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Abstract

Fish-habitat associations are poorly known in offshore areas of very large rivers. We

examined physical habitat structure and its effect on habitat use and assemblage for-

mation of benthic fishes in the main channel of the Danube River, Hungary. Principal

component analysis of physical variables showed that sample unit (i.e., 500 m long

reaches) and cross-channel transect-level data of corresponding reaches were highly

correlated. We found clear gradients in physical variables from areas with high veloc-

ity and higher proportion of hard substratum (pebble and cobble) to areas with low

velocity, high mean depth and finer substratum (mainly sand) composition. Variation

in velocity was coupled with variation in both mean depth and substratum composi-

tion (i.e., Shannon diversity of sediment composition) and higher proportion of silt

material. Differences in physical habitat structure (flow, substrate) also manifested

among river segments. Classification and regression tree analyses (CART) and fish

abundance – occupancy patterns in the PCA template revealed that many species

showed clear responses to environmental heterogeneity (barbel, Barbus barbus;

schraetser, Gymnocephalus schraetser; Danube streber, Zingel streber; whitefinned

gudgeon, Romanogobio vladikovy; round goby, Neogobius melanostomus) while others

(white bream, Blicca bjoerkna) showed very elusive habitat use patterns. Multivariate

regression tree analysis confirmed the results of CART and indicated that transect-

level substratum composition was the most important determinant in the formation

of benthic assemblages. These results on habitat use can contribute to the more

effective conservation management of offshore fish assemblages, which is important

due to increasing inland navigation in the Danube River.
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1 | INTRODUCTION

Determination of how physical structure of the habitat influences the

distribution, abundance and assembly of species is a prerequisite for

effective nature conservation and environmental management

(Allan & Flecker, 1993). However, sampling even basic habitat and

assemblage data can be problematic in remote, hardly accessible habi-

tats and/or where extreme habitat conditions preclude effective sam-

pling, such as, for example, deep water oceanic habitats or canyons of

high mountains. In river ecology, the offshore areas of very large
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(or great) rivers have been long considered as areas that are difficult

to sample effectively, due mostly to depth and flow conditions

(e.g., Dettmers, Gutreuter, Wahl, & Soluk, 2001; Loisl, Singer, &

Keckeis, 2014). Not surprisingly, most habitat assessment studies on

fish assemblages are restricted to shoreline analyses only, or to

smaller streams and rivers (see e.g., Boys & Thoms, 2006; Er}os, Tóth,

Sevcsik, & Schmera, 2008; Keckeis et al., 2013). Although offshore

areas proved to be important feeding, breeding and wintering habitats

for many large river fishes (Galat & Zweimüller, 2001; Wolter &

Bischoff, 2001), there is still limited knowledge on specific fish-habitat

associations and the assembly of species in a variety of biogeographic

regions (e.g., Cao, Parker, Edison, & Epifanio, 2019; Dettmers

et al., 2001; Ridenour, Starostka, Doyle, & Hill, 2009), and most stud-

ies address only rough spatial scales.

Fish-habitat associations of offshore areas may be also difficult to

model effectively. For example, environmental gradients in substrate

composition and water velocity are relatively short in the potamon, at

least compared with the littoral zone or with wadeable streams of the

rhithron, where contrasting changes in physical habitat quality and

fish assemblages are more common (Allan & Castillo, 2007;

Er}os, 2017; Er}os et al., 2017). This may result very elusive fish-habitat

relationships for offshore areas. Fish abundance may also vary largely

offshore (Wolter & Freyhof, 2004; Szalóky et al., 2014), which can be

due either to the response of fish to subtle changes in physical habitat

quality or stochasticity in abundance. Advanced statistical and

machine learning techniques, which can handle nonlinear and complex

interaction effects, may be better applicable to explore fish-habitat

relationships in these cases than traditional methods such as linear or

multiple regressions (Knudby, Brenning, & LeDrew, 2010; Olden,

Lawler, & Poff, 2008). In this regard, regression trees proved to be

especially useful for modelling fish-habitat relationships (Knudby

et al., 2010; Vezza, Parasiewicz, Calles, Spairani, & Comoglio, 2014).

