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ABSTRACT: Cross-dehydrogenative coupling reactions between -ketoesters and electron-rich arenes, such as indoles, proceed 

with high regiochemical fidelity with a range of -ketoesters and indoles. The mechanism of the reaction between a prototypical -

ketoester, ethyl 2-oxocyclopentanonecarboxylate and N-methylindole, has been studied experimentally by monitoring the temporal 

course of the reaction by 
1
H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out 

using a dispersion-corrected range-separated hybrid functional (B97X-D) to explore the basic elementary steps of the catalytic 

cycle. The experimental results indicate that the reaction proceeds via two catalytic cycles. Cycle A, the dehydrogenation cycle, 

produces an enone intermediate. The dehydrogenation is assisted by N-methylindole, which acts as a ligand for Pd(II). The compu-

tational studies agree with this conclusion, and identify the turnover-limiting step of the dehydrogenation step, which involves a 

change in the coordination mode of the -keto ester ligand from an O,O’-chelate to an C-bound Pd enolate. This ligand tautom-

erization event is assisted by the -bound indole ligand. Subsequent scission of the ’-C–H bond takes place via a proton-assisted 

electron transfer mechanism, where Pd(II) acts as an electron sink and the trifluoroacetate ligand acts as a proton acceptor, to pro-

duce the Pd(0) complex of the enone intermediate. The coupling is completed in cycle B, where the enone is coupled with indole. 

Pd(TFA)2 and TFA-catalyzed pathways were examined experimentally and computationally for this cycle, and both were found to 

be viable routes for the coupling step. 

INTRODUCTION– Dehydrogenative cross-couplings, or 

cross-dehydrogenative couplings between two partners with 

C–H bonds, constitute an attractive strategy in chemical syn-

thesis.
1
 In particular, when the reaction partners include sp

3
 C–

H bonds, the reactions can be used to generate molecular 

complexity in three dimensions, and at the same time allow 

functionalization in remote positions. Although there have 

been significant advances in this field in recent years,
2,3 

dehy-

drogenative functionalization reactions involving remote sp
3
 

C–H groups are still rare.
4
 In part, this might be due to the fact 

that the mechanisms of dehydrogenative cross-couplings are 

only partially understood. 

Herein, we present a full account on the mechanistic inves-

tigation and the scope of the selective Pd(II)-catalyzed dehy-

drogenative cross-coupling reaction between indoles and β-

keto esters.
5
 This reaction is an example of a cross-

dehydrogenative coupling between sp
3
 and sp

2
 C−H bonds. 

Besides indoles, the reaction also accepts electron-rich aromat-

ics and phenols as the coupling partner,
6
 and also allows for a 

three-component coupling between arylboronates, indoles and 

β-keto esters (Scheme 1).
7 

 

 

 

 

Scheme 1. Development of Dehydrogenative β’−C(sp
3
)−H 

C(sp
2
)−H Coupling Reaction 



 

 

Results and Discussion 

In our initial communication, we presented two possible 

mechanistic scenarios for this reaction (Scheme 2). The first, a 

“late indole”, scenario involves a Saegusa oxidation
8
 of 1a to 

enone intermediate A followed by a Friedel-Crafts-type Pd-

catalyzed conjugate addition of indole 2a. The second, an 

“early indole”, scenario starts with the well-established C3-

palladation of indole
9
 in which a C3-palladated indole species 

B is involved in the dehydrogenation step, followed by reduc-

tive elimination. Our early mechanistic investigations
5
 could 

not distinguish between these two mechanistic possibilities. 

The key initial observations were: 1) Isolated enone 4a also 

afforded the coupling product with indole 2a, at a rate that was 

comparable to the overall reaction rate, and 2) without indole 

2a, only very slow formation of enone 4a was observed. These 

observations suggested that if enone 4a was an intermediate, 

its formation might be dependent on the assistance of indole.  

 

Scheme 2. Palladium-Catalyzed Dehydrogenative β′-

Functionalization of β-Keto Ester with Indole and Origi-

nally Proposed Reaction Mechanism 

 

In our early studies, the progress of the reaction was moni-

tored by withdrawing aliquots from the reaction mixture.
5
 In 

this work, we envisioned that the use of online NMR methods 

to monitor the temporal progress of the reaction would be 

most beneficial to reveal any fleeting intermediates, and to 

allow the simultaneous monitoring of several species, includ-

ing the oxidant.
10

 

Kinetic Studies. Initially, the standard reaction of β-keto 

ester 1a with 1-methylindole (2a) was monitored by 
1
H NMR 

spectroscopy (Figure 1). The results show that [4a] builds up 

and decays during the initial stage of the reaction, and product 

formation ([3a]) follows a sigmoidal curve. The consumption 

of indole 2a also plots a reverse sigmoidal curve. These results 

strongly suggested that enone 4a is an intermediate, and in-

deed the rate of formation of 3a peaks close to the concentra-

tion peak of 4a.
11

 The sigmoidal shape of the curve for [4a] is 

characteristic of a delay caused by the buildup of the interme-

diate in a consecutive reaction. The initial rate for the con-

sumption of β-keto ester 1a (-5.7 mM min
-1

) is also close to 

the initial rate of the consumption of the oxidizer tBuOOBz (-

5.1 mM min
-1

). 

