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Abstract: Dolomitization of platform carbonates is commonly the result of multiphase processes.
Documentation of the complex dolomitization history is difficult if completely
dolomitized sections are studied. Two Middle Anisian sections representing two coeval
carbonate platforms were investigated and compared in the present study. Both
sections are made up of metre-scale peritidal-lagoonal cycles with significant
pedogenic overprint. One of the sections contains non-dolomitized, partially
dolomitized, and completely dolomitized intervals, whereas the other is completely
dolomitized. Based on investigations of the partially dolomitized section,
penecontemporaneous dolomite formation and/or very early post-depositional
dolomitization were identified in various lithofacies types. In shallow subtidal facies
porphyrotopic dolomite was found preferentially in microbial micritic fabrics. Microbially-
induced dolomite precipitation and/or progressive replacement of carbonate sediments
could be interpreted for stromatolites. Cryptocrystalline to very finely crystalline
dolomite, probably of pedogenic origin, was encountered in palaeosoil horizons.
Fabric-destructive dolomite commonly found below these horizons was likely formed
via reflux of evaporated sea-water. As a result of the different palaeogeographic
settings of the two platforms, their shallow-burial conditions were significantly different.
One of the studied sections was located at the basinward platform margin where
pervasive fabric-retentive dolomitization took place in a shallow-burial setting, probably
via thermal convection. In contrast, in the area of the other, smaller platform shallow-
water carbonates were covered by basinal deposits, preventing fluid circulation and
accordingly pervasive shallow-burial dolomitization. In the intermediate to deep burial
zone recrystallisation of partially dolomitized limestone and occlusion of newly opened
fractures and pores by coarsely crystalline dolomite took place.
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Abstract  Dolomitization of platform carbonates is commonly the result of multiphase 12 
processes. Documentation of the complex dolomitization history is difficult if completely 13 

dolomitized sections are studied. Two Middle Anisian sections representing two coeval 14 
carbonate platforms were investigated and compared in the present study. Both sections are 15 

made up of metre-scale peritidal–lagoonal cycles with significant pedogenic overprint. One of 16 
the sections contains non-dolomitized, partially dolomitized, and completely dolomitized 17 

intervals, whereas the other is completely dolomitized. Based on investigations of the partially 18 
dolomitized section, penecontemporaneous dolomite formation and/or very early post-19 

depositional dolomitization were identified in various lithofacies types. In shallow subtidal 20 
facies porphyrotopic dolomite was found preferentially in microbial micritic fabrics. 21 

Microbially-induced dolomite precipitation and/or progressive replacement of carbonate 22 
sediments could be interpreted for stromatolites. Cryptocrystalline to very finely crystalline 23 

dolomite, probably of pedogenic origin, was encountered in palaeosoil horizons. Fabric-24 
destructive dolomite commonly found below these horizons was likely formed via reflux of 25 

evaporated sea-water. As a result of the different palaeogeographic settings of the two 26 
platforms, their shallow-burial conditions were significantly different. One of the studied 27 

sections was located at the basinward platform margin where pervasive fabric-retentive 28 
dolomitization took place in a shallow-burial setting, probably via thermal convection. In 29 

contrast, in the area of the other, smaller platform shallow-water carbonates were covered by 30 
basinal deposits, preventing fluid circulation and accordingly pervasive shallow-burial 31 

dolomitization. In the intermediate to deep burial zone recrystallisation of partially 32 
dolomitized limestone and occlusion of newly opened fractures and pores by coarsely 33 

crystalline dolomite took place. 34 
 35 

Keywords Dolomitization, carbonate platform, depositional cycle, pedogenesis, stable 36 
isotopes, Middle Triassic, Balaton Highland, Hungary 37 

 38 

Introduction 39 
 Petrogenesis of dolomites is commonly the result of multistage processes (e.g. Machel 40 

2004; Nader et al. 2004; Chen et al. 2004; Fu and Quing 2011; Bazargani-Guiliani et al. 2010; 41 
Di Cuia et al. 2011). As a result of overprinting of the consecutive dolomitization stages, 42 

detection of the paragenetic succession is difficult or cannot be unambiguously achieved in 43 
the pervasively dolomitized rocks. However, in some cases there are contemporaneous rock 44 

bodies of similar sedimentological characteristics, which show different grades and modes of 45 
dolomitization, i.e. non-dolomitized or only partially dolomitized successions and completely 46 
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dolomitized ones occurring relatively close to one another, in the same structural unit. 47 