Although these tools are still largely underutilized in large river fish

ecology, and especially not for offshore areas, they have been already

successfully applied in modelling the fish assemblage structure of

shoreline habitats (Wilkes, Maddock, Link, & Habit, 2016).

Distribution and abundance of fish may not only be influenced by

the physical attributes of the sampling area, but by the surrounding

habitat (Er}os & Grossman, 2005; Schlosser, 1991). However, how the

hierarchical structure of the habitat influences the organization of fish

assemblages or fish habitat relationships offshore is largely unknown.

Therefore, in this study, we examine the benthic fish assemblages of

offshore areas of the Danube River, Hungary. We characterize the

physical habitat structure of offshore areas and use multivariate

regression trees for defining the scale dependent environmental

determinants of benthic fish assemblages, and classification and

regression trees for examining species specific habitat relationships.

Former samplings using a specifically designed benthic framed trawl

showed that offshore areas serve as important habitats for many rare

and endangered benthic species of high conservation concern in the

Danube (Szalóky et al., 2014), the habitat use of which is still poorly

known. We predicted that the joint analysis of focal scale (i.e., sample

unit level) physical attributes with physical attributes of the surround-

ing environment (i.e., transect or higher level environmental

F IGURE 1 Map of the study area
and location of sampling sites in the
Hungarian portion of the Danube
River (a). Three large and separating
segments are differentiated using
empty (I), grey (II) and black (III) dots
(b). Distribution of two exemplar
transects and their corresponding
sample units (500 m long) are also
shown on a bathymetric map (c)
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heterogeneity) may better characterize the physical heterogeneity of

the relatively homogenous offshore environment and, therefore, may

yield stronger fish-habitat relationships than using variable scores of

sample level environmental heterogeneity only. Consequently, we

were especially interested to explore the relationships between sam-

ple unit and transect-level environmental heterogeneity and their

influences on fish assemblages and on the habitat use of the assem-

blage constituting species. In addition, we hypothesized that most

benthic species will respond to offshore gradients in habitat structure,

even if we experience short environmental gradients. In this regard,

we predicted that changes in substrate composition will be the most

influential mechanism that govern the habitat use of individual species

and the benthic community.

2 | MATERIAL AND METHODS

2.1 | Study area

The Danube has a drainage area of approximately 796,250 km2. River

regulation, namely the construction of hydroelectric schemes, espe-

cially in the Upper Danube (i.e., in Germany and Austria), and channel-

ization have profoundly modified the physical structure of the

Danube throughout its course. The Hungary section (Figure 1a),

referred to as the “Middle Danube,” runs for 417 km and has a mean

annual discharge of 2,000 m3 s−1. The main channel has a substratum

dominated by gravel and sand, a mean depth of 4 m and a mean

velocity of 0.6 m s−1. The banks are relatively natural (except the

TABLE 1 The code, name, and mean and range values of the measured physical variables in the Middle-Danube, Hungary