 

Figure 1. Monitoring of the temporal progress of the coupling by 
1H NMR spectroscopy. Reaction conditions: [1a]0= 0.476 M, 

[2a]0= 0.318 M, [tBuOOBz]0= 0.413 M, 10 mol% Pd(TFA)2, 4:1 

[D8]-dioxane/AcOH, 300 K. The reported rates are averages of 

three experiments. Rate0 and rate53 refer to the initial rate and the 

rate at t = 53 min, respectively.  

Using separately prepared enone 4a, the reaction between 

enone 4a and indole 2a was investigated under two sets of 

conditions. The initial concentration of 4a was set to 0.12 M, 

close to the peak concentration of 4a obtained under the stand-

ard oxidative coupling conditions (Figure 1). With Pd(TFA)2 

as the catalyst, the reaction between 2a and 4a (Scheme 3) 

progresses at a rate comparable to the peak rate obtained under 

the standard conditions (1.7 mM min
–1

 for both cases). In 

contrast, TFA alone as the catalyst allowed the reaction to 

proceed, but at a significantly slower rate (1.7 mM min
-1

 with 

Pd(TFA)2 vs. 0.26 min
-1

 with TFA, see Scheme 3). These 

results indicated that Pd(II) also plays a role in the second 



 

coupling step, with a possible acid-catalyzed background 

reaction. 

 

Scheme 3. Reactions of Indole 2a and Enone 4a
 

 

 

 

 

 

 

Table 1. Effect of TFA on the Reaction Rate
a
 

 

Entry TFA Rate 3ab 

(mM min-1) 

Rate 4ac,d 

(mM min-1) 

1 0 mol% 0.1 0.1 

2 10 mol% 1.7 2.9 

3 20 mol% 2.3 3.6 

4 40 mol% 2.6 3.3 

aThe rates were obtained by monitoring the temporal progress 

of the coupling by 1H NMR spectroscopy. Reaction conditions: 0-

40 mol% TFA, [1a]0= 0.476 M, [2a]0= 0.318 M, [tBuOOBz]0= 

0.413 M, 10 mol% Pd(OAc)2, 4:1 [D8]-Dioxane/AcOH, 300 K.b 

Max rate c Initial rate. d In control experiments without Pd(OAc)2, 

or with Co(OAc)2 (20 mol%) or Fe(OAc)3 (20 mol%), no 4a or 3a 

was produced. 

Interestingly, although TFA alone was an inefficient cata-

lyst, the effect of additional TFA to the overall reaction rate 

was beneficial (Table 1). With added TFA, the reaction pro-

ceeded at a reasonable rate even when using Pd(OAc)2 as the 

Pd(II) source. 

 

Kinetic Isotopic Effects and Deuterium Labeling. Alt-

hough the above experiments established that enone 4a is 

indeed a viable intermediate for the reaction, control experi-

ments without indole 2a clearly demonstrated that enone for-

mation is very slow in the absence of indole.
5
 The reaction 

progress method allowed us to obtain kinetic isotope effect 

(KIE) data for all key reaction components, using deuterium-

labeled starting materials.
12

  

The first KIE experiment involved a comparison of C2-H vs 

C2-D-labeled indole (Figure 2 a).
13

 All reaction components 

displayed significant inverse KIEs in this experiment (Figure 

2). These results indicate that D-2a accelerates the formation 

of the enone 4a. The increased rate of product formation (3a) 

might be due to increased rate of the formation of the interme-

diate.  

A second set of KIE experiment was conducted with deuter-

ium-labelled -keto ester D6-1a (Figure 2 b). In this case, 

unfortunately, the formation of the corresponding enone could 

not be reliably monitored. Although the rate of consumption of 

D6-1a appears to display an inverse KIE, possible initial H/D 

exchange and/or differences in the rates of the formation of the 

Pd(II) complexes of 1a could also account for this observation. 

Indeed, the overall rate of the reaction did not exhibit any KIE 

(3a: kH/kD = 0.98), and the initial rate of the consumption of 

the oxidant indicated a small normal KIE (kH/kD = 1.07). Since 

the consumption of the oxidant is most likely correlated with 

the concentration of the enone 4a, these results suggest that 

the dehydrogenative reaction that produces 4a is unlikely to 

exhibit a KIE, although this step must involve the breaking of 

the β’-H bond of 1a.  



 

 

Figure 2. Temporal progress of the coupling by 1H NMR spec-

troscopy with deuterated starting materials. Reaction conditions: 

a): [1a]0= 0.476 M, [D-2a]0= 0.318 M, b) : [D6-1a]0 = 0.476 M, 

[2a]0= 0.318 M. For both experiments: [tBuOOBz]0= 0.413 M, 10 

mol% Pd(TFA)2, 4:1 [D8]-Dioxane/AcOH, 300 K. Rates and 

kH/kD are averages of three experiments (a) or two experiments 

(b). Rate0 and ratexx refer to the initial rate and the rate at t = xx 

min, respectively. 

