TP53 and PGAM1 genes play a key role in glycolysis which is an essential metabolic pathway of cancer cells for obtaining energy. The purpose of this work was to evaluate PGAM1 and TP53 mRNA expressions in canine mammary carcinomas (CMC) and to correlate them with animal data and tumour histological features. None of the nine samples analysed revealed PGAM1 DNA sequence variations. PGAM1 and TP53 RNA expressions from 21 CMC were analysed using a one-step reverse transcription-PCR kit and its platform system. Most CMC samples had low levels of PGAM1 mRNA (71.5%) and normal expression of TP53 mRNA (95.2%). Our results suggest a different feature of the Warburg effect on canine mammary cancer cells compared to human cells.

KEYWORDS
cancer, dog, glycolysis, phosphoglycerate mutase, p53

Cancer cells are characterised by unregulated cell proliferation and the blood vessels that form within tumours are usually structurally and functionally abnormal, resulting in severe hypoxia. The activity of hypoxia-induced factors mediates angiogenesis, epithelial–mesenchymal transition, stem cell maintenance, invasion, metastasis, and tumour resistance (Semenza, 2012). Additionally, there is a significant correlation between malignancy and anaerobic glycolysis rate (Mikawa et al., 2014a, 2014b). The glycolytic pathway is essential for energy production in cells and its increase, known as the Warburg effect, is often observed in cancers (Warburg, 1956), being one of the ten hallmarks of cancer (Hanahan and Weinberg, 2011). However, little is known about the mechanisms of the Warburg effect in canine cancers. Some genes such as TP53 and PGAM1 play a key role in glycolysis. Besides its already known cell cycle inhibition and pro-apoptotic function, it has been discovered that the p53 protein also participates in the control of metabolic pathways (Shen et al., 2012). The p53 protein activates p53-induced glycolysis and apoptosis regulator, decreasing glycolytic metabolism. However, when p53 activity is reduced, cell proliferation can still be maintained through the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) (Hitosugi et al., 2012). The enzyme phosphoglycerate mutase (PGAM) has two subunits that form three isoenzymes, BB-PGAM (PGAM1), MM-PGAM (PGAM2) and MB-PGAM (PGAM3). PGAM1 is found mainly in brain, liver, kidneys, blood vessels and white adipose tissue (Ren et al., 2010; Mikawa et al., 2014a). The role of PGAM1 in glycolysis makes it an attractive therapeutic target for cancer treatment, since its inhibition may interfere with the basic energy uptake of cancer cells (Qu et al., 2017; Jin and Zhou, 2019).
Thermo Fisher Scientific and its platform system (Step One real-time PCR system, transcription-PCR kit (Thermo Fisher Scientific), PGAM1 RNeasy mini kit (Qiagen)) were used. Blood from the periphery of the mammary tumour was extracted using the NCBI genomic sequence NC_006610.3 as reference. PCR amplification was carried out using primers designed for PGAM1 gene exon 2 amplification (the region that contains the only variant reported in dogs) using the NCBI genomic sequence NC_006610.3 as reference. PCR reactions were held according to a standard reaction with an annealing temperature of 58 °C for further RNA extraction. The remaining mammary chain was fixed in 10% buffered formalin solution for further histological preparation and evaluation. Meantime, a healthy mammary tissue for RTq-PCR calibrator was obtained from a 3-year-old female Yorkshire Terrier dog that had undergone elective spay surgery.

Genomic DNA was extracted from 9 out of 21 CMC tissue samples (DNeasy Blood & Tissue Kit, Qiagen®, CA). Forward (5’-ATTTCGATCCAGAGTGAGCTG-3’) and reverse (3’-GCTCAATGGGACTAGGCAGATAC-5’) primers were designed for PGAM1 gene exon 2 amplification (the region that contains the only variant reported in dogs) using the NCBI genomic sequence NC_006610.3 as reference. PCR reactions were held according to a standard reaction with an annealing temperature of 58 °C. PCR products of 442 bp were analysed by Sanger DNA sequencing method (Applied Biosystems™).