Comparative analysis of these successions provides a good opportunity to understand the 48 
complex history of dolomitization. In the Triassic of the Transdanubian Range, Hungary, 49 

several examples are known for coeval successions of different dolomitization grades (Haas 50 
and Budai 1995; Budai and Haas 1997). One of them is the Middle Anisian Tagyon 51 

Formation in the Balaton Highland area that is made up of cyclic peritidal–lagoonal deposits 52 
exhibiting characteristic features of pedogenesis and vadose diagenesis in certain horizons. 53 

The Tagyon Formation was developed on two neighbouring carbonate platforms. Carbonates 54 
of one of these platforms were affected by only partial dolomitization, whereas 55 

sedimentologically similar sequences on the other platform were subject to pervasive 56 
dolomitization. In this paper the complex petrogenesis of the studied platform carbonates is 57 

presented with special regard to the dolomitization processes and the causes of the differences 58 
between the two coeval and neighbouring platforms in terms of the grade and mode of 59 

dolomitization. The conclusions of this study can be used for genetic interpretation of 60 
dolomites formed in similar sedimentary and diagenetic settings.  61 

 62 

Geological setting 63 
 The study area is located in the Balaton Highland (SW part of the Transdanubian 64 
Range) (Fig. 1), consisting mostly of Triassic formations. The Middle Anisian is made up by 65 

coeval platform carbonates and basinal successions (Budai and Vörös 1992; Budai et al. 1999; 66 
Vörös et al. 2003). The platform carbonates (Tagyon Formation) were formed on a small, 67 

isolated platform (Tagyon Platform) in the central part, and on a larger platform 68 
(Szentkirályszabadja Platform) in the north-eastern part of the Balaton Highland. Between the 69 

platforms cherty limestone of basinal facies was deposited. The thickness of the basinal 70 
succession is the greatest (about 150 m) near the tectonically-controlled margin of the Tagyon 71 

Platform; from here it gradually decreases north-eastward and it pinches out near the south-72 
western margin of the Szentkirályszabadja Platform (Fig. 2). 73 

The platform carbonate succession of the Tagyon Formation is made up of cyclic 74 
alternations of shallow subtidal and peritidal beds (Budai et al. 1993). In the area of the 75 

Tagyon Platform the 50 to 100 m-thick succession is composed of partially dolomitized 76 
limestone, whereas in the area of the Szentkirályszabadja Platform the entire formation 77 

consists of dolomite (Figs. 1 and 2).  78 
The upper boundary of the Tagyon Formation is a sharp surface, which was 79 

interpreted as a drowning unconformity (Budai and Haas 1997; Budai and Vörös 2003a). The 80 
platform carbonate succession is overlain by Upper Anisian basinal carbonates with volcanic 81 

tuff interbeds (Budai and Haas 1997; Budai et al. 1999; Budai and Vörös 2006). It generally 82 
consists of limestone but in the area of the Szentkirályszabadja Platform the succession is 83 

completely dolomitized. The Ladinian stage is represented by pelagic limestone in the central 84 
part of the Balaton Highland, and platform carbonates in the north-eastern part of the Balaton 85 

Highland (Fig. 2). As a result of the subsequent denudation the uppermost Triassic and 86 
younger Mesozoic rocks are absent in the studied areas.  87 

 88 

Methods 89 
 From the preserved cores of the Dörgicse Drt-1 borehole, 11 samples were taken for 90 
detailed petrographic and geochemical studies. Seventeen samples were collected along a 91 

section in the Szentkirályszabadja Quarry. We also examined 41 thin-sections which were 92 
made in the course of previous investigations. A solution of alizarin red-S and potassium 93 

ferricyanide was used to determine the carbonate phases in the samples (Dickson 1966). For 94 
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description of the dolomite texture the classification proposed by Machel (2004) was used; it 95 

is a supplemented version of textural classification of Sibley and Gregg (1987). 96 
UV epifluorescence was acquired with a Zeiss Axioskop 40, equipped with Filter Set 97 