Competition Studies. To obtain further insight into the re-

action mechanism, the KIEs were also assayed via competition 

studies.
12

 As shown in Scheme 4, an intermolecular competi-

tion reaction between substrates 2a and D-2a, starting with 1a, 

gives a product distribution PH/PD 1:1.22. If 2a is not dissoci-

ated from Pd after the first stage of the reaction (formation of 

enone 4a), then the observed KIE could be explained by the 

more rapid rate of enone formation with D-2a. However, the 

fact that a significant concentration of free enone can be ob-

served during the reaction (Figure 1) suggests that the catalytic 

cycle responsible for the coupling of enone 4a and indole 2a is 

at least partially separated from the first dehydrogenation 

cycle that produces enone 4a. Therefore, the observed KIE in 

Scheme 4a could be related to the C–C formation step. To 

assay this possibility, intermolecular competition experiments 

with 2a and D-2a were conducted using enone 4a as the sub-

strate. These experiments gave a PH/PD that was much closer 

to unity under both Pd(II) catalysis and TFA catalysis 

(Scheme 4b), suggesting that the KIE observed with 1a 

(Scheme 4a) originates from the dehydrogenation step and that 

4a may not be fully dissociated from the Pd complex that 

eventually leads to the product 3a.  

 

Scheme 4. Competition Studies between 2a and D-2a
 

 

In the competition reaction between 1a and D6-1a, the non-

deuterated 1a reacts faster than the deuterated D6-1a (Scheme 

5). This result is in agreement with the small normal KIE 

observed for oxidant consumption with D6-1a in the parallel 

experiment (Figure 2 b), suggesting that D6-1a is dehydrogen-

ated at a slower rate than 1a. Interestingly, some H/D ex-

change appears to take place in this experiment, producing 

D4-3a (Scheme 5). 

 

 

 

 

 

Scheme 5. Intermolecular Competition Between D6-1a and 

1a in the Coupling Process
 

 

Finally, in an intramolecular competition experiment, the 

mono-β’-deuterated D1-1a gave rise to product 3a that exhibit-

ed a 48.6:51.4 H/D ratio (Scheme 6). The absence of a KIE in 



 

this experiment suggests that the β’-H bond cleavage is not 

turnover-limiting for the dehydrogenation cycle (see below for 

further discussion). 

 

Scheme 6. Intramolecular Competition Studies with ’-

Monodeuterated D1-1a
 

 

Scheme 7. Intermolecular Competition Between 1a and 1b 

in the Coupling Process
 

 

The effect of the electron-withdrawing alkyl ester was studied 

using -keto ester 1b. Under the standard conditions, the reac-

tion between 1b and 2a was significantly slower than the 

standard reaction between 1a and 2a (0.52 mM min
-1

 with 1b 

vs. 1.7 mM min
-1

 with 1a). This rate difference was also con-

firmed by an intermolecular competition between 1a and 1b 

(P3a/P3b value of 3, see Scheme 7). These rates reflect the 

measured rates of the dehydrogenation step (rate of formation 

of enone: 1.6 mM min
-1

 for 4b (4b is enone derived from 1b) 

vs. 4.4 mM min
-1

 for 4a).
14

 

In summary, these kinetic experiments revealed that 1) the 

reaction likely proceeds in two stages, via an enone intermedi-

ate (4a), 2) the formation of enone is dependent on indole, and 

3) the C–C bond formation step can proceed under both acid 

catalysis as well as under Pd(II) catalysis. In parallel with 

these experiments, the intimate details of the mechanism were 

subjected to a computational study. 

Computational Studies and Revision of the Mechanism. 

Based on our experimental findings, we envisioned that the 

Pd-catalyzed dehydrogenative cross-coupling reaction be-

tween β-ketoester 1a and indole 2a takes place via two distinct 

catalytic cycles (Scheme 8) corresponding to the formation of 

the enone intermediate (cycle A) followed by the C–C bond 

formation process with indole (cycle B). As indicated in 

Scheme 8, the Pd(TFA)2(2a) species may represent a common 

intermediate of the two cycles. We carried out DFT calcula-

tions with the main aim at identifying and characterizing the 

key elementary steps of these cycles.
15 

 

Scheme 8. Schematic view of Catalytic Cycles for the De-

hydrogenation and the C–C bond Formation Steps 

 

Dehydrogenation: Cycle A. In accordance with previous 

studies on Pd-catalyzed dehydrogenation reactions, we con-

sidered a sequence of C–H-activation/-hydride elimination 

steps in cycle A. The assistance of indole was clearly demon-

strated in our experiments, therefore we assumed that 2a acts 

as a co-ligand along the entire reaction pathway. 

The calculations indicate that the deprotonation of 1a at the 

-carbon atom can occur easily via a tetracoordinate Pd(II) 

complex involving two TFA ligands and both substrates bound 

to the metal center (intermediate Pd(TFA)2(1a)(2a)). This 

complex is predicted to be at -0.1 kcal/mol with respect to 

Pd(TFA)2(2a) + 1a.
16

 The transition state identified for the 

deprotonation is depicted in Figure 3a and it represents only a 

small activation barrier (9.9 kcal/mol). It is apparent that the 

C–H bond of 1a is activated by a neighboring TFA ligand 

resulting in a Pd-enolate intermediate, which is stabilized by 

the dissociation of the TFAH molecule. This latter reaction 

intermediate (int1 in Figure 3b) lies slightly below the refer-

ence level (at –3.4 kcal/mol), and it is characterized by chelat-

ing coordination of the enolate ligand through the two carbon-

yl moieties (
2
(O,O') complex).

17
  

For the -hydride elimination step, the ’-hydrogen should 

be accessible by the metal center, therefore, ligand rearrange-

ment is expected as a next step along the reaction pathway. 

