = 0. (Knots satisfying th(K) = 0 are called thin
knots, hence alternating knots are thin.)
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With this definition in place, the main result of this paper is

Theorem 1.2. Suppose that K ⊂ S3 is a non-alternating knot. Then

(1.1) th(K) ≤
1

2
β(K)− 1.

While the thickness of K can be used to estimate how non-alternating K is, the
formula of Equation (1.1) also can be used to estimate th(K) by finding appropriate
diagrams of K . In particular, the formula can be applied to show

Corollary 1.3. (Lowrance [6]) Suppose that K is a Montesinos knot. Then,
th(K) ≤ 1 .

Remark 1.4. A quantity similar to β(K) has been introduced by Turaev [8], now
called the Turaev genus gT (K) . An inequality similar to Inequality (1.1) for the
Turaev genus and the (knot Floer) thickness th(K) was shown by Lowrence in [6].
As the Turaev genus of non-alternating Montesinos knots is known to be equal to
1 [1, 2], our Corollary 1.3 also follows from [6].

The formula of Inequality (1.1) can be used in a further way: by a recent result of

Zibrowius [9] mutation does not change ĤFK
δ

(K), hence leaves th(K) unchanged.
Consequently, besides isotopies we can change a diagram by mutations to get better
estimates for th(K) through B(D) for a diagram D of a mutant.

The paper is organized as follows. In Section 2 we recall basics of knot Floer
homology and prove the theorem stated above. In Section 3 we give the details of
the proof of Corollary 1.3, and finally in Section 4 we list some further properties
and questions regarding β .

Acknowledgements: AS was partially supported by the Élvonal (Frontier) project
of the NKFIH (KKP126683). ZSz was partially supported by NSF Grants DMS-
1606571 and DMS-1904628. We would like to thank Jen Hom and Tye Lidman for
a motivating discussion.

2. The knot Floer homology thickness of knots

Suppose that V =
∑

a Va is a finite dimensional graded vector space, where Va ⊂ V

is the subspace of homogeneous elements of grading a ∈ R . The thickness th(V )
of V is by definition the largest possible difference between gradings of (non-zero)
homogeneous elements:

th(V ) = max{a ∈ R | Va 6= 0} −min{a ∈ R | Va 6= 0}.

Suppose now that the graded vector space V is endowed with a boundary operator
∂ of degree 1; then the homology H(V, ∂) also admits a natural grading from the
grading of V . As H(V, ∂) is the quotient of a subspace of V , it is easy to see that

th(H(V, ∂)) ≤ th(V ).

The hat version of knot Floer homology (over the field F of two elements) of a knot

K ⊂ S3 is a finite dimensional bigraded vector space ĤFK(K) =
∑

M,A ĤFKM (K,A).
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Figure 1. The local contributions for A,M and δ at a

crossing. The Kauffman state distinguishes a corner at the cross-
ing, and we take the value in that corner as a contribution of the
crossing to A,M or δ of the Kauffman state at hand.

By collapsing the two gradings to δ = A − M , we get the δ -graded invariant

ĤFK
δ

(K). The thickness of ĤFK
δ

(K) is by definition the thickness th(K) of K .

Knot Floer homology is defined as the homology of a chain complex we can associate
to a diagram of the knot (and some further choices). Indeed, for a given diagram D

of a knot K fix a marking, that is a point of D which is not a crossing. Consider
the bigraded vector space CD,p (graded by the Alexander and the Maslov gradings
A and M ) associated to the marked diagram (D, p), which is generated over F by
the Kauffman states of the marked diagram, a concept which we recall below.

Suppose that for the marked diagram (D, p) of the knot K the set of crossings is
denoted by Cr(D), the set of domains by Dom(D), and Domp(D) denotes the set
of those domains which do not contain p on their boundary. A Kauffman state κ is
a bijection κ : Cr(D) → Domp(D) with the property that for a crossing c ∈ Cr(D)
the value κ(c) is one of the (at most four) domains meeting at c . The Alexander,
Maslov and δ -gradings of a Kauffman state are computed by summing the local
contributions at each crossing, as given by the diagrams of Figure 1.

