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SUMMARY

Finding appropriate incentives to enforce collaborative efforts for governing the
commons in risky situations is a long-lasting challenge. Previous works have
demonstrated that both punishing free-riders and rewarding cooperators could
be potential tools to reach this goal. Despite weak theoretical foundations, policy
makers frequently impose a punishment-reward combination. Here, we consider
the emergence of positive and negative incentives and analyze their simulta-
neous impact on sustaining risky commons. Importantly, we consider institutions
with fixed and flexible incentives. We find that a local sanctioning scheme with
pure reward is the optimal incentive strategy. It can drive the entire population
toward a highly cooperative state in a broad range of parameters, independently
of the type of institutions. We show that our finding is also valid for flexible incen-
tives in the global sanctioning scheme, although the local arrangement works
more effectively.

INTRODUCTION

Our society faces many urgent challenges that can be encapsulated as ‘‘the problems of the commons’’,

such as climate change, desertification of land, environmental pollution, and the list can be easily extended

by other examples (Ostrom, 1990). All these pressing problems require us to give up our short-term per-

sonal interests for the benefit of long-term collective success (Rand andNowak, 2013; Tavoni, 2013; Lenton,

2014; Shirado and Christakis, 2020). However, self-interested individuals always prefer their personal inter-

ests which can easily lead to a collective failure; hence, the ‘‘tragedy of the commons’’ seems to be inevi-

table (Hardin, 1968).

As a paradigm, the public goods game has been commonly used to study such dilemmas characterized by

the frustration between personal and collective interests (Fehr and Gächter, 2002; Hauert et al., 2002; Szol-

noki et al., 2011; Sasaki et al., 2012; Chen et al., 2015; Han et al., 2015; Wang et al., 2019; Ginsberg and Fu,

2019; Domingos et al., 2020; Santos et al., 2021). However, recent research emphasized that the traditional

public goods game does not consider the risk of group failure; hence, the so-called collective-risk social

dilemma game is a more competent tool to grab the essence of the conflict in several cases (Milinski

et al., 2008). An excellent example of this feature is the mitigation effort to prevent climate change

(Schroeder et al., 2012; Barrett and Dannenberg, 2012; Marotzke et al., 2020), which is one of the greatest

public goods dilemmas that we humans face in the history (Inman, 2009).

Recent experimental and theoretical studies concerning collective-risk social dilemmas have revealed that

the risk of collective failure plays an important role in promoting the evolution of cooperation (Milinski

et al., 2008, 2011; Wang et al., 2009, Wang et al., 2010; Santos and Pacheco, 2011; Jacquet et al., 2013;

Wu et al., 2013; Zhang et al., 2013). More precisely, a high risk can significantly enhance the willingness

to cooperate, but cooperation collapses when the risk of failure is low (Santos et al., 2012; Chen et al.,

2012, 2014; Pacheco et al., 2014; Vasconcelos et al., 2014, 2015; Diaz and Moore, 2017). Introducing costly

punishment into the collective-risk social dilemma game can reverse the disadvantage situation under low

risk, even when punishment is voluntary and costly (Vasconcelos et al., 2013). Furthermore, local schemes of

sanctioning can do better than global schemes of institutions in improving the general group achievement,

even when the risk of collective failure is low (Vasconcelos et al., 2013).

Beside punishment (Sigmund et al., 2010), other incentive strategies, like rewarding cooperators or the

simultaneous presence of independent incentives, were also considered by previous works (Hilbe and
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Sigmund, 2010; Szolnoki and Perc, 2013). An intriguing question is whether there exists the optimal relation

of negative and positive incentives that can be maintained when voluntary and costly. In this paper, we

thereby consider a hybrid enforcement strategy which imposes both kinds of incentives on participants

simultaneously in the collective-risk social dilemma game. Accordingly, the positive and negative incen-

tives are simultaneously presented within an incentive strategy, called executor strategy, and executors

both punish defectors and simultaneously reward cooperators with a certain weight.