The simplest transformation would be an internal rearrange-

ment of the bonding between Pd and enolate preserving the 

same stoichiometry, but other pathways (including various 

dissociation/association steps) are also feasible. Our attempts 

to explore these transformations pointed to several transition 

states lying higher in free energy than TSdepr. For instance, the 

transition state connecting int1 with an 
3
-Pd-enolate interme-

diate (i.e. displacement of the ester group from the coordina-

tion sphere, see TSrear and int2 in Figure 4) is predicted to be 

at 16.9 kcal/mol, giving rise to a barrier of 20.3 kcal/mol (rela-

tive to int1).
18

  



 

 

Figure 3. Transition state located for the substrate deprotonation 

step of cycle A (a) and the corresponding product state intermedi-

ate (b). Relative Gibbs free energies (in kcal/mol, with respect to 

Pd(TFA)2(2a) + 1a) are shown in parenthesis. Metal-ligand bonds 

are indicated by dashed lines. For clarity of figures, hydrogen 

atoms are omitted, except those involved in dehydrogenation. 

 

Figure 4. Decoordination of the ester group in intermediate int1: 

a) transition state, b) product state of rearrangement. 

Additional ligand rearrangement can lead to an intermediate 

involved directly in the -hydride elimination step (see int3 in 

Figure 5). In this species, the enolate is bound covalently to Pd 

via the -carbon atom (
1
(C) complex) and it displays charac-

teristic -agostic interactions with the metal center. This com-

plex is computed to be at +3.2 kcal/mol on the free energy 

scale. Surprisingly, the Pd-mediated C–H bond cleavage does 

not yield the expected palladium-hydride species, because the 

located transition state (TSPCET in Figure 5) describes a direct 

hydrogen migration to the free oxygen of the TFA ligand 

without the formation of a palladium-hydride intermediate 

(PdH species could only be identified computationally as very 

unstable structures).
11

  

 

Figure 5. The proton-coupled electron transfer (PCET) transition 

state of cycle A and the corresponding reactant and product state 

intermediates. 

The population analysis carried out for the transition state 

and the corresponding intermediates reveals that this elemen-

tary step can be characterized as a concerted proton-coupled 

electron transfer (PCET) process involving proton migration 

to TFA occurring in concert with 2e
-
 electron transfer to the 

metal center.
19,20

 This reaction step results in a 

Pd(0)(TFAH)(2a)(4a) complex as an intermediate (int4 in 

Figure 5) lying at 6.4 kcal/mol. The computed activation bar-

rier of the PCET step is 16.9 kcal/mol with respect to the low-

lying int1 intermediate, i.e. much lower than that of the ligand 

rearrangement step (20.3 kcal/mol, TSrear with respect to int1). 

After this step, the catalytic cycle involves the oxidation of 

Pd(0) and the elimination of the enone molecule. These trans-

formations were not examined computationally in the present 

work. 

 

Figure 6. Gibbs free energy diagram computed for the dehydro-

genation process. 

The Gibbs free energy diagram of the reaction route ex-

plored for the dehydrogenation process is depicted in Figure 6. 
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These results point towards a reasonable mechanism for the 

dehydrogenation process, however, they indicate that the 


2
(O,O') to 

1
(C) rearrangement of the enolate ligand, and not 

the PCET step, might be rate-determining in cycle A.  

Indole-Assisted Dehydrogenation. To assess the role of 

indole in the dehydrogenation cycle, we examined analogous 

reaction pathways using a model with a TFAH co-ligand re-

placing the indole. We find that the activation barriers are 

notably higher than those presented above. The largest differ-

ence was obtained for the ester decoordination step (the barrier 

increased to 24.2 kcal/mol) indicating that indole coordination 

is clearly beneficial in terms of the reaction rate. Interestingly, 

the PCET mechanism of C-H bond cleavage is maintained in 

the absence of indole as well, although the barrier of this step 

is predicted to be slightly higher in this case (15.0 kcal/mol). 

To rationalize the results of KIE experiments with 2a, we 

calculated the KIE values based on the relative barriers with 

the different isotopomers of 2a. With D-2a, the calculated KIE 

is 0.85 considering that TSrear is the turnover-determining 

transition state.
12,21

. The calculated value is very close to the 

experimental KIE (0.77-0.85, see Figure 2). The magnitude of 

the KIE is similar to cases where hybridization changes from 

C(sp
2
) to C(sp

3
),

22
 suggesting that the steric environment of C2 

of 2a becomes significantly more crowded in the turnover-

determining transition state TSrear compared to the turnover-

determining intermediate. This result suggests that 2a assists 

the tautomerization step by coordinating more tightly (primari-

ly via its 2,3--bond) to Pd(II) in the transition state TSrear. 

Indeed, computations indicate that the bond distance between 

the C2 atom of the coordinated indole and the Pd atom is 

considerably shortened in the TSrear compared to the related 

reactant state (int1) (the computed Pd-C2 bond lengths are 

2.28 and 2.34 Å, respectively). The need for indole assistance 

in this step may result from increased electron deficiency of 

the Pd(II) center in TSrear due to decoordination of 1a.  