RNA from 21 CMC was extracted and purified using the RNeasy mini kit (Qiagen®, Germantown). The expression of PGAM1 was analysed using a one-step reverse transcription-PCR kit (Thermo Fisher Scientific, Waltham™) and its platform system (Step One real-time PCR system, Thermo Fisher Scientific). The forward (5’-GATCAGCTAC CCTCCTGTGAG-3’) and reverse (3’-CTCCAGATGCTT GACAATGCC-5’) primers were designed for PGAM1 RNA expression. Primers for TP53 and ATP5B (reference gene) analyses were described previously (Klopfleisch et al., 2010; Costa et al., 2011). The relative quantity (RQ) of transcript levels was calculated using the comparative ΔΔCT method. In order to measure PGAM1 and TP53 expression changes, the mean RQ values for one healthy canine mammary tissue sample was set as 1.0 (calibrator) by statistical normalisation. Cut-off values were defined as fold change (FC) ≥ 2.0 for PGAM1 or TP53 overexpression, ≤ 0.5 for reduced and > 0.5 to < 2.0 for normal expression (Dalgin and DeLisi, 2005; Shi et al., 2008).

Table 1 shows that 15 tumours (71.5%, n = 15/21) had low PGAM1 expression, four (19.0%, n = 4/21) were considered to be within the normal range, while two carcinomas (9.5%, n = 2/21) had high levels. Both tumours with increased PGAM1 mean RQ are from animals number 2 and 11, which presented carcinomas in a mixed tumour grade 1 with normal levels of TP53 mRNA.

Regarding the expression of TP53, only one CMC (4.8%, n = 1/21) from animal number 5 showed increased levels of mRNA. All other CMC (95.2%, n = 20/21) presented a normal standard of mRNA transcript.

The modified TNM clinical staging based on the WHO Classification (Owen, 1980) was used. The animals’ data collected included age, breed and clinical stage, while the tumors were analysed regarding histological type, grade and histopathological characteristics (cellular atypia, mitotic index, ulceration, haemorrhage, inflammation, neovascularisation, pleomorphism, local invasion, and regional lymph node metastasis).

This study was approved by the Ethics Committee on the Use of Animals of Universidade Federal Fluminense (verdict number 693/2015).

A total of 21 CMC tissue samples from 14 female dogs undergoing therapeutic mastectomy were collected. Following mastectomy, mammary tumour samples were reserved for histopathological, DNA and RNA analyses. Small tumour tissue fragments of about 0.5 cm³ in size, with no macroscopic evidence of necrosis or devitalised areas, were selected and stored at −20 °C for DNA extraction and other fragments were stored in liquid nitrogen at −196 °C for further RNA extraction. The remaining mammary chain was fixed in 10% buffered formalin solution for further histological preparation and evaluation. Meantime, a healthy mammary tissue for RTq-PCR calibrator was obtained from a 3-year-old female Yorkshire Terrier dog that had undergone elective spay surgery.

Table 1 shows that 15 tumours (71.5%, n = 15/21) had low PGAM1 expression, four (19.0%, n = 4/21) were considered to be within the normal range, while two carcinomas (9.5%, n = 2/21) had high levels. Both tumours with increased PGAM1 mean RQ are from animals number 2 and 11, which presented carcinomas in a mixed tumour grade 1 with normal levels of TP53 mRNA.

Regarding the expression of TP53, only one CMC (4.8%, n = 1/21) from animal number 5 showed increased levels of mRNA. All other CMC (95.2%, n = 20/21) presented a normal standard of mRNA transcript.

The modified TNM clinical staging based on the WHO Classification (Owen, 1980) was used. The animals’ data collected included age, breed and clinical stage, while the tumors were analysed regarding histological type, grade and histopathological characteristics (cellular atypia, mitotic index, ulceration, haemorrhage, inflammation, neovascularisation, pleomorphism, local invasion, and regional lymph node metastasis), and none of them presented statistically significant differences (P > 0.05) in relation to PGAM1 or TP53 mean RQ values of transcript levels by Pearson’s two-sided Chi-Square test. Nevertheless, the present study has some limitations that may have hampered the statistical analysis and the drawing of more accurate conclusions. The biases include (1) the small number of animals and tumours, (2) the heterogeneity of mammary tumours, and (3) the lack of evaluation of cell proliferation factors as well as p53 protein profiles and TP53 mutations.