Our principal goal is to investigate how the proposed executor strategy influences the group achievement

for solving the collective-risk social dilemma and to further find the optimal incentive strategy in the coop-

erative governance of risky commons when institutions are working at a local or global level. Furthermore,

we respectively consider two cases of institutions: when the imposed incentive is fixed, the incentive

amount is independent of the actual number of executor players; while when the imposed incentive is flex-

ible, the incentive amount depends on the actual number of executor players (Sigmund et al., 2010; Sasaki

and Unemi, 2011; Vasconcelos et al., 2013; Szolnoki and Perc, 2015). We stress that in our framework

whether the institutions can be formed depends on the number of executor players in game interactions,

and hence, this setting is different from pervious works (Chen et al., 2015; Góis et al., 2019) which supposed

that the considered centralized institutions are established in advance and can always work stably. In addi-

tion, the incentive budget on cooperators and defectors is not constrained in this work, whereas it is fixed in

previous works (Chen et al., 2015; Góis et al., 2019). Interestingly, we show that independently of the types

of institutions, pure reward strategy can always do better than other combinations of incentives in

improving the level of group achievement in local sanctioning schemes. Besides, we find that this obser-

vation remains valid for flexible incentives in global sanctioning schemes. Furthermore, we reveal that

regardless of the value of risk, a local scheme can promote group success more effectively than a global

scheme, no matter whether the imposed incentives are fixed or flexible.
RESULTS

Fixed incentives under a local scheme

We investigate the stationary distribution and the gradient of selection to study the evolutionary dynamics

of cooperators (C), defectors (D), and executors (E) in finite well-mixed populations (Vasconcelos et al.,

2013). The stationary distribution standing for the prevalence in time of each configuration of the entire

population is mapped onto the triangular simplex, in which each dot represents a configuration. The so-

called gradient of selection provides the most likely direction of evolution from a given configuration.

In Figure 1, we show the stationary distribution and the gradient of selection when pure reward strategy

(i.e., a = 1) and pure punishment strategy (i.e., a = 0) are considered, respectively. It suggests that the pop-

ulation will spend a significant time near the CE (C means cooperators and E means executors)-edge of the

triangle simplex, as shown in Figure 1A. Furthermore, most of the arrows in the simplex flow to the inter-

mediate region of CE-edge, indicating that the entire population evolves toward cooperation dominant

states. In Figure 1B, we show that the population will spend most of the time near the configurations in

which a lot of individuals are defectors (Vasconcelos et al., 2013). The comparison of these panels suggests

that pure reward strategy can lead to better outcomes than pure punishment strategy since the population

spendsmost of the time away from theD vertex in the usage of pure reward strategy. In order to qualify this,

we further compute the average group achievement hG values, which denote the average fraction of

groups that succeed in achieving collective targets to measure the level of cooperation. We find that

when pure reward strategy is considered, the average group achievement value is 99:87%. This value is

much higher than the average group achievement of 56:60% induced by pure punishment strategy.

In order to further explore how the hybrid incentive strategy influences the group achievement and to find

the optimal weight of incentives, we show the average group achievement hG as a function of a for different

values of risk r in Figure 2A. We find that the group achievement first grows fast and then increases slowly

when increasing the value of a. Thus, we can conclude that pure reward strategy can always do better

in improving the level of group achievement than other combinations of incentives. We note that here

c=b= 0:1 was used to obtain Figure 2A, but our findings remain valid for a broad range of c= b ratio.

We further present hG as a function of risk r for different values of a, as shown in Figure 2B. For the sake of

comparison, we also show the results when there is no incentive strategy (see black dash line). We find that

the level of group achievement increases as we increase r. Secondly, the introduction of incentive strategy
2 iScience 24, 102844, August 20, 2021
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Here, the risk level is r = 0.2. In panel A, in the extreme case of a = 1, E becomes equivalent to a pure rewarding strategy,

while the other extreme case of a = 0, where E is a pure punisher, can be seen in panel B. The darker dots in the simplex

represent the regions where the population spends more time. Orange arrows represent the most likely direction of

evolution when the population leaves the current configuration, obtained by computing the gradient of selection. We set

the collective targetM to 75% of the group size. Local scheme is established when the number of executors exceeds 25%

of the group. Parameter values are Z = 100, N = 4, c = 0.1, b = 1, m = 1=Z, pt = 0:03, and pe = 0:3.
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provides better outcome compared to the traditional two-strategy case. Furthermore, when strategy E is

introduced, it is better to adjust the weight factor toward the pure rewarding case which can improve the

result further especially in the small risk region.