To test this hypothesis, we also experimentally explored 

other electron-rich ligands which would not react with 4a but 

would nevertheless be able to withstand the oxidative condi-

tions. In addition to sulfoxides (DMSO and PhSOMe),
23

 1,2,3-

trimethylindole and 1,3-dimethylindole were able to signifi-

cantly accelerate the dehydrogenation step (see the SI).
11

 

If the PCET step, where the ’-H bond is cleaved, would be 

the turnover-determining step in cycle A, a much larger KIE 

would be expected than that observed experimentally with ’-

deuterated 1a variants (the experimental KIE is close to 1, see 

Figure 3 and Scheme 6). The calculated KIE for the PCET 

step is quite large (7.06), and it is in sharp contrast with the 

value obtained from the intramolecular competition experi-

ment (Scheme 6), which is expected to be most sensitive to 

any KIE in the product-determining step. The fact that no 

primary KIE is observed even under these conditions can be 

rationalized by considering that the different hydrogen iso-

topes are not in an equal environment after the turnover-

limiting step (i.e. TSrear).
24

 The choice between ’-H vs. ’-D 

abstraction has already been made in the turnover-determining 

ligand rearrangement step which leads to the formation of C-

bound enolate int3, The effect of deuterium substitution in the 

’ position of the ligand on the ligand rearrangement step is 

expected to be small, resulting in a negligible primary KIE.  

The finding that the turnover is determined by the ligand 

tautomerization step (from a O,O’-chelate int1 to C-bound 

int3) is interesting. -Substituted -dicarbonyl compounds are 

known to be unproductive in -arylation reactions,
25

 and our 

results suggest that such low reactivity might have a kinetic 

origin. Specifically, if the barrier for the formation of the C-

bound enolate from the O,O’-chelate intermediate is too high, 

this would prevent both dehydrogenation and -arylation 

reactions. In a control experiment, methyl dimethylmalonate 

(5), a very sluggish substrate for -arylation,
25a

 failed to give 

any coupling products with 2a under the standard reaction 

conditions (eq 1).
11

  

 

This result could be rationalized by the higher Lewis basici-

ty of the ester oxygens in 5, which might result in a O,O’-

chelated intermediate that would be too stable to undergo the 

tautomerization to the C-bound enolate. Since ligands such as 

indole are able to assist the tautomerization step, we can spec-

ulate that perhaps more efficient -donor ligands might over-

come these limitations. 

The C–C Coupling Process. According to the experimental 

evidence, the C–C coupling process (cycle B) could proceed 

either via acid catalysis or Pd(II) catalysis under acidic condi-

tions. The reaction between 2a and 4a could conceivably take 

place via either Lewis acid catalysis (Pd
2+

), C-palladation of 

2a, or Brønsted acid catalysis, among other possibilities. We 

therefore examined these reaction routes computationally, and 

plausible pathways were identified for these scenarios. For 

brevity, herein we discuss only the C-palladation mechanism 

in detail, which is predicted to have the lowest activation 

barrier among the investigated pathways. The alternative 

pathways are presented in the Supporting Information.
11

  

The C-palladation pathway begins with the formation of a 

Pd(TFA)2(2a)(4a) complex, which involves both coupling 

partners (indole 2a and enone 4a). Although this complex lies 

fairly high in free energy (11.8 kcal/mol with respect to 

Pd(TFA)2(2a) + 4a), it  can undergo C–H activation (concert-

ed metalation-deprotonation)
26

 via transition state TSCH to 

yield intermediate intCH (Figure 7). The located transition state 

is computed to be at 19.7 kcal/mol, and the resulting interme-

diate is predicted to be at 8.9 kcal/mol. In intCH, the indole is 

covalently bound to Pd, whereas enone 4a is -coordinated.  

Facile C–C bond formation may take place from intCH (Fig-

ure 8). The located transition state (TSCC) lies notably lower in 

free energy than TSCH. The product state of the coupling pro-

cess (intCC) is a very stable species, wherein the adduct 3a is 

bound by multiple bonds to the metal center. Protonation of 

the carbonyl oxygen followed by the dissociation of the enolic 

form of the product is found to be a reasonable scenario for the 

completion of the cycle, but other product elimination routes 

may exist too.  

 



 

 

Figure 7. C–H activation of indole 1a.  

 

 

Figure 8. Pd-catalyzed C–C coupling via a C3-palladated indole 

species. 

It should be emphasized that the alternative C–C bond for-

mation mechanisms cannot be entirely ruled out either. For 

example, for a Brønsted acid catalyzed pathway (TFA as the 

catalyst), calculations predict a barrier very similar to that 

obtained for the C-palladation pathway (19.9 kcal/mol). Fur-

thermore, a Lewis acid catalyzed pathway, involving Pd
2+,

 was 

found to have a slightly higher barrier (22.3 kcal/mol).
11

 Alt-

hough there are close literature precedents involving Pd
2+

 as a 

Lewis acid in Friedel-Crafts reactions between indoles and 

-unsaturated carbonyl compounds,
27

 it should be noted that 

the reaction conditions (aprotic solvents, such as CH2Cl2 and 

noncoordinating counterions, such as SbF6
–
) are quite different 

to those studied here (trifluoroacetate counterions, polar 

/protic solvent). 

The Resting State of the Catalyst. Although the computa-

tions give reasonable barriers for the C–C bond forming step 

starting from Pd(TFA)2, the stability of the product complex 

intCC suggests that recycling Pd(II) requires further assistance, 

e.g. from the acidic solvent and/or -ketoesters. We were able 

to crystallographically characterize a dinuclear 

[Pd2(TFA)2(3a)2] complex from a reaction conducted with 100 

mol% of Pd(TFA)2.
11,28

 In this complex, 3a is a bidentate 

ligand for Pd(II), with a binding geometry that is strikingly 

similar to intCC. This complex could also be characterized 

computationally, and the experimentally and computationally 

derived structures are presented in Figure 9. The isolability of 

this complex suggests that Pd(II)-3a complexes are stable 

intermediates, and their decomplexation might even limit the 

turnover of the reaction.  