09 (Excitation Filter BP 450–490, Beam Splitter FT 510, Emission LP 515) using Hg light 98 
illuminator. Cathodoluminescence (CL) studies were undertaken using a MAAS-Nuclide 99 

ELM-3 cold-cathode luminoscope.  100 
Stable isotope measurements were performed on micro-drilled powders of calcite and 101 

dolomite samples, at the Research Centre for Astronomy and Earth Sciences (Hungarian 102 
Academy of Sciences). The analyses were carried out using the continuous flow technique 103 

(Rosenbaum and Sheppard 1986; Spötl and Vennemann 2003). 
13

C/
12

C and 
18

O/
16

O ratios 104 
were determined in CO2 gases liberated by phosphoric acid using a Finnigan delta plus XP 105 

mass spectrometer. Standardization was conducted using laboratory calcite standards 106 
calibrated against the NBS 18 and NBS 19 standards. During the measurement of the 107 

dolomite samples a laboratory dolomite standard (DST) was used. All samples were measured 108 
at least in duplicate and the mean values are in the traditional δ notation in parts per thousand 109 

(‰) relative to Vienna Pee Dee Belemnite (VPDB). Reproducibilities are better than ±0.1 ‰ 110 
for δ

13
C and ±0.15 ‰ for δ

18
O. 111 

 112 

Petrography 113 

 114 
Sedimentary features  115 
 The Tagyon Formation shows a cyclic facies pattern. The cycles are made up of three 116 
basic lithofacies types. The most important petrographic characteristics of the types, together 117 

with the interpreted depositional environments, are displayed in Fig. 3. 118 
The entire formation is penetrated in core Dörgicse Drt-1 (for location see Figs. 1 and 119 

2) in a thickness of 70 m. The main lithological characteristics of the succession, together 120 
with the results of the microfacies analyses and palaeoenvironmental interpretation of the 121 

rocks, are presented in Fig. 4. Cyclic alternation of the basic lithofacies types is well 122 
recognizable in the lower, non-dolomitized or partially dolomitized part of the succession but 123 

less clear in the upper 20 m of the sequence that was subject to fabric-destructive 124 
dolomitization. 125 

A completely dolomitized succession of the upper, 16 m-thick part of the Tagyon 126 
Formation is exposed in an abandoned quarry near Szentkirályszabadja (see Figs. 1 and 2). 127 

The succession is made up of 0.5 to 2 m-thick finely crystalline dolomite beds commonly 128 
capped by 0.1 to 0.3 m-thick pisoidic horizons. A laminated bed occurs in the basal part of the 129 

measured section. The usually texture-preserving rock types could be classified into similar 130 
lithofacies types to those found in core Drt-1 as far as the sedimentary features are concerned. 131 

The logged section with the results of the microfacies investigation is presented in Fig. 5. 132 
 133 

Dolomite petrography  134 
 Tagyon Formation in core Drt-1 is mainly composed of limestone, locally with fabric-135 

selective dolomite; there are also fabric-destructive dolomite intervals. In the Szk section, 136 
exposing the upper part of the Tagyon Formation, the fabric-retentive dolomite is 137 
predominant; the fabric-destructive texture is subordinate.  138 

 139 
Fabric-selective dolomites 140 

 Different fabric-selective dolomite types were found in the above-defined lithofacies 141 
types in core Drt-1. In Lithofacies A the pedogenic nodules, glaebules, and coated grains are 142 

mostly composed of dolomicrite although the intragranular micropores (50 to 500 μm in size) 143 
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are generally filled by very finely crystalline calcite, and less frequently by dolomite of 144 

similar crystal size.  145 
In core Drt-1, a 10 cm-thick interval between 125.3 and 125.4 m provides a clue to 146 

decipher the relationship of the pedogenic texture elements, the cements and the dolomite 147 
phases (Figs. 6a, b, c). As is visible in Fig. 6a, light grey limestone progresses into a 5 cm-148 

thick interval containing mm-sized angular to sub-rounded ochre dolomicrite lumps. It is 149 
followed by a pisoidic horizon of similar thickness, where the individual coated grains tend to 150 

merge upward, and grades into a 1 cm thick massive dolomicrite layer. The small 151 
intergranular pores are filled by finely crystalline inclusion-rich mosaic calcite (Fig. 6b, c). 152 