In addition to the risk of collective failure mentioned above, themutation rate m also plays an important role

in the evolution of cooperation (Santos and Pacheco, 2011; Vasconcelos et al., 2013). However, it is unclear

whether pure reward is still the optimal incentive strategy when individual mutation is considered as it in-

troduces exogenous behavioral changes. To answer this question, in Figure 2C, we show hG as a function of

m for three different values of a. We find that the group achievement first increases until reaching the

maximum, and then, it decreases with the increasing value of m for different a values. We find that when

the mutation value is high, the group achievement level reaches a certain value regardless of the value

of a, which corresponds to random play, but it is always the highest for a = 1, and this difference is the

most conspicuous for small mutation rates (see the inset of Figure 2C). Thus, we can conclude that our

main finding is robust against the introduction of mutation.

We further find that the success of pure rewarding strategy for fixed incentives is induced by the efficiency

of the institution. As shown in Figure 3A, the institution prevalence increases as we increase a for different

risk values of r. We further compute the average fine on defectors and the average reward on cooperators

and executors as presented in Figure 3B and observe that as the parameter a increases, the average reward

amount on cooperators and executors monotonically increases from zero. On the other hand, the average

fine amount on defectors first increases until reaching themaximum and then decreases with increasing the

value of a. We can find that for a = 1, executors and cooperators have the greatest evolutionary advantage

over defectors, which is most conductive to the institution prevalence and the group achievement.
Flexible incentives under a local scheme

Beside fixed incentives, we can also apply flexible values imposed by the executor strategy where the actual

level depends on the number of E players. Furthermore, the success of their collective efforts is acknowl-

edged via an enhancement factor d (Sasaki and Unemi, 2011; Sasaki et al., 2012). Hence, an enhanced fine

and reward are distributed among defecting and cooperating players, respectively. In Figure 4, we first

show the stationary distribution and the gradient of selection for low and high enhancement factor values
iScience 24, 102844, August 20, 2021 3
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Figure 2. The average group achievement hG under local scheme with fixed incentives

Panel A shows hG as a function of a for three different values of r. The inset of panel A shows hG as a function of a, where

the value of a ranges from 0.4 to 1.0.

Panel B shows hG as a function of r in the cases without incentive strategy E and with three different weight factor values in

its presence.

Panel C shows hG as a function of m for three different values of a. The inset of panel c shows hG as a function of m, where

the value of m ranges from 0.001 to 0.01. Parameter values are Z = 100,N = 4, c = 0.1, b= 1, m = 1=Z, pt = 0:03, and pe = 0:3

in panels A and B; Z = 100, N = 4, c = 0.1, b = 1, r = 0.3, pt = 0:03, and pe = 0:3 in panel C.

ll
OPEN ACCESS

iScience
Article
in the extreme cases of a= 1 (pure reward) and a= 0 (pure punishment). As shown in Figure 4A, the entire

population will spend most time near configurations in which most individuals are cooperators when d is

low. Besides, we observe that most arrows flow to the vertex C and a few arrows point to vertex D. In Fig-

ure 4B, the flow of arrows is basically consistent with that observed in Figure 4A. However, the background

shadow area near vertex C in Figure 4A is significantly larger than the corresponding region in Figure 4B,

which suggests that pure reward strategy has an evolutionary advantage over pure punishment strategy in

improving the level of group achievement. For high enhancement factor of the institutional fund, the appli-

cation of pure reward makes the system more cooperative and the entire population spend most of the

time in the vicinity of the CE-edge, as shown in Figure 4C. Besides, most of the arrows in the simplex

flow to the regions near the C-corner. The corresponding simplex of pure punishment shown in Figure 4D

illustrates very clearly that the dark area is close to vertex D; hence, we can conclude that the usage of pure

reward strategy is more beneficial than the application of pure punishment strategy.