 

 

Figure 9. Structure of the Pd2(TFA)2(3a)2] complex: a) X-ray 

structure, b) overlay of X-ray (blue) and computed (red) struc-

tures.   

As a test for this hypothesis, we found that addition of dime-

thyl methylmalonate 5 (50 mol%) to the reaction mixture 

results in a marked increase in the rate of formation of both 3a 

and 4a (Scheme 9), pointing towards a possible assistance of 5 

in releasing Pd(II).
29

 Alternatively, 5 could act as a ligand for 

dehydrogenation, but we find this scenario less likely as -

ketoester 1a alone cannot effectively promote the dehydro-

genation without the assistance from indole.
5 

We cannot, how-

ever, rule out a third possibility that 5 assists in cycle B as a 

co-ligand.  

 

Scheme 9. Effect of Malonate Ester 5
 

 

Reaction Scope and Asymmetric Variants of the Cou-

pling Reaction. Although clarifying the mechanistic picture of 

the coupling reaction was the main focus of this study, we also 

present here the full scope of the transformation and an asym-

metric variant of the reaction. As described in our original 

communication, the reaction readily tolerated electron-rich, 

electron-poor, and sterically demanding indole-substrates, and 

both free indole N-H as well as N-methyl and N-benzyl in-

doles are tolerated. However, sulfonyl or carbamate protecting 

groups are not tolerated on the indole nitrogen. Furthermore, a 

range of -keto esters, including cyclic 5-, 6-, and 7-

membered β-keto esters, can be used. Additional substrates 

that were not described in the initial communication are shown 

in Scheme 10. The full scope is presented as a Chart in the 

Supporting Information.  

For the development of an asymmetric version of the reac-

tion, we have focused on using a chiral ester auxiliary. Alt-

hough the use of chiral acids and/or chiral anions might con-

ceivably induce enantioselectivity via either the Pd(II)- or 

acid-catalyzed C-C bond formation pathways, our previous 

experiments with chiral acids and chiral Pd phosphates were 

not very encouraging.6 Instead, 8-phenylmenthyl esters
30

 

exhibited useful levels of diastereoselectivity.
31,32

  

 

 

a) b)

TSCH (19.7) intCH (8.9)

a) b)

TSCC (16.0) intCC (-17.5)

a) b)



 

 

Scheme 10. Additional Substrates for the Indole - β-Keto 

Ester Oxidative Coupling
a
 

 
a Isolated yields of pure products are reported. Conditions: 1 (1.5 

equiv), 2 (0.4 mmol, 1.0 equiv), t-BuOOBz (1.3 equiv), Pd(TFA)2 

(0.1 equiv), i-PrOH/AcOH (4:1, 0.5 mL) at 25 ˚C. 

 

Scheme 11 presents the scope of the transformation with 

different 8-phenylmenthyl β-keto esters. In general, the dia-

stereoselectivities were good. The exception was 3i, which 

afforded only moderate 2.1:1 dr. The reaction also tolerates 

bromine substituents in the indole nucleus (3g - 3i); this is a 

useful feature for further functionalization of the products. The 

observed sense of diastereoselection is in full accordance with 

literature precedents
30

 and the model shown in Scheme 11 

(inset). 

 

Scheme 11. Scope of the Diastereoselective Dehydrogena-

tive Coupling with 8-Phenylmenthyl β-Keto Esters
a 

 

a Isolated yields of pure products are reported. Conditions, unless 

otherwise indicated: 1 (1.5 equiv), 2 (0.4 mmol, 1.0 equiv), t-

BuOOBz (1.3 equiv), Pd(TFA)2 (0.1 equiv), i-PrOH/AcOH (4:1, 

0.5 mL) at rt. 

 

Scheme 12. Revised Catalytic Cycles
 

 

Krapcho decarboxylation of 3aj provided the corresponding 

ketone 6 in 62% yield (eq 1) and 98:2 er (eq 2).
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Conclusions. -Keto esters and indoles can be dehydro-

genatively cross-coupled with a high regiochemical fidelity 

under very mild conditions with Pd(II) catalysis. With the 

combined information obtained from online NMR monitoring 

experiments, kinetic isotope effects, and computational stud-

ies, the previously proposed reaction mechanism was revised. 

The revised mechanism is presented in Scheme 12.  

The reaction involves indole already at the early stage of the 

catalytic process as a -bound ligand for Pd(II) that assists the 

O–to–C  tautomerization of -keto ester 1a. This is the turno-

ver-determining step of the dehydrogenation cycle. The assis-

tance of indole ligand in the tautomerization step is evident 

both from the secondary kinetic isotope effects observed for 

the rate of the dehydrogenation with 2-deuterated N-

methylindole and from the computational studies. The dehy-

drogenation of the -keto ester is completed by a proton-

assisted electron transfer reaction where Pd(II) is simultane-

ously reduced to Pd(0) and trifluoroacetate ligand accepts a 

proton from the ’ carbon. No Pd hydride intermediate could 

be characterized by the computations. For the C–C bond form-

ing step, three plausible pathways involving either acid cataly-

sis or Pd(II) catalysis were identified by computations. Exper-

imentally, Pd(II) was found to accelerate the C–C bond for-

mation, and computationally the most feasible Pd(II)-

catalyzed pathway involves the palladation of indole at C3. 