The larger, mm to cm-sized pores are lined by inclusion-rich non-CL bladed calcite cement 153 
(Fig. 6c). The inner part of some of these pores is filled by finely crystalline nonplanar-a 154 

dolomite cement with a dull red CL pattern (Fig. 6d). Non-CL, coarsely crystalline limpid 155 
mosaic calcite cement commonly appears in the centre of some of the larger pores (Fig. 6c). A 156 

fracture with complex filling was encountered in the same sample (Fig 6b) Finely crystalline 157 
nonplanar-a dolomite with dull red CL occurs along one wall of the fracture, whereas the 158 

other part is occluded by brownish, bladed, inclusion-rich non-CL calcite, growing from both 159 
sides of the fracture (Fig 6e). 160 

The micritic fabric elements of Lithofacies C (small peloids with indistinct margins, 161 
micritic nodules locally with a filamentous internal structure, cortex of oncoids, and micritic 162 

envelope of various grains) are commonly affected by selective dolomitization that is 163 
manifested in the appearance of porphyrotopic dolomite (Fig. 7a). This dolomite type may 164 

appear in the form of scattered, irregular, 50 to 150 μm-sized aggregates of microcrystalline 165 
dolomite, 15 to 200 μm-sized individual euhedral, subhedral and anhedral dolomite crystals, 166 

or clusters of these kinds of crystal (Figs. 7a and b). The core of the crystals is commonly 167 
cloudy, i.e. inclusion-rich. Some crystals contain a brownish growth zone composed of calcite 168 

(Fig. 7b). Dull red to orange luminescence characterises this dolomite type (Fig. 7b). The 169 
individual crystals or aggregates of porphyrotopic dolomite are usually enveloped by a dark-170 

brownish film (Fig. 7b). Within the micritic nodules the clots are surrounded by very finely 171 
crystalline calcite and the 100 to 500 μm-sized pores are also filled by non-CL calcite of 172 

similar crystal size (Fig. 7b). In some cases zoned porphyrotopic dolomite crystals have 173 
grown into these small pores (Fig. 7b). Pores, 0.5 to 1.0 mm-sized, occur among the micritic 174 

nodules which are occluded by very finely to finely crystalline (10 to 20 μm) mosaic calcite 175 
cement (Fig. 7b). There are several mm to cm-sized vuggy pores, which are lined by 176 

inclusion-rich brownish calcite cement. This is characterized by sharp cleavage planes, and a 177 
bladed habit with irregular crystal boundaries (Figs. 7c and d). One to 20 μm-sized dolomite 178 

crystals of irregular outline occur randomly in the calcite. The calcite exhibits a zoned CL 179 
pattern; the first thin non-CL zone is followed by a mottled one that is covered by thin black 180 

and bright subzones (Fig. 7c). Coarsely crystalline (300 to 1000 μm) limpid mosaic calcite, 181 
and/or coarsely crystalline (600 to 800 μm) dolomite that may exhibit sweeping extinction 182 

occurs in the central part of the vugs (Fig. 7e). The mosaic calcite has alternating thin bright 183 
orange and thicker black zones under CL (Fig. 7c). The dolomite is dull red, locally with 184 

brighter zones. In some cases calcitization of coarsely crystalline dolomite along growth 185 
zones or in patches is clearly visible (Fig. 7f). 186 

Some mm-sized vuggy pores are partially or completely filled by dolomicrite. In the 187 

former case inclusion-rich bladed calcite, coarsely crystalline dolomite and limpid coarsely 188 
crystalline calcite cement types are present above the internal sediment; each cement phase is 189 

cut by stylolites (Fig. 7e). 190 
 191 

Fabric-retentive dolomites 192 
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 In the pervasively dolomitized Szk section the pedogenic fabric of Lithofacies A and 193 

the sedimentary and early diagenetic features of Lithofacies B are perfectly preserved. In 194 
Lithofacies C preservation of the sedimentary texture and the early diagenetic cement is 195 

commonly also good but in some cases only ghosts of the grains are visible. Complete fabric-196 
retentive dolomitization in core Drt-1 was only encountered in samples classified as 197 