We also compute and add the average group achievement hG values to the simplexes, which also illustrate

clearly that pure reward performs better and this impact can be increased for a higher value of enhance-

ment factor of the institution pool. In the following, we present how the group achievement hG varies

with the value of a for different values of d in Figure 5A. This panel demonstrates clearly that the optimal

weight of incentives is a = 1, corresponding to the pure reward case. In particular, we find that for low

d (e.g., d = 2), the level of group achievement approaches zero for any value of a. However, for a larger

d value, the group achievement level grows as a increases and can be significantly improved when the value

of a is larger than an intermediate value.

We further present hG as a function of r for different values of a, as shown in Figure 5B. We also show the

results in the case when additional incentive strategy is absent (see black dash line). In general, the group

achievement level increases by enhancing the risk level r. Besides, we observe that the introduction of the

incentive strategy may elevate the value of hG, especially in the pure reward extreme case, but the improve-

ment is not as shocking as for the fixed incentives version, shown in Figure 2B. In Figure 5C, we show how

the group achievement hG varies with increasing the enhancement factor d for different values of a. In gen-

eral, the group achievement grows as we increase d, but the most remarkable improvement can be seen in

the pure reward limit at a = 1. Finally, we also explore the possible impact of mutation rate m on the group

achievement for three different values of a. As Figure 5D shows, the introduction of a small mutation rate

can promote the group achievement significantly. However, when the m becomes high, the group achieve-

ment level reaches a certain value regardless of the value of a. But, as previously stated, the best improve-

ment can be obtained again for pure reward strategy.

In order to explore why pure reward strategy is more beneficial to the group achievement than other

incentive strategies, we also present the institution prevalence hI in dependence of the weight factor
4 iScience 24, 102844, August 20, 2021
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a, as shown in Figure 6A. We find that for flexible incentives, the institution prevalence increases as the

weight factor increases for different values of d, which means that the hI value reaches the maximum for

a = 1. This indicates that the efficiency and prevalence of such institution can be best enhanced by the

pure reward strategy. In addition, we see that the average reward amount on cooperators and execu-

tors increases from zero as we increase the a value (Figure 6B). On the contrary, the average fine on

defectors slowly decreases and reaches to zero when a is one (Figure 6B). We then find that the evolu-

tionary advantage of cooperators and executors over defectors can be best promoted by the pure

reward strategy since their incentive difference can reach the maximum for a = 1, which can facilitate

the success of group achievement.
DISCUSSION

In this study, we have introduced a combined incentive strategy to address the collective-risk social

dilemma game, where the corresponding players punish free-riders and reward cooperators simulta-

neously. The fundamental question is how to share available resources to execute these tasks. We have

found that pure reward strategy can lead to the highest level of group achievement, no matter whether

we apply fixed or flexible incentives for governing the commons. It was demonstrated that when the risk

value of collective failure, the mutation rate, or the enhancement factor for institutional sanctioning is

changed to some extent, our conclusion about the superiority of pure reward remains intact. Furthermore,

we stress that this finding is not only valid under a local scheme of sanctioning but also valid for flexible

incentives under global level of institutions (see supplemental information where the latter option is dis-

cussed in details). The comparison of the mentioned cases also reveals that the application of local incen-

tives works more efficiently.

Previous works have demonstrated the advantage of a polycentric governance approach in solving the col-

lective-risk social dilemma and found that the local scheme of sanctioning based on pool punishment is

more effective than that associated with a single, global one for providing better conditions both for coop-

eration to thrive and for ensuring the maintenance of such sanctioning (Vasconcelos et al., 2013; Green

et al., 2014; Cole, 2015). In our work, we also confirm this conclusion, and we further find that it is valid

not only for fixed but also for the case when incentives are flexible. Thus, our work has greatly extended

the validity of previous conclusions.

In our work, the incentives on cooperators and defectors are imposed by executors, a third combined strat-

egy introduced into the collective-risk social dilemma. This consideration of the enforcement strategy as a

voluntary enforcement involves a more complex three-strategy system. Indeed, this is a kind of a bottom-

up self-regulation for influencing the evolution of cooperation (Sugiarto et al., 2017). We stress that this

approach is different from the top-down-like incentive mechanism used in previous works (Chen et al.,