However, Lewis acid catalysis by Pd
2+

 cannot be excluded. 

Finally, the synthetic utility of the protocol was expanded to 

include additional substrates, and an asymmetric version of the 

reaction could be realized with 8-phenylmenthyl esters.  

The reaction between indoles and -ketoesters appears to be 

possible only because indoles can serve the double role of a 

substrate and a ligand in the ligand-assisted tautomerization 

step, the turnover-determining step of the dehydrogenation 

cycle. This finding should encourage researchers to look for 

similar effects in other dehydrogenation and cross-

dehydrogenative coupling reactions.  

Supporting Information. Experimental procedures, additional 

experiments pertaining to the mechanism, characterization data, 

computational details, and copies of NMR spectra and GC chro-

matograms.  

papai.imre@ttk.mta.hu, petri.pihko@jyu.fi 

We thank Dr. Elina Kalenius, Mr. Esa Haapaniemi, and Academy 

Prof. Kari Rissanen for assistance with mass spectrometry, NMR 

spectroscopy, and X-ray crystallography, respectively. Financial 

support from Tekes, Academy of Finland (project 138854), Hun-

garian Scientific Research Fund (OTKA, grant K-81927), AB 

Enzymes, CABB, Fermion, Hormos, Orion, University of 

Jyväskylä, and COST CM0905 is gratefully acknowledged.  

1. For review of catalytic dehydrogenative cross-couplings, 

see: Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 

1215. 

2. For unselective examples of dehydrogenative arylations of 

sp
3
 C−H bonds, see: (a) Deng, G.; Zhao, L.; Li, C.-J. An-

gew. Chem. Int. Ed. 2008, 47, 6278. (b) Guo, X.; Li, C.-J. 

Org. Lett. 2011, 13, 4977. 

3. For selected reviews of catalytic oxidative functionaliza-

tions of sp
3
 C−H bonds, see: (a) Jazzar, R.; Hitce, J.; Re-

naudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 

2010, 16, 2654. (b) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. 

Technol. 2011, 1, 191. (c) Rouquet, G.; Chatani, N. Angew. 

Chem. Int. Ed. 2013, 52, 2. (d) Girard, S. A.; Knauber, T.; 

Li, C.-J. Angew. Chem. Int. Ed. 2014, 53, 74. 

4. For intramolecular Pd
II
-catalyzed dehydrogenative aryla-

tions of sp
3
 C−H bonds, see: (a) Liègault, B.; Fagnou, K. 

Organometallics 2008, 27, 4841. (b) Pierre, C.; Baudoin, 

O. Tetrahedron 2013, 69, 4473. 

5. Leskinen, M. V.; Yip, K-T.; Valkonen, A.; Pihko, P. M. J. 

Am. Chem. Soc. 2012, 134, 5750. 

6. Yip, K-T; Nimje, R. Y.; Leskinen, M. V.; Pihko, P. M. 

Chem. Eur. J. 2012, 18, 12590. 

7. Nimje, R. Y.; Leskinen, M. V.; Pihko, P. M. Angew. Chem. 

Int. Ed. 2013, 52, 4818. 

8. Ito, Y.; Suginome, M. In Handbook of Organopalladium 

Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; 

Wiley: New York, 2002; Vol. 2, p. 2873.  

9.  (a) Itahara, T.; Ikeda, M.; Sakakibara, T. J. Chem. Soc., 

Perkin Trans. 1 1983, 1361. (b) Itahara, T.; Kawasaki, K.; 

Ouseto, F. Synthesis 1984, 236. (c) Yokoyama, Y.; 

Matsumoto, T.; Murakami, Y. J. Org. Chem. 1995, 60, 

1486. (d) Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. 

Lett. 1999, 1, 2097. (e) Grimster, N. P.; Gauntlett, C.; God-

frey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 

44, 3125. (f) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, 

M. Org. Lett. 2008, 10, 1159. 

10. For examples of online NMR monitoring in detection of 

several intermediates, see: (a) Ref 7. (b) Sahoo, G.; 

Rahaman, H.; Madarász, Á.; Pápai, I.; Melarto, M.; 

Valkonen, A.; Pihko, P. M. Angew. Chem. Int. Ed. 2012, 

51, 13144.  

11. See the Supporting Information for details.  

12. (a) Gómez-Callego, M.; Sierra, M. A. Chem. Rev. 2011, 

111, 4857. For an insightful essay, see: (b) Simmons, E. 

M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066. 

13. C3-deuterated 2a rapidly exchanged the deuterium label 

with AcOH, with and without Pd(TFA)2 catalyst. In con-

trast, the deuterium label at C2 was preserved with D-2a 

under the reaction conditions. 

14. Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 

2005, 127, 10323. 

15. Most of the DFT calculations (geometry optimizations, vi-

brational analysis, estimation of solvent effects) were car-

ried out at B97X-D/SDDP level of theory. For each locat-

ed structure, we carried out additional single-point energy 

calculations using the same functional, but a larger basis set 

(supplemented by diffusion functions). The reported ener-

getics refers to relative solution-phase Gibbs free energies. 

For further details, see Supporting Information. 

16. The Pd(TFA)2(2a) + 1a state was arbitrarily chosen as a 

reference level for the estimation of relative Gibbs free en-

ergies since the experimental evidence indicated involve-

ment of 2a in the dehydrogenation of 1a. 