Lithofacies B. 198 
In the Szk section very finely crystalline dolomite occludes the pores among the 199 

pedogenically coated grains or glaebules in Lithofacies A (Figs. 8a, b and c). There are pores 200 
of tubular shape which are filled by finely to medium crystalline nonplanar-a mosaic 201 

dolomite. The vuggy pores are lined by finely crystalline inclusion-rich dolomite and filled by 202 
medium to coarsely crystalline nonplanar-a dolomite (Fig. 8b). Lithofacies B is found in a 203 

single peculiar laminated bed-set (see Fig. 4; Bed 2). Peloidal dolomicrite alternates with very 204 
finely crystalline dolomite laminae; individual 100 to 500 μm-sized crystals cross all laminae 205 

(Fig. 8d). The dolomicrite is overlain by a thin peloidal wackestone layer that is followed by 206 
clotted micrite and then slightly undulating dolomicrite to very finely crystalline and finely 207 

crystalline dolomite laminae (Fig. 8e). In Lithofacies C, in very finely to finely crystalline 208 
nonplanar-a dolomite matrix, micritic outlines of bioclasts or micritized grains are visible. In 209 

some beds moulds after skeletal elements of dasycladaleans are abundant. The moulds are 210 
usually partially or completely filled by finely crystalline nonplanar-a dolomite, but empty 211 

mouldic pores also occur. In some samples fibrous dolomite cement occurs among the 212 
remnants of dasycladalean algae (Fig. 8f, g). The larger pores are filled by finely to medium 213 

crystalline nonplanar-a dolomite. Medium to coarse planar-s dolomite cement occurs in the 214 
largest vuggy pores. This dolomite cement was commonly affected by calcitization. In many 215 

cases, parts of the vuggy pores are empty. 216 
In core Drt-1 a 2.5 m thick, completely dolomitized bed with excellently preserved 217 

fenestral laminated structure was encountered at the basal part of the Tagyon Formation (see 218 
Fig. 4). In this bed the micritic nodules, intraclasts and a few bioclasts (dasycladalean algae, 219 

foraminifera, gastropods) occur in clotted micrite and very finely crystalline dolomite matrix 220 
(Figs. 9a and c). Fenestral pores are common; sheet-cracks with geopetal pore-filling are also 221 

present. The matrix is characterised by a dull red CL, whereas the finely crystalline cement in 222 
the small fenestral pores exhibits a non-CL external zone that is followed by bright orange 223 

zones (Figs. 9a and b). The larger (mm-sized) pores are filled by coarsely crystalline 224 
dolomite, locally with sweeping extinction. Geopetal pore-filling with a micritic basal lamina 225 

is also common (Fig. 9c). In this case the upper part of the pore is lined by finely crystalline 226 
nonplanar-a crystals while medium to coarse crystals with an alternation of dull and brighter 227 

CL zones fill the inner part of the pores (Fig. 9d). 228 
 229 

Fabric-destructive dolomites 230 
Several horizons in the Tagyon Formation in core Drt-1 are pervasively dolomitized, 231 

mainly in the uppermost 20 m of the formation (see Fig. 4). In these intervals fabric-232 
destructive dolomite prevails, although ghosts of some grains (e.g. peloids, bioclasts, oncoids) 233 

are locally recognisable. This dolomite is typically finely to medium crystalline, exhibiting 234 
planar-s texture (Fig. 10a). In some cases the range of crystal size is very limited (10 to 30 235 
μm); in other cases it is much greater (10 to 150 μm). The crystals are usually of brownish 236 

colour, and cloudy. In several samples patches of coarsely crystalline dolomite are visible 237 
within the finely to medium crystalline dolomite (Fig. 10b). The largest crystals usually occur 238 

in the central part of these patches and clearly show features of the saddle dolomite (warped 239 
crystal faces, undulatory extinction in crossed polarised light) (Figs. 10c and d).  240 
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In the Szk section fabric-destructive texture, i.e. dolomicrite matrix with medium 241 

crystalline planar-s dolomite patches was found only in one sample (see Fig. 5; Bed 9b). It has 242 
stylolitic contact with fabric-retentive dolomite of Lithofacies A. 243 

  244 

Paragenetic succession  245 
 In the partially dolomitized sequence of core Drt-1, the above-described petrographic 246 
observations provided a good opportunity to decipher the succession of the diagenetic 247 

processes and the dolomite phases (Fig 11). In Lithofacies A, very finely crystalline calcite 248 
and dolomite occur in the intragranular micropores of dolomicritic nodules or coated grains 249 