2015; Góis et al., 2019), in which cooperators can be rewarded and defectors can be punished directly

by external centralized institutions. These works have concluded that the adaptive hybridization of

incentives can best promote the evolution of cooperation both in the traditional public goods game
iScience 24, 102844, August 20, 2021 5
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(Chen et al., 2015) and in the collective-risk social dilemma game (Góis et al., 2019). When we consider the

exogenous stability of these institutions, we find that pure reward strategy can better promote the evolu-

tion of cooperation than hybrid incentive strategies in the collective-risk social dilemma. This is because in

our framework the incentive budget on individuals is not constrained, and the evolutionary advantage of

cooperators and executors over defectors can be significantly promoted due to the maximal incentive dif-

ference induced by the pure reward strategy. Hence, the efficiency of institution can be best enhanced by

the pure reward strategy, and from an evolutionary perspective, we show how an incentive strategy can be

maintained as an endogenously chosen institution for cooperative governance of risky commons. Thus, our

work can enrich the knowledge of the emergence of institutions for governing the commons (Sigmund et

al., 2010; Vasconcelos et al., 2013; Dannenberg and Gallier, 2020).

Many research studies have demonstrated that reward or punishment is a viable approach in promoting the

evolution of public cooperation (Szolnoki et al., 2011; Sasaki and Unemi, 2011; Sasaki et al., 2012). However,

identifying the best way to distribute incentives remains an open question, given the difficulty in assessing

the advantages and disadvantages of each possibility in different scenarios (Hilbe and Sigmund, 2010; Szol-

noki and Perc, 2013). The majority of previous research studies addressing the ‘‘stick vs. carrot’’ manage-

ment strategy concluded that punishment is more effective than reward in sustaining common cooperation

in the conventional public goods game (Sigmund, 2007; Sasaki et al., 2012). However, the conventional
6 iScience 24, 102844, August 20, 2021
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public goods game fails to capture the significant feature of many real social scenarios, such as climate

change (Green et al., 2014). In this work, instead of the conventional public goods game, we apply the col-

lective-risk social dilemma game which has been proved as a framework to investigate the inherent prob-

lems of collective cooperation regarding avoiding dangerous climate change and other problems of this

type (Santos and Pacheco, 2011), and we show that the optimal sanctioning policy is pure reward, nomatter

whether fixed or flexible incentives are considered. Thus, our work may unveil the effects of incentives on

cooperative governance of risky commons in a real scenario.

Stimulating some nations or regions to reduce their greenhouse gas emissions is a fundamental task tomiti-

gate climate change. How to design effective incentive measures is particularly important for this purpose.

Since the Paris Agreement, we are witnessing the transformation of some countries’ environmental gover-

nance to high-quality management (Rogelj et al., 2016). The establishment of the bonus-penalty mecha-

nism, including giving appropriate compensation fees to emission reduction and imposing some fines on

areas where pollution emission exceeds the prescribed quantity, has effectively promoted coordinated

emission reduction (Xue et al., 2020). However, it is still unclear how to weigh rewards and punishments in

realistic yet complicated situations. Our research may provide some advices for policy makers from a theo-

retical perspective: pure reward is more effective than pure punishment and other hybrid incentive mea-

sures in achieving emission reduction targets, especially if the stability of the institution is of concern.
Limitations of the study

The current study focuses on exploring the optimal incentive strategy in the scenario where the combination

of punishment and reward is involved. However, it still has some limitations, which could be

further extended. In this work, we consider the institution-type incentiveswithwhichpunishment and reward

are used. Indeed, there are some other types of incentives in the real society, and the implementation of

incentive strategies is not necessarily institutional (Van Lange et al., 2014; Perc et al., 2017). In the future
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work, we can thus consider different types of incentive strategies, e.g., social exclusion (Sasaki and Uchida,

2013) or different implementation ways of incentive, e.g., peer-type incentives (Hauert et al., 2007; Sigmund

et al., 2010). In a recent work (Han et al., 2021), it is shown that peer punishment is more efficient than peer

reward in promoting safety compliance and in mitigating the risk from artificial intelligence unsafe develop-

ment. However, it is unknownwhether pure reward strategy is still the best incentive strategy to promote the

evolution of cooperation when peer-type incentives are considered in the collective-risk social dilemmas. In

addition, in this work, we consider that whether incentives can beprovided or not depends on the number of

executors. Indeed, the number of cooperators can be used as a criterion to decidewhether or not to provide

incentives (Han andTran-Thanh, 2018). In this scenario, it is interesting to explore the optimal incentive strat-

egy for cooperative governance of risky commons. Moreover, implementation of local incentive requires

additional information, and hence, it is also necessary to consider the cost of information collection for ex-

ecutors. Therefore, it is worth further exploring how the introduction of observation cost or information

collection cost affects cooperative governance of risky commons (Szolnoki and Chen, 2015). Our work re-

veals that pure reward strategy is a more efficient incentive strategy for cooperative governance of risky

commons. This may result from that executors bear the cost of punishing defectors (Szolnoki and Perc,