Spatial scale (a, b, c) Code Name Mean Range

(a) 500 m long sampling unit a_m_depth Mean water depth (m) 4.29 1.21–11.1

a_cv_depth Coefficient of variation of water depth 0.12 0.01–0.56

a_min_distance Minimum distance from shoreline (m) 125.78 5–285

a_m_velocity Mean water velocity (cm s−1) 84.47 15–142

a_mud Silt, sediment composition (%) 0.30 0–10

a_sand Sand, sediment composition (%) 29.87 0–100

a_s_gravel Gravel, sediment composition (%) 12.68 0–75

a_gravel Pebble, sediment composition (%) 46.22 0–100

a_stone Cobble, sediment composition (%) 7.92 0–90

a_marl Marl, sediment composition (%) 3.01 0–100

a_shan_div_sediment Shannon diversity index of sediment 0.74 0–1.37

(b) 500 m long cross section b_m_depth Mean water depth (m) 4.23 2.09–8.01

b_cv_depth Coefficient of variation of water depth 0.30 0.07–0.7

b_m_velocity Mean water velocity (cm s−1) 84.44 44.65–122.08

b_cv_velocity Coefficient of variation of water velocity 0.22 0.05–0.65

b_mud Silt, sediment composition (%) 0.35 0–4

b_sand Sand, sediment composition (%) 29.79 0–94

b_s_gravel Gravel, sediment composition (%) 12.75 0–39

b_gravel Pebble, sediment composition (%) 46.18 0–91

b_stone Cobble, sediment composition (%) 7.92 0–48

b_marl Marl, sediment composition (%) 3.01 0–43

b_shan_div_sediment Shannon diversity index of sediment 1.05 0.56–1.51

(c). 2,000 m long section c_m_depth Mean water depth (m) 3.29 2.24–4.44

c_cv_depth Coefficient of variation of water depth 0.60 0.38–1.07

Note: (a) sample unit level, where variables were measured within the 500 m long unit; (b) transect level, where values of the variables were calculated

using the mean of the sample unit level values; (c) transect neighbourhood level, which embraced 2,000 m long segments, and where we used a grid of

15 × 15 m2 systematic, equally distance measurements from a bathymetric map for calculating mean depth and its coefficient of variation for each segment.
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section lying within Budapest, the capital of Hungary), interrupted

with embanked rip-rap shorelines of ~100–1,000 m long sections.

2.2 | Data collection

Offshore distribution of fishes was examined using a benthic framed

trawl. The trawl consisted of a stainless steel frame (2 m wide × 1 m

high) to which a drift net was attached (mesh size 5 and 8 mm for the

inner and outer mesh bag, respectively) (for details see Szalóky

et al., 2014). The frame was electrified with a HansGrassl EL65 IIGI

(Hans Grassl GmbH, Schönau am Königssee, Germany) electrofishing

device operated with a Vanguard HP20 14.9 kW generator (Briggs &

Stratton, Wisconsin, USA). A 6 m long copper cathode cable was con-

nected freely and pulled approx. 2 m before the electrified frame. The

fishing team consisted of two people handling the framed net, one

handling the electrofishing device and one operating the boat.

Trawling was conducted during daytime with a 6.3 m long boat (Alpha

Composite Kft., Ebes, Hungary) powered by a 50 hp outboard Mer-

cury four stroke engine (Mercury Marine, Wisconsin, USA). Before

starting trawling, the operators lowered the frame to the bottom

while the boat was slowly moving downstream with the flow.

Trawling route was started to be measured by a GARMIN GPSMAP

60CSx (Garmin Ltd., Kansas City, MO) only after the net reached the

bottom, which could be easily felt while holding the central rope, and

right after electroshocking started. The direct current (approx. 350 V,

33 A) was applied for 5–8 s. With 3–5 s. Breaks between the opera-

tions to minimize fright bias and injury of fish. The applied trawling

speed was slightly higher than the current velocity of the river

(approx. 0.6 m s−1).

We used a stratified design to select segments (Figure 1b) in

order to get a representative coverage of the whole main channel area

(excluding the section where the capital, Budapest can be found). In

each of these segments several, but a minimum of three transects

were selected randomly, perpendicular to the bank. Along each tran-

sect, across the width of the main channel, we generally distributed

5–6 trawl paths, 500 m long each, excluding the littoral, less than 2 m

deep shoreline zone (Figure 1c). These paths were approximately

equispaced and centred over the approximate place of the main chan-

nel centreline (Gutreuter, Vallazza, & Knights, 2010). Note that the

number of trawl paths (hereafter samples) along the transects varied

depending on the river width, and sometimes the trawl was stopped

due to interruption by large rocks or logs. This study contains data of

199 samples collected between April 2011–September 2011 period.

The collected fish were identified, measured to the nearest mm stan-

dard lengths (70% of fish) and then released back to the river. Note,

that preliminary exploratory analyses showed that young and adult

fish of the same species showed basically the same occupancy pat-

terns in the habitat template, which was characterized by a principal

component analysis (see below). Therefore, to save space we did not

show size or age group specific analyses in this article, although we

could clearly separate young and adult individuals for some species

based on length-frequency histograms (see Appendix I).