(Fig. 6b). The pores among these grains are filled by finely crystalline calcite cement. In 250 
Lithofacies B fenestral pores of the laminated beds are also filled by finely crystalline cement 251 

(Fig. 12a). In the dolomitized version of these lithofacies types along with the 252 
depositional/pedogenic fabric the pore-filling cement was also affected by fabric-retentive 253 

dolomitization; accordingly this process may have taken place subsequent to the early 254 
diagenetic infilling of the fenestral pores.  255 

In Lithofacies C porphyrotopic dolomite appears almost exclusively in micritic fabric 256 
elements (clotted peloidal micrite, micritic nodules, cortex of oncoids), probably formed via 257 

microbial mediation (Figs. 7a and b). There are examples for concentration of porphyrotopic 258 
dolomite in certain micrite microlayers of the cortex of oncoids (Fig. 7a). In contrast, this 259 

dolomite type is usually missing in finely crystalline calcite occluding the pores between the 260 
nodules (Fig. 7b). These petrographic observations suggest initiation of porphyrotopic 261 

dolomite genesis penecontemporaneously with the formation of the micritic fabric elements 262 
exhibiting clotted or filamentous microstructure. Dissolved surfaces and calcitic growth zones 263 

of the porphyrotopic dolomite crystals (Fig. 7b) point to calcitization (dedolomitization), 264 
which most probably took place under near-surface diagenetic conditions. 265 

Larger vuggy pores, cross-cutting all of the above-mentioned occasionally, partially or 266 
completely dolomitized micritic fabric elements, and very finely to finely crystalline pore-267 

filling cements were observed in all lithofacies types discussed above (Figs. 6c and 7d). These 268 
vugs are commonly lined by inclusion-rich calcite cement while the inner parts of the pores 269 

are typically filled either by medium to coarsely crystalline dolomite or coarsely crystalline 270 
mosaic calcite or both (Fig. 6c). This suggests that the formation of vuggy pores postdates 271 

precipitation of the finely crystalline cement, and predates precipitation of the inclusion-rich 272 
bladed cement. Coarsely crystalline dolomite cement, filling the inner part of some of the 273 

vugs, was formed after the bladed calcite (Fig. 7e). Coarsely crystalline dolomite is also 274 
present in fractures cross-cutting the inclusion-rich calcite cement.  275 

The replacive fabric-destructive dolomitization probably took place subsequent to the 276 
earliest diagenetic phases. There are examples for a very sharp boundary between perfectly 277 

fabric-retentive and completely fabric-destructive dolomite types (Fig. 12b). This pattern can 278 
be explained either by single-phase early diagenetic dolomitization, which affected layers of 279 

significantly different porosity, or by two dolomitization phases; an earlier fabric-retentive 280 
phase that was followed by a later destructive one. In either case the fabric-destructive 281 

dolomitization is post-dated by the formation of the coarsely crystalline dolomite in pores and 282 
fractures (Fig. 12c). 283 

In some cases calcitization (dedolomitization) of the dolomite cement is clearly visible 284 

along growth zones and in patches (Fig. 7f). Fractures filled with the coarsely crystalline 285 
dolomite cement are cross-cut by fractures filled with coarsely crystalline limpid calcite 286 

cement (Fig. 12c). Both this calcite and dedolomite contain Fe-rich growth zones as revealed 287 
by staining. The CL pattern of this calcite is characterised by the alternation of black and 288 

bright orange zones with a last dull red phase (Fig. 12d). 289 
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In the Szk section in Lithofacies C, the common occurrence of microbial encrustation, 290 

of a microboring-derived micrite envelope and micritised grains indicate marine diagenesis as 291 
the earliest diagenetic phase. Characteristic features of marine cement are also preserved in 292 

some beds in the form of fibrous dolomite pseudomorphs (mimically replaced aragonite 293 
cement) among the originally aragonitic skeletal elements, which subsequently dissolved, 294 

probably under meteoric conditions. Pedogenic alteration of the previously deposited 295 
sediments (development of Lithofacies A) also took place during subaerial exposure episodes. 296 

The pervasive replacive dolomitization post-dated all of the above-mentioned pedogenic and 297 
early diagenetic processes.  298 