None of the nine CMC tested showed DNA variants in PGAM1 exon 2. The mean RQ was high in one, normal in three and reduced in five of these nine samples also tested by sequencing for PGAM1 variants. The absence of PGAM1 exon 2 variants suggests that mRNA expression changes are related to PGAM1 interactions with other gene products that regulate its expression, such as p53. Studies demonstrate the ability of p53 to regulate the expression of several genes, including PGAM1 (Ruiz-Lozano et al., 1999; Qu et al., 2017). The PGAM1 gene contains a p53 response element, which mediates the activation of PGAM1 transcription, as demonstrated in cardiomyocytes (Kondoh et al., 2005). A wild-type p53 was reported to inhibit PGAM1 expression, whereas a mutant p53 induced it (Kondoh et al., 2005). Therefore, PGAM1 could be differently regulated in cancer (Mikawa et al., 2014a, 2014b).

In humans, increased PGAM1 expression was associated with human breast cancer (Durany et al., 2000). Besides, high expression of PGAM1 is associated with metastasis, advanced clinical stage, and poor prognosis in some human cancers (Zhang et al., 2017; Liu et al., 2018; Feng et al., 2020). One study identified a significant increase of PGAM1 transcripts in the serum of dogs with mammary cancer (Zamani-Ahmadalmahmudi et al., 2014). Hussain et al. (2018) found overexpression of PGAM1 in CMC tissues, especially in the myoepithelia and moderate immunostaining in the tubular epithelia. Nevertheless, the results reported by those authors were not significantly different from those of dogs with benign mammary tumours. Our study showed high PGAM1 expression in only two CMC samples, but it is noteworthy that we did not evaluate any case of complex carcinoma, which has myoepithelial origin.
It is still not well understood how TP53 regulates certain aspects of metabolism in distinct types of cells and tissues, as well as in response to different stress signals, including glucose starvation, nutritional deprivation, DNA damage, or oncogene activation. As far as it is known, mutant and wild-type p53 proteins often regulate the same cellular biological processes with opposite effects. Thus, in metabolic regulation, wild-type p53 inhibits glycolysis while mutant p53 expression can promote glycolysis through distinct mechanisms (Kondoh et al., 2005). The reduction of Wild-type TP53 regulates certain aspects of metabolism in distinct types of cells and tissues, as well as in response to different stress signals, including glucose starvation, nutritional deprivation, DNA damage, or oncogene activation. As far as it is known, mutant and wild-type p53 proteins often regulate the same cellular biological processes with opposite effects. Thus, in metabolic regulation, wild-type p53 inhibits glycolysis while mutant p53 expression promotes glycolysis through distinct mechanisms (Kondoh et al., 2005).

Some hypotheses could be considered in order to justify the reduced expression of PGAMI in the CMC samples identified in this study. Perhaps this TP53 tumour suppressor mechanism that we suggest in our study, might be related to the performance of a competent wild-type TP53, since it is reported to block PGAMI expression (Kondoh et al., 2005). The reduction of PGAMI mRNA levels may be a consequence of glycolytic pathway inhibition in order to reduce the energy available to tumour cells. However, neither p53 protein profiles nor TP53 mutations were evaluated in our experiment, so it is not possible to assert the link between PGAMI and TP53.

Little is known about the mechanisms of the Warburg effect in canine tumours. Interestingly, some reports suggest an unexpected aspect of the Warburg effect in canines which could evidence a diversity in cell metabolism (Gutte et al., 2015). Clemmensen et al. (2020) visualised the Warburg effect by clinical molecular imaging in soft tissue sarcoma, melanoma, osteosarcoma, and thyroid carcinomas in dogs. They found that [1-13C]lactate generation showed a large degree of heterogeneity across tumour types and also spatially within tumours. Sarcomas tended to have a higher [1-13C]lactate ratio compared to carcinomas. Our study also suggested reduced glycolysis in carcinomas due to the lower expression of PGAMI in most samples (71.5%, n = 15/21), but it is worthy of mention that we have not analysed sarcomas.

To conclude, these findings support that glycolysis for energy production in CMC might unfold differently from human cancer. Further studies with a higher number of samples are warranted to better understand the metabolic pathways of cancer cells in dogs.

ACKNOWLEDGEMENTS

The authors thank all dog owners who authorised the use of the data and samples of their animals in this study. We also thank the staff of the Professor Firmino Marsico Filho Veterinary Medicine Hospital, the Veterinary Pathology Laboratory of Universidade Federal Fluminense, the Microbiology Laboratory of Universidade Federal do Rio de Janeiro and the Sequencing Platform of Fundação Oswaldo Cruz for their help. The financial support granted by the Coordenação de Aperfeiçoamento de Pessoal de Nível...
Superior (CAPES) of the Brazilian Ministry of Education is gratefully acknowledged.

REFERENCES