Physical habitat variables were quantified at three spatial scales,

specifically at the sample unit, at the transect, and at the transect

neighbourhood scales (Table 1). We measured minimum distance from

shoreline, depth, flow velocity and substrate composition data at the

sample unit scale. Distance from shoreline was measured using Goo-

gle Earth. Mean depth of the sampling unit and its coefficient of varia-

tion was calculated by reading the records of a Lowrance X50 DS

depth finder sonar (Lowrance, Joplin, MO) at an average of 11 points

along each 500 m long unit during the fish sampling. Mean water

velocity was calculated using three measurements at 60% depth in

the upper, middle and lower portion of the sampling unit using a Flow

probe (FP211) flow meter (Global Water, College Station, United

States). Percentage substrate composition of the units were visually

estimated based on three grab samples collected in the upper, middle

and lower portion of the sampling unit. The following categories were

distinguished (Baranya et al., 2018): silt (<0.25 mm), sand (0.25–

2 mm), gravel or fine gravel (2–8 mm), pebble or rough gravel (8–

64 mm), cobble or stone (>64 mm), marl and/or clay (rather cemented

very fine silty material). Shannon diversity of the substrate material

was also calculated based on the percentage data of substrate catego-

ries. Transect scale data were calculated using the mean of the sample

unit variables of each transect. Finally, we also calculated mean depth

and its coefficient of variation at the transect neighbourhood scale,

which embraced a 2,000 m long segment (see Table 1). For this we

used a grid of 15 × 15 m2 systematic, equally distance measurements

from a bathymetric map for each segment.

2.3 | Statistical analysis

We used standardized principal component analysis (PCA) to explore

the relationships among the physical habitat variables and for the

comparison of the sampling sites based on their environmental char-

acteristics. For this, we normalized the variables using either natural

logarithmic (velocity, depth, minimum distance from shoreline, Shan-

non diversity of sediment composition) or square root arcsin transfor-

mations (% substratum composition). To visualize habitat use patterns

along physical environmental gradients, we plotted the occupancy of

fishes on the PCA plots, where the size of the bubbles is proportional

to the CPUE-based abundance (i.e., ind 500 m −1) of the species.

We used classification and regression tree analyses (CART) to

directly select those key physical variables, which may determine the

most the habitat use of the species. CART is a flexible and robust clas-

sification and prediction method, and it is ideally suited for modelling

non-linear interactions, which often appear in ecological data

(Breiman, Friedman, Stone, & Olshen, 1984; De'ath &

Fabricius, 2000). Trees explain variation in a single response variable

by repeatedly splitting the data (here the CPUE of each species) into

more homogenous groups using combinations of the predictor vari-

ables (here physical habitat data). Finally, we also used multivariate

regression trees (MVRT), a multivariate extension of CART

(De'ath, 2002) to model the response of the assemblage to the physi-

cal habitat data. We used a cross-validation procedure to find the
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optimum tree size and to avoid overfitting the data. Indicator species

analysis was then used to find the most characteristic species to each

assemblage group (Dufrêne & Legendre, 1997).

All statistical analyses were performed in R 3.6.3. (R Development

Core team, 2020) using “rpart” (Therneau & Atkinson, 2019),

“mvpart” package (De'ath, 2002; De'ath, 2014), and “MVPARTwrap”
packages (Ouellette & Legendre, 2013) for CART, MVRT and indval

analyses, respectively.

3 | RESULTS

3.1 | Habitat characteristics

The first two components of the PCA explained 36.8% of the total

variance and indicated high degree of correlation among many physi-

cal variables (Figure 2). Component 1 characterized a gradient which

was determined mainly by substratum composition. Samples with

strong positive loadings had rather fine substrate (i.e., sand and gravel)

at both the sample unit and transect levels. Conversely, samples with

strong negative loadings had a substratum dominated by pebble and

cobble at both the sample unit and transect levels. Component 2 was

mainly determined by velocity parameters, and especially variability in

velocity at the transect level (positive loadings) and mean velocity at

both the sample unit and transect levels (negative loadings). However,

in general, several physical variables contributed to the distribution of

samples in the ordination place, and consequently their joint consider-

ation is necessary when comparing the environmental features of the

samples in the ordination plane (Appendix II).