Medium to coarsely crystalline dolomite cement in some larger pores represents the 299 
last stage of dolomite formation. It was commonly subject to dedolomitization. Precipitation 300 

of coarsely crystalline calcite cement may have also taken place during this phase.  301 
Well-developed stylolites were observed in every lithofacies types all along the 302 

studied section. They may penetrate all textural elements, including the medium to coarsely 303 
crystalline dolomite cement, but there is no data for their relationship to the fracture-filling 304 

calcite cement. 305 
 306 

Stable carbon and oxygen isotopes 307 
 The results of the stable isotope analyses are presented in Table I and Fig. 13. In Fig. 308 

13 the δ
13

C and δ
18

O range of calcites precipitated in equilibrium with Anisian seawater is 309 
also displayed, according to analysis of well-preserved articulate brachiopod shells (data of 310 

Korte et al. 2005). There is a remarkable difference between the δ
18

O values of the two 311 
studied sections, whereas the δ

13
C values are similar (Fig. 14).  312 

As far as the section of core Drt-1 is concerned, the δ
13

C values vary in the range from 313 
1.4 to 3.0 ‰. The range of the δ

18
O values is much wider; it is between –7.4 and –2.9 ‰. 314 

Within this range a sample taken from fibrous calcite cement yielded the least depleted value 315 
(–2.9 ‰), while –4.4 ‰ was measured in fracture-filling bladed calcite. Samples taken from 316 

slightly dolomitized limestone with micritic to very finely crystalline matrix and pore-filling 317 
calcite cement are characterised by more negative δ

18
O values (–5.7 and –5.4 ‰), which are 318 

within the range of the fabric-retentive dolomite samples (–6.2 to –3.4 ‰). The most depleted 319 
δ

18
O values were measured in coarsely crystalline calcite (–7.2 ‰) and saddle dolomite 320 

cement (–7.4 ‰), respectively.  321 
The δ

13
C values vary from 1.1 to 2.9 ‰ in the samples taken from the section of the 322 

Szentkirályszabadja Quarry. The range of δ
18

O is between –3.9 and 1.4 ‰. Within this range 323 
the highest value (1.4 ‰) was measured in a pedogenic dolomicritic nodule. Values from –1.3 324 

to –0.2 ‰ were measured in fabric-retentive dolomites representing various lithofacies types. 325 
The partially fabric-retentive and completely fabric-destructive samples yielded values 326 

between 1.1 and –2.0 ‰. The dolomitized cements yielded –2.2 to 0.1 ‰ values.  327 
The majority of δ

18
O values of Szentkirályszabadja section fit into the Anisian marine 328 

calcite range (Korte et al. 2005), although a few samples (including fabric-retentive and 329 
fabric-destructive dolomite and vug-filling cement) provided slightly more positive values 330 

(max. 1.4‰). From the samples of this section, the most depleted value (–3.9‰) was 331 
measured in the medium to coarsely crystalline vug-filling dolomite cement phase.  332 
 333 

Interpretation of depositional environments and pedogenic processes 334 
 Based on petrographic characteristics (matrix/grain/cement relations, grain properties, 335 

microfabric, etc.) and fossil assemblages, the interpretation of the depositional environments 336 
and related post-depositional alternations of the distinguished lithofacies types is summarised 337 

below.  338 
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Clotted peloidal micrite is the most ubiquitous texture of Lithofacies C that implies 339 

prevalence of microbially-mediated carbonate production (Chafetz 1986; Riding 2000 and 340 
2002). Since there is no trace of desiccation (desiccation cracks and pores are absent) the 341 

deposition may have taken place in a low to medium-energy subtidal depositional 342 
environment (Tucker and Wright 1990), i.e. in a more or less protected part of the internal 343 

carbonate platform. Peloid aggregates, larger mm-sized micritic nodules, and microbially 344 
coated grains (oncoids) may have locally developed in this protected environment. A light-345 

saturated, shallow (5 to 20 m) and well-oxygenated sea-bottom describes the habitat of 346 
dasycladaleans. Redeposited skeletal fragments of these algae probably occur in the clotted 347 

micrite texture and storm or current-controlled redeposition may have led to massive 348 
occurrence of sand-sized fragments of dasycladaleans in some horizons. As a result of the 349 

activity of endolithic microorganisms (algae, cyanobacteria, fungi) micritic envelopes formed 350 
around most of the skeletal grains.  351 