17. For an early review on coordination chemistry of -

dicarbonyl compounds, see: Kawaguchi, S. Coord Chem. 



 

Rev. 1986, 70, 51. For experimental studies of Pd(II) eno-

lates, see: (b) Culkin, D. A.; Hartwig, J. F. Organometallics 

2004, 23, 3398. (c) Wolkowski, J. P.; Hartwig, J. F. Angew. 

Chem. Int. Ed. 2002, 41, 4289. 

18. The computed barrier is consistent with those reported for 

analogous O-bound enolate to C-bound enolate tautomeri-

zation processes of Ni- and Pd-enolate complexes,although 

the structure of the enolate ligand is different: a) Cámpora, 

J.; Maya, C. M.; Palma, P.; Carmona, E.; Gutiérrez, E.; 

Ruiz, C.; Graiff, C.; Tiripicchio, A. Chem. Eur. J. 2005, 11, 

6889; b) Oertel, A. M.; Ritleng, V.; Busiah, A.; Veiros, L. 

F.; Chetcuti, M. J. Organometallics 2011, 30, 6495.  

19. For recent comprehensive reviews on proton-coupled elec-

tron transfer reactions, see: (a) Huynh, M. H. V.; Meyer, T. 

J. Chem. Rev. 2007, 107, 5004; (b) Weinberg, D. R.; 

Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; 

Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; 

Meyer, T. J. Chem. Rev. 2012, 112, 4016.  

20. For studies describing metal-catalyzed C–H bond cleavage 

reactions in terms of the PCET mechanism, see: (a) Seu, C. 

S.; Appel, A. M.; Doud, M. D.; DuBois, D. L.; Kubiak, C. 

P. Energy Environ. Sci., 2012, 5, 6480; (b) Nielsen, R. J.; 

Goddard III, W. A. J. Am. Chem. Soc. 2006, 128, 9651. 

Note that in the latter work, this mechanism is referred to 

as reductive -hydride elimination. The computed charges 

of the int3, TSPCET and int4 stationary points indicate that a 

proton, and not a hydridic or radical H is transferred in the 

present hydrogen migration step, and therefore we think the 

use of the PCET term is justified here (for details of popu-

lation analysis, see the SI).  

21. The identity of the catalyst resting state (i.e. the turnover-

determining intermediate – see Kozuch, S.; Shaik S. Acc. 

Chem. Res. 2011, 44, 101) is uncertain. In the KIE calcula-

tions, it was assumed that the resting state does not involve 

2a as the ligand. For more details about the KIE calcula-

tions, see the SI. 

22. Anslyn, E. V.; Dougherty, D. A. (2006). Modern Physical 

Organic Chemistry. University Science Books. pp. 435–

437. ISBN 1-891389-31-9.  

23. (a) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 

14566. (b) Diao, T.; Pun, D.; Stahl S. S. J. Am. Chem. Soc. 

2013, 135, 8205. 

24. The system studied herein is different to the scenarios dis-

cussed in ref 12b. In the 5th scenario of this paper, the ab-

sence of KIE in an intramolecular competition experiment 

is attributed to the reversibility of the C–H bond cleavage 

step, since in this particular example the C–H and C–D 

bonds would otherwise be equally accessible in the prod-

uct-determining step. This is not the case in this mechanis-

tic scenario.  

25. For accounts describing the scope of -arylation with -

dicarbonyl compounds, see: (a) Kawatsura, M.; Hartwig, J. 

F. J. Am. Chem. Soc. 1999, 121, 1473. (b) Fox, J. M.; 

Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. 

2000, 122, 1360. For a discussion of ligand effects on -

arylation of -dicarbonyl compounds, see: ref 17c. The au-

thors propose that bulky ligands assist in the reductive 

elimination step, but no mention is made of the ligand ef-

fects on the tautomerization step.  

26. For a review on base-induced concerted metalation-

deprotonation mechanism, see: a) Ackermann L. Chem. 

Rev. 2011, 111, 1314. See also: b) Gorelsky, S. I.; 

Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 

10848. c) Biswas, B.; Sugimoto, M.; Sakaki. S. Organome-

tallics, 2000, 19, 3895. 

27. Aikawa, K.; Honda, K.; Mimura, S.; Mikami, K. 

Tetrahedron Lett. 2011, 52, 6682. 

28. We cannot rule out the involvement of dinuclear Pd(II) 

species in the C-C bond forming process. For an example 

of palladation in a dinuclear Pd(II) species, see: Sanhueza, 

I. A.; Wagner, A. M.; Sanford, M. S.; Schoenebeck, F. 

Chem. Sci. 2013, 4, 2767. 

29. In addition to 5, addition of DMPU also increases the over-

all reaction rate (ratemax = 2.0 mM min
–1

 for 3a with 50 

mol% of DMPU vs. 1.7 mM min
–1

 under the standard con-

ditions).  

30. Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 

6908. 

31. The diastereoselective version also tolerates cyclic 6-

membered -keto esters, but the products could not be ob-

tained in pure form. 

32. The absolute stereochemistry of the products was deter-

mined by X-ray analysis of 3aj. Other products were as-

signed by analogy. See the SI for details. 

  

http://en.wikipedia.org/w/index.php?title=University_Science_Books&action=edit&redlink=1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-891389-31-9


12 

 

 