Segment-level distribution of samples in the ordination plane

showed that most environmental heterogeneity occurred at the mac-

roscale (i.e., between large river segments), especially between the

lower and the two upper segments, while within segment, mesoscale-

level physical heterogeneity was relatively low (Figure 2).

3.2 | Fish-habitat associations

We collected 33 species and 9,274 specimens during the 199 trawling

paths. The most dominant benthic species (Table 2) composed of

92.79% of the total abundance and were as follows: the round goby,

Neogobius melanostomus (57,01%); Danube streber, Zingel streber

(10.58%); white bream, Blicca bjoerkna (8.05%); white-finned gudgeon,

Romanogobio vladykovi (7.13%); schraetzer, Gymnocephalus schraetser

(4.21%); zingel, Zingel zingel (1.53%); barbel, Barbus barbus (1.50%);

F IGURE 2 Principal component analysis (PCA) ordination of the
sample units based on their physical habitat variables and their
corresponding transect level physical variables. To show the degree of
macroscale-level separation of sample units in the ordination space,
sample units of the three large segments are differentiated using
empty (I), grey (II) and black (III) dots (see Fig. 1)

TABLE 2 Species list and abbreviation code of the collected species and their relative abundance (RA%), frequency of occurrence (FRO%) and
mean CPUE data

Species name Common name Code Total number RA % FRO %
Mean CPUE
(ind 500 m −1) ± SD

Abramis brama Freshwater bream Abrbra 80 0.86 15.08 0.40 ± 1.69

Babka gymnotrachelus Racer goby Babgym 75 0.81 12.06 0.38 ± 1.57

Barbus barbus Barbel Barbar 139 1.50 34.17 0.69 ± 1.24

Blicca bjoerkna White bream Blibjo 747 8.05 42.71 3.75 ± 17.26

Gymnocephalus schraetser Schraetzer Gymsch 390 4.21 31.66 1.96 ± 7.08

Neogobius melanostomus Round goby Neomel 5,287 57.01 59.30 26.57 ± 117.99

Ponticola kessleri Bighead goby Ponkes 103 1.11 17.59 0.52 ± 1.79

Romanogobio vladykovi White-finned gudgeon Romvla 661 7.13 67.34 3.32 ± 6.01

Zingel streber Danube streber Zinstr 981 10.58 74.87 4.93 ± 7.75

Zingel zingel Zingel Zinzin 142 1.53 22.61 0.71 ± 2.08

Number of individuals 8,605

Number of samples 199
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bighead goby, Ponticola kessleri (1.11%); freshwater bream, Abramis

brama (0.86%); racer goby, Babka gymnotrachelus (0.81%). In general,

most species occupied the full habitat gradients characterized by the

PCA. However, there were clearly recognizable differences between

some species regarding their abundance patterns in the ordination

plane (Figure 3). For example, the barbel and the Danube streber pre-

ferred areas with higher velocity and dominance of pebbles and cob-

bles, while the schraetser and zingel were found in areas with finer

substratum, lower velocity and higher mean depth. The invasive

Ponto-Caspian gobies, such as the round goby, the bighead goby and

the racer goby, showed relatively similar habitat affinity, which dif-

fered to some degree from the native species. Specifically, their habi-

tat use pattern could be best characterized by considering both PC1

and PC2 axes, where a gradient in velocity and variation in velocity

were the main physical determinants, and secondarily the proportion

of rarer substratum materials, such as silt.

The CART analysis generally supported the results obtained by

the visualization of the abundance – occupancy patterns in the PCA.

However, it specifically selected some cut-off values both for the pre-

dictor physical variables and for the fish abundance values, which help

to more specifically quantifying the habitat use of the species

(Figure 4). In this regard, CART also revealed that no valid models

could be obtained for some species (racer goby, white bream, bighead

goby, zingel), due to the lack of clear response of these species to the

examined physical variable gradients.