According to [7] there is a boundary map ∂ : CD,p → CD,p of bidegree (−1, 0) (in

the bigrading (M,A)) with the property that H(CD,p, ∂) = ĤFK(K) is isomorphic
to the knot Floer homology of K (as a bigraded vector space). By collapsing the
two gradings A and M to δ = A−M , we get the graded vector spaces (Cδ

D,p, ∂)

and its homology ĤFK
δ

(K). As ĤFK
δ

(K) is the quotient of a subspace of Cδ
D,P ,

we have that th(ĤFK
δ

(K)) ≤ th(Cδ
D,p, ∂).

Proposition 2.1. Suppose that D is a diagram of the knot K . If D is not an
alternating diagram, then

th(Cδ
D,p) ≤

1

2
B(D)− 1.

Proof. Fix a marked point p on D , and consider the δ -graded chain complex
(Cδ

D,p, ∂) generated by the Kauffman states of (D, p).

The δ -grading at a positive crossing is either 0 or − 1

2
, and at a negative crossing

it is either 0 or 1

2
. So we can express the δ -grading of a Kauffman state κ as the

sum

−
1

4
wr(D) +

∑

c∈Cr

f(κ(c)),
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Figure 2. The Montesinos knot M(r1, . . . , rn). The box con-
taining ri denotes the algebraic tangle determined by the rational
number ri =

βi

αi

(cf. Figure 3). In order to have a knot, at most
one of αi can be even.

where wr is the writhe of the diagram, and f is a function on the Kauffman corners,
which is either 1

4
or − 1

4
(depending on the chosen quadrant at the crossing c).

Simple computation shows that for a good domain each corner in the domain gives
the same f -value, hence for different Kauffman states the contributions from this
particular domain are the same. This is no longer true for a bad domain, but the
difference of two contributions is at most 1

2
. When determining the possible maxi-

mum of δ(x)− δ(x′) for two homogeneous elements x, x′ ∈ Cδ
D,p , the contributions

from the writhe cancel, and so do the contributions from good domains, while bad
domains contribute at most 1

2
. This shows that th(Cδ

D,p) ≤
1

2
B(D).

By assumption D is not alternating, hence there is a bad domain, with an edge
showing that it is bad. Choose the marking p on such an edge. Since this edge
guarantees that the two domains having it on their boundary are both bad, while
these two bad domains do not get Kauffman corners, we get that th(CD,p) is
bounded by 1

2
(B(D) − 2) = 1

2
B(D)− 1, concluding the proof. �

Proof of Theorem 1.2. Suppose that K is not alternating. Then any diagram D

of K is non-alternating, hence we have that

th(K) ≤ th(Cδ
D,p) ≤

1

2
B(D) − 1.

Since β(K) is computed from the minimum of the right-hand side of this inequality,
the proof follows at once. �

3. Montesinos knots

Montesinos knots are straighforward generalizations of pretzel knots; a diagram
involving rational tangles defining the Montesinos knot M(r1, . . . , rn) is shown by
Figure 2. (A box with a rational number ri in it symbolizes the tangle shown by
Figure 3.) We allow any of the ri to be equal to ±1. Notice that the order of
(r1, . . . , rn) is important; those ri which are equal to ±1 can be commuted with
any other parameter through a simple isotopy of the diagram.
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Figure 3. The rational tangle corresponding to r ∈ Q . Here
the boxes with ci ∈ Z on the right denote |ci| half twists (right
handed for positive, left handed for negative ci ). Depending on the
parity of n (the numbre of ci ) we have two different finishing forms.
The rational number r determines the coefficients ci through its
continued fraction expansion. The tangle is alternating (as part of
a knot or link) if ci alternate in signs.
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Figure 4. The introduction of cancelling twists to turn

domains between tangles good.