2017), while the beneficiary of rewarding mechanism actually includes themselves, which needs to be veri-

fied in the future work. Indeed, considering second-order sanctions is important in the context of pool in-

centives (Fowler, 2005; Perc, 2012; Garcı́a and Traulsen, 2019), so it may also open an interesting research

avenue to explore the efficiency of incentives in the collective-risk social dilemma game. Previous studies

have shown that the existenceof second-order free-riders plays an important role in the emergenceof coop-

eration and institutions (Sigmund et al., 2010; Sasaki andUnemi, 2011; Szolnoki and Perc, 2017). Therefore, it

is worth investigating whether the introduction of second-order punishment and second-order reward can

improve cooperative governance of risk commons (Van Lange et al., 2014). Furthermore, our research ex-

plores the optimal incentive strategy by adjusting the fixed relative weight parameter for the combination

of punishment and reward. But indeed, this parameter can be time varying, depending on the population

states. On the other hand, on the premise of ensuring a sufficiently good outcome, how to optimize the cost

of providing incentives is another important issue of incentive design (Han and Tran-Thanh, 2018). Hence, it

is meaningful to investigate the optimal incentive strategy in this scenario by means of optimal control the-

ory or reinforcement learning approach (Wang et al., 2019; Ratliff et al., 2019). In this work, we have consid-

ered a well-mixed interaction where individuals perform random interactions. However, the interactions

among individuals are typically not random but rather that they are limited to a set of neighbors in a struc-

tured population, which could be described by a complex interaction network (Santos and Pacheco, 2011;

Szolnoki et al., 2011; Pinheiro et al., 2012; Szolnoki and Perc, 2013; Perc et al., 2017). Thus, it could be inter-

esting to explore the optimal incentive strategy in structured populations. We believe that future work

considering these extensions will be valuable and improve our understanding of the role of incentive stra-

tegies in cooperative governance of risk commons.
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METHOD DETAILS

Collective-risk social dilemma game

We consider a finite well-mixed population of Z individuals. From the entire population, N individuals are

selected randomly to form a group for playing a collective-risk social dilemma game. In the group, each

individual has an endowment b at the beginning of game. Then, everyone decides whether or not to

contribute an amount c to the common pool. Furthermore, we require a minimum collective contribution

Mc (0<M%N) or a minimum number M of cooperators to ensure the benefit of everyone within the group.

According to the traditional setup, cooperators contribute to reach the collective target while defectors

not. If the collective target is not reached, all participants within the group will lose their remaining endow-

ments with probability r (0%r%1). Otherwise, individuals in the group retain their endowments. Notably,

the parameter r represents the risk level of collective failure (Santos and Pacheco, 2011).

Based on the above description, the payoffs of defectors and cooperators in a group having jC cooperators

and N� jC defectors obtained from the game can be respectively written as

P0DðjCÞ = bQðjC �MÞ+ ð1� rÞb½1�QðjC �MÞ� ;
P0 ðj Þ = P0 ðj Þ � c ;
C C D C

where QðxÞ is the Heaviside function, that is, QðxÞ= 0 if x < 0, being one otherwise.

In the following, we introduce a hybrid incentive strategy into the collective-risk social dilemma game and

define two different kinds of enforcing institutions. Namely, in the first case the imposed incentives are

fixed, while in the other case they are flexible.