3.3 | Formation of benthic fish assemblages

The MVRT analysis indicated that transect-level substratum composi-

tion was the most important determinant in the formation of benthic

fish assemblages (Figure 5). Areas with lower portion of pebble

(<37.5%), and consequently, higher portion of finer bed material, had

a benthic assemblage which could be mainly characterized by the

whitefinned gudgeon, the schraetser and the white bream. The domi-

nance of pebble (>37.5%) was the best associated with the Danube

streber, the barbel and the round goby. Although the portion of gravel

was also a determinant of the separation of gobiid species (>4%), and

especially for the round goby since the relative abundance of the big-

head and the racer goby was very low in this assemblage. Overall, the

assemblage-level analyses with MVRT corresponded well with the

species specific result of CART analyses.

4 | DISCUSSION

To our knowledge, this is the first study that directly models the rela-

tionships between physical habitat variables and the abundance of

several offshore benthic fish species in the very large Danube River.

Although former studies addressed patterns in the occurrence and

abundance of species offshore to some degree, these studies focused

more on the comparison of inshore versus offshore assemblages and

the effect of sampling methods on assemblage structure (see

F IGURE 3 Abundance and occupancy pattern of each species in
the PCA ordination space. The size of the circles is proportional to the
relative abundance of the species. To show the degree of macroscale-
level separation of sample units in the ordination space, sample units of
the three large segments are differentiated using empty (I), grey (II) and
black (III) dots (see Fig. 1)
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e.g., Er}os et al., 2017; Loisl et al., 2014; Szalóky et al., 2014). Here, we

found that while all species occurred along the full extent of physical

habitat variability gradients some species showed clear affinities,

while others showed only very elusive habitat affinity to offshore

environmental heterogeneity.

We found strong associations in the values of sample unit and

transect-level physical variables (Figure 2), which indicates relatively

small mesoscale level (101–103 m) environmental heterogeneity off-

shore in this very large river, as expected. Although the ranges in the

values of physical variables were relatively small, clear and easily inter-

pretable relationships were explored between several physical vari-

ables. For example, areas with relatively high velocity had higher

proportion of hard substratum (especially pebble and cobble), and

areas with low velocity had higher mean depth and finer substratum

composition. Further, variation in velocity was coupled with variation

in mean depth and substratum composition (i.e., Shannon diversity of

sediment composition) and higher proportion of silt material. These

results thus show that offshore areas which are mostly considered as

homogenous mesoscale-level units in fish habitat evaluations

(Baranya et al., 2018; Habersack, Tritthart, Liedermann, &

Hauer, 2014; Wegscheider, Linnansaari, & Curry, 2020) do show some

clearly recognizable environmental heterogeneity. However, the hier-

archical evaluations and visualization of physical data also show that

most offshore environmental heterogeneity occurs at the macroscale

(104–105 m) that is between larger river segments in the Middle-Danube,

and that within mesoscale level (i.e., between sample units within tran-

sects) environmental heterogeneity is relatively low offshore.

Of the examined species the barbel and the Danube streber

showed the highest affinity to pebble and boulder covered, high

velocity areas. This finding is consistent with former results about the

habitat preference of these species from smaller rivers (Brinker

et al., 2018; Er}os, 2007; Gutmann Roberts, Baši�c, Britton, Rice, &

F IGURE 4 Results of the
classification and regression tree
analyses (CART) for each species.
For each tree, the boxes show the
mean CPUE of the fish species,
the sample number (n) and
percentage of the samples (%) to
the total number of samples. The
key response variable, which

defines each split in the tree and
its mean value is also shown
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Pledger, 2020) and from the Austrian portion of the Danube (Loisl

et al., 2014). Interestingly, the Danube streber also occupied areas

with relatively high portion of sand or mixed substratum composition,

although its abundance was low in these habitats. In fact, these deep,

slower flowing areas with higher variation in substratum composition

and flow were more preferred by the zingel, albeit this species was

the most abundant among mean habitat conditions (note, that this is

indicated by its high occurrence and abundance values around the

origo in the PCA plot). The mesoscale-level abundance patterns of

these two endemic zingel species and their distribution along the

examined physical habitat gradients thus explain well why the zingel is

more bounded to deep very large rivers, and why the Danube streber

is more abundant in fast flowing highland rivers (B�an�aduc & Curtean-

B�an�aduc, 2014; Er}os, 2007; Harka & Sallai, 2004).