Lemma 3.1. Consider the diagram of the Montesinos knot M(r1, . . . , rn) given
by Figure 2. It can be isotoped to a diagram with at most four bad domains.

Proof. Recall that a rational tangle has the form given by Figure 3. Adapting the
isotopies described in [3], we can achieve that all tangles are alternating, hence the
potentially bad domains are the ones between the tangles, together with the central
and the unbounded domains. The number of bad domains between the tangles can
be reduced by the following observation. The domain between two tangles is bad if
the first coefficients c11 and c21 of the two rational numbers determining the tangles
have opposite signs, say c11 > 0 and c21 < 0. Then by Reidemestier-II moves we can
introduce cancelling twistings, as shown by Figure 4, and then commute the first
twisting (in the figure given by the box with 2 in it) between the first and second
tangles of the Montesinos knot. All domains between the boxes will become good,
except the ones connecting the first tangle with the newly introduced twists and
the second tangle also connecting it with the newly introduced twists. After these
alterations make sure that (by the adaptation of [3]) all tangles are isotoped to be
alternating. In total the new diagram then has four bad domains, concluding the
proof. �
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Proof of Corollary 1.3. For a Montesinos knot M(r1, . . . , rn) an approrpiate iso-
topy of the diagram of Figure 2 (as given by Lemma 3.1) gives a diagram with
at most four bad domains. The application of Theorem 1.2 concludes the argu-
ment. �

Remark 3.2. Using the mutation invariance of th(K) , Lemma 3.1 can be avoided:
by mutations any Montesinos knot M(r1, . . . , rn) can be moved to M(q1, . . . , qn)
with the same rational parameters in a different order so that qi and qi+1 have the
same sign with at most one exception. Isotoping the diagram so that the tangles are
alternating, the mutated diagram then has at most 4 diagrams. Using the result of
[9] then the corollary follows as before.

4. Further properties

It is a standard fact that the knot Floer homology of the connected sum of two
knots is the tensor product of the knot Floer homologies:

ĤFK(K1#K2) ∼= ĤFK(K1)⊗ ĤFK(K2).

From this (bigraded) isomorphism it follows that

th(K1#K2) = th(K1) + th(K2).

The behaviour of β(K) is less clear under connected summing. Suppose that
K1,K2 are both non-alternating knots. By taking the connected sum of two di-
agrams D1, D2 for these knots at bad edges (i.e. arcs on the boundary of bad
domains verifying that the domains are bad) we get that

B(D1#D2) = B(D1) +B(D2)− 2,

immediately implying that

β(K1#K2) ≤ β(K1) + β(K2)− 2.

Motivated by the equality for the thickness th , we conjecture

Conjecture 4.1. If K1,K2 are two non-alternating knots, then

β(K1#K2) = β(K1) + β(K2)− 2.

It is not hard to find knot diagrams for which Inequality (1.1) is sharp. Indeed,
the standard diagram of the pretzel knot P (−3, 5, 5) admits four bad domains

(see Figure 5(a)), while an explicite calculation of ĤFK(P (−3, 5, 5)) shows that
th(P (−3, 5, 5)) = 1. Consider the n-fold connected sum Kn = #nP (−3, 5, 5);
connect summing the diagrams at bad edges (in the above sense) we get a sequence
of knots Kn and diagrams Dn for them with the properties that th(Kn) = n and
B(Dn) = 2n + 2, cf. Figure 5(b). The non-alternating knots Kn then satisfy
n = th(Kn) =

1

2
β(Kn)− 1.
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Figure 5. In (a) he pretzel knot P (−3, , 5, 5) is shown. The B

symbols signify the bad domains. (A box containing the integer n

denotes |n| half twists, right handed for n > 0 and left handed for
n < 0.) In (b) we provide a diagram of Kn , where the connected
sum is taken at bad domains.
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