Settings of fixed incentives

We then introduce a third strategy into the collective-risk social dilemma game, that is, an executor (E) who

not only contributes an amount c to the common pool, who but also contributes an investment to the
iScience 24, 102844, August 20, 2021 11
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sanctioning pool at a cost pt . This makes it possible to punish free-riders and to reward cooperative players

simultaneously. Accordingly, when the number of executors exceeds the given threshold nE , each executor

imposes an a portion of pe as positive incentive on every cooperators, while 1� a portion of executive pool

serves to punish free-riders. Here, a represents the relative weight between positive and negative incen-

tives. In an extreme case, when a = 0, executors only choose to punish defectors and they become simple

punishers. This simplified situation was discussed in a work of Vasconcelos et al. (Vasconcelos et al., 2013).

In the other extreme situation, when a = 1, executors only choose to reward cooperators and E becomes a

simple rewarding strategy. To sum up our model, the payoffs of the competing strategies where jC coop-

erators and jE executors are present in the group can be written as

PDðjC ; jEÞ = P0DðjC + jEÞ � ð1�aÞpeD;

P ðj ; j Þ = P0 ðj + j Þ+ap D� c;
C C E D C E e
PEðjC ; jEÞ = P0DðjC + jEÞ+apeD� c � pt ;

where D corresponds to the sanction function, which relies on whether the sanction is local or global. When

the local scheme is considered, D is given by QðjE � nEÞ, which means that the enforcement is executed

at the group level if the number of executors in the group is not less than the group threshold. However,

when the global scheme is considered, D = QðiE � nEÞ, which means that incentives are applied in the

whole population if the total number of executors iE is not less than the corresponding threshold level.
Settings of flexible incentives

Alternatively, the level of incentive pe may not be fixed but may depend on the number of executors. For

instance, the institutional pool may behave as a typical public goods pool and its impact can be propor-

tional to the simple sum of individual contributions pe of executor players with an enhancement

factor d>1. Notably, in the full reward extreme case this idea was used in one previous work (Sasaki and

Unemi, 2011). More importantly, in our extended model we do not just apply a combined incentives strat-

egy, but we still hold the collective-risk feature of the institutional pool. Therefore, as previously, the appli-

cation of incentives depends sensitively on whether the nE threshold number of executors are present or

not. Hence, the modified payoff values for flexible incentives are

PDðjC ; jEÞ = P0DðjC + jEÞ � ð1�aÞ ptdjE
N� jC � jE

D;

p dj

PCðjC ; jEÞ = P0DðjC + jEÞ+a

t E

jC + jE
D� c;

p dj

PEðjC ; jEÞ = P0DðjC + jEÞ+a

t E

jC + jE
D� c � pt :

Evolutionary dynamics

The average payoffs of the aforementioned strategies in a configuration i = ðiC ;iE ;iDÞ, characterized by the

number of cooperators iC , the number of executors iE , and the number of defectors iD = Z � iC � iE , can be

computed by using a multivariate hypergeometric sampling (Hauert et al., 2007) as follows

fD =
XN�1

jC = 0

XN�1�jC

jE =0

 
iC

jC

! 
iE

jE

! 
Z � iC � iE � 1

N� 1� jC � jE

!
 

Z � 1

N� 1

! PDðjC ; jEÞ;

fC =
XN�1

jC = 0

XN�1�jC

jE =0

 
iC � 1

jC

! 
iE

jE

! 
Z � iC � iE

N� 1� jC � jE

!
 

Z � 1

N� 1

! PCðjC + 1; jEÞ;

fE =
XN�1

jC =0

XN�1�jC

jE = 0

 
iC

jC

! 
iE � 1

jE

! 
Z � iC � iE

N� 1� jC � jE

!
 

Z � 1

N� 1

! PEðjC ; jE + 1Þ;
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where we note that jC%iC , jE%iE , and jD%iD and thus impose that the binomial coefficients satisfy

�
i
j

�
= 0 if

i<j.

To describe how individuals adopt new strategies over time, we consider a stochastic process of pairwise

comparison (Van Segbroeck et al., 2012). In each evolutionary time step, a randomly chosen individual with

strategy L adopts the strategy R of another randomly selected individual from the population with proba-

bility 1=½1 +e�bðfR�fLÞ�, where the parameter b corresponds to the intensity of selection (Szabó and T}oke,

1998). For b/0, we have random drift, while for b/N the imitation process is more inclined to

prefer the strategies that yield higher payoffs (Sigmund et al., 2010). Without loss of generality, we set

up b = 5:0, meaning that it is very likely that the better performing players will pass their strategy to others,

yet it is also possible that players will occasionally learn from a less successful individual. This setting is also

consistent with the previous work (Vasconcelos et al., 2013). We would like to stress that our main results

remain valid when the value of b is changed appropriately (see Figure S5 in supplemental information).