Of the invasive Ponto-Caspian gobies, the round goby was the

most dominant species offshore. It occurred along a variety of habitat

conditions, although its abundance was lower in the most fast flowing

and deepest habitats. The CART analysis further highlighted that its

abundance was the highest in relatively slow flowing areas with higher

portion of rough substratum (gravel and pebble). This result is consis-

tent with our former, more local scale study, which directly quantified

offshore habitat preference curves for the species (Baranya

et al., 2018). The habitat use of the racer goby differed to some

degree from the round goby. Specifically, the racer goby was more

abundant in slow flowing areas with silt substratum and higher varia-

tion in depth. Finally, the bighead goby was very rare offshore. It

occurred among mean habitat conditions and, not surprisingly, the

CART analysis did not select physical variables which would

significantly influence its abundance pattern. Overall, our study prove

that several goby species occur offshore, although of these, only the

round goby is the only species which have abundant populations off-

shore in the Middle-Danube (see also Szalóky et al., 2015). Several

studies justify that riprap covered shorelines are preferred habitats for

most goby species inshore, and especially for the round and bighead

goby (e.g., Er}os et al., 2008; Ramler & Keckeis, 2019, 2020), which

habitat type is lacking offshore. Regarding the offshore distribution

and abundance of gobies, our results in general correspond with

results on habitat use patterns along natural habitat gradients inshore

(Er}os, Sevcsik, & Tóth, 2005; Płąchocki, Kobak, Pozna�nska-Kakareko, &

Kakareko, 2020).

Schraetser, a Danubian endemic species, showed clear affinity

towards areas with high proportion of fine gravel and sand substra-

tum. The preference towards sandy substrate was also observed for

the Danube whitefinned gudgeon, although the species also occurred

in high abundance in fast flowing pebble covered habitats, and gener-

ally showed wider habitat occupancy pattern. The freshwater bream

also reached the highest abundance in sand and silt dominated, deep

areas, which confirms knowledge about the habitat of the species in

large rivers (Wolter & Bischoff, 2001). Of the examined species the

white bream proved to be the most ubiquitous. The species occurred

along the whole physical variability gradients, although it generally

reached the highest abundance among mean habitat conditions con-

firming former findings (Wolter & Bischoff, 2001; Wolter &

Freyhof, 2004). Not surprisingly the CART analysis did not select spe-

cific variables, which could be related the most with the abundance of

the species. However, it should be noted that results of the CART

F IGURE 5 Result of the multivariate
regression tree analyses (MVRT) for the
benthic fish assemblage. For each tree,
bars show the relative abundance of
fishes, and the significant indicator
species. The key response variable, which
defines each split in the tree and its mean
value is also shown
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analysis should be considered with caution based on results of the

PCA, which showed that many physical variables correlate with each

other and it is hard to precisely select the one and only variable which

is responsible the most for the habitat use of these benthic species.

Mesoscale-level formation of fish assemblages was elusive off-

shore, which was indicated by the relatively high cross-validation error

of MVRT. Nevertheless, the assemblage constituting species differed

to some degree in relative abundance among the differentiated

assemblage types. Differences in substratum composition were the

most influential separating variables in assemblage patterns, which is

not surprising for this benthic assemblage (Greenberg, 1991).

Although we found that the relative proportion of pebble was one of

the key variables in the formation of this offshore assemblage, again,

it must be emphasized that substratum composition in general

showed correlation with other physical variables.

In conclusion, our findings demonstrate that many benthic species

do respond to offshore physical habitat heterogeneity in the Danube

River. Although most environmental heterogeneity was related to the

macroscale (104–105 m), we found that mesoscale-level (101–103 m)

differences in physical habitat quality clearly influence the formation

of fish assemblages in this very large river. Consequently, we encour-

age researchers and managers to pay attention not only to inshore

but also to offshore physical and biological heterogeneities of large

rivers, even in seemingly homogenous habitats, where geomorpholog-

ical breaks in flow, depth and substratum patterns cannot be easily

recognized. This may contribute to the more effective conservation

and management of offshore fish assemblages, which is critically

important in the era of increasing inland navigation.
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