In addition to the imitation, we also allow strategy mutation, and we assume that an individual adopts a

different randomly selected strategy with probability m. Accordingly, the transition probability between

strategies R and L under the above mutation-selection process can be written as

TL/R = ð1� mÞ iL
Z

iR
Z � 1

�
1+ e�bðfR�fLÞ ��1

+m
iL
2Z

;

where iL (iR ) represents the number of individuals with strategy L (R) in the population. Therefore, for a given

configuration i = ðiC ;iE ;iDÞ, the probability that the number of cooperators increases or decreases by one in

the entire population is written as

TCG
i = TðiCG1;iEH1;iD Þ +TðiCG1;iE ;iDH1Þ :

Similarly, the probability that the number of executors increases or decreases by one is given by

TEG
i = TðiCH1;iEG1;iD Þ +TðiC ;iEG1;iDH1Þ :

Since the strategy update process depends only on the current configuration of the system, the associated

evolutionary dynamics can be described as aMarkov process over a two-dimensional space (Kampen, 2007)

where the probability density function we designate by piðtÞ, satisfies the following Master Equation

piðt + tÞ�piðtÞ=
X
i0

�
Tii0pi0 ðtÞ�Ti0 ipiðtÞ

�
:

Here Tii0 denotes the transition probability from the configuration i0 to i per unit time t (Imhof et al., 2005).

Accordingly, we can obtain the so-called stationary distribution piðtÞ, by searching the eigenvector associ-

ated with the eigenvalue 1 of the transition matrix T= ½Tij�T (Kampen, 2007). As an important quantity for

describing the evolutionary dynamics of strategies in the system, the stationary distribution can charac-

terize the fraction of time that the population spends in each possible configuration of the finite population.

In addition to the stationary distribution piðtÞ, another central quantity for describing the evolutionary dy-

namics of strategies is the gradient of selection Vi, which describes the most likely evolutionary path of

change of population configuration with time. Employing the Kramers-Moyal expansion of the Master

Equation (Helbing, 1993), we can obtain the gradient of selection as

Vi =
�
TC +
i �TC�

i

	
uC +

�
TE +
i � TE�

i

	
uE ;

where uC and uE are unit vectors defining as a basis of the two dimensional simplex.

Furthermore, in order to investigate the role of different sanctioning policies, we provide a key quantity

aGðiÞ to compute the fraction of groups that reach a given threshold, that is, the collective target (Vascon-

celos et al., 2013). We should compute the average group achievement from the perspective of the

entire population and not obtain the value for groups centered on a given C, E, or D. For each possible

configuration i = ðiC ;iE ;iDÞ, accordingly we adopt the multivariate hypergeometric distribution to calculate

aGðiÞ as

aGðiÞ =
�
Z
N

��1XN
jC = 0

XN�jC

jE =0

�
iC
jC

��
iE
jE

��
Z � iC � iE
N� jC � jE

�
QðjC + jE �MÞ :
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Subsequently, by using aGðiÞ combined with the stationary distribution piðtÞ, we can calculate the average

group achievement hG as an important quantity which refers to the average proportion of groups that

achieve the collective target in all possible group configurations, that is, hG =
P
i
piaGðiÞ.

We further compute the fraction of groups that reach nE executors for local institution or whether a global

institution can be formed for the configuration i. Accordingly, we should compute the institution preva-

lence from the perspective of the entire population and not obtain the value for groups centered on a given

C, E, and D. In both cases, we designate this quantity by aIðiÞ, which can be calculated as

aIðiÞ =
�
Z
N

��1XN
jC = 0

XN�jC

jE =0

�
iC
jC

��
iE
jE

��
Z � iC � iE
N� jC � jE

�
D :

We subsequently use aIðiÞ combined with the stationary distribution piðtÞ to compute the institution prev-

alence hI averaging over all possible configuration i, which is given as hI =
P
i
piaIðiÞ.
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