The millimetre-scale lamination that is commonly associated with fenestral fabric in 352 
Lithofacies B implies a peritidal (tidal flat) palaeoenvironment (Shinn 1983). Most of the 353 

fenestral laminites have an undulating, crinkled appearance. Small-scale domal structures 354 
were also found. These features suggest a microbial (cyanobacterial) mat origin of these 355 

laminites (Tucker and Wright 1990). This interpretation is also supported by the calcified 356 
microbial filaments found in some of the laminites. Desiccation of the previously deposited 357 

sediment played a substantial role in the early diagenesis; it led to the formation of desiccation 358 
pores, shrinkage cracks, sheet cracks and rip-up clasts in the upper intertidal to supratidal 359 

zone (Shinn 1983).  360 
Microfabric characteristics of rocks classified as Lithofacies A (nodules with diffuse 361 

margins, desiccation cracks, coated grains, calcified filaments, root casts) clearly indicate 362 
their pedogenic origin (Tucker and Wright 1990; Alonso-Zarza and Wright 2010). Most of 363 

their features are typical for the beta calcretes (sensu Tucker and Wright 1990) of 364 
predominantly biogenic origin. Coated grains prevailing in most pedogenic horizons were 365 

formed by multiple processes. The nuclei of these grains may have been formed via 366 
desiccation or root activity; it was followed by a coating controlled by biological factors, i.e. 367 

roots and microorganisms (Tucker and Wright 1990; Alonso-Zarza et al. 1992; Alonso-Zarza 368 
and Wright 2010). Laminated pisolitic crusts were also reported from modern supratidal 369 

environments, developed under humid (South Florida) and arid (Arabian Gulf) climatic 370 
conditions (Scholle and Kinsman 1974; Shinn 1983). During episodes of subaerial exposure, 371 

the previously formed subtidal–peritidal deposits were subjected to meteoric diagenetic 372 
processes, which may have resulted in significant alteration of the sedimentary fabric of 373 

Lithofacies B and C. 374 
In core Drt-1 regular alternation of Lithofacies A, B and C was observed in the 375 

Tagyon Formation (see Fig. 4). Eight cycles, 4 to 6 m thick, were found in the lower part of 376 
the succession. In the upper, 30 m-thick part, only 2 cycles could be recognised. However, 377 

due to fabric-destructive dolomitization, recognition of the cycles is rather uncertain in this 378 
interval. In the Szk section that represents the upper part of the formation a similar cyclic 379 

pattern was recognised, although member B was found only in the basal part of the measured 380 
section (see Fig. 5). The basic characteristics of the cycles are akin to those described in the 381 
Dachstein-type platform carbonates and defined as Lofer cycles (Fischer 1964; Haas 2004), 382 

accordingly the facies interpretation of the cycle members is also similar. Lithofacies C 383 
corresponds to member C of the Lofer cycles which was interpreted as shallow-subtidal 384 

lagoon facies formed in the euphotic zone. Lithofacies B is very similar to Member B 385 
representing peritidal (tidal flat) facies. Lithofacies A is akin to Member A of the classic 386 

Lofer cycles; both were formed during subaerial exposure via pedogenic processes, although 387 
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due to the different climatic conditions (Haas et al. 2012) there are remarkable differences in 388 

the features of the palaeosoil horizons.  389 

 390 

Dolomite genesis and diagenetic evolution 391 
 The cyclic succession of the Tagyon Formation was formed in the internal part of 392 

isolated carbonate platforms (Fig. 1b) and reflects high-frequency relative sea-level changes. 393 
During sea-level highstands the platforms were inundated by a shallow sea. Restricted parts of 394 

the bottom of the platform interior may have been covered by microbial mat-producing, 395 
penecontemporaneously lithified carbonate deposits of clotted peloidal fabric. Clotted micritic 396 

aggregates (microbial nodules), microbially-coated skeletal grains, and oncoids also 397 
commonly developed in this environment. Preferential occurrence of porphyrotopic dolomite 398 

within micritic sediment of microbial origin suggests microbially-induced dolomite 399 
precipitation as the first stage of formation of this dolomite type. 400 

In modern microbial mats various carbonate precipitates (high-Mg calcite and/or Ca 401 
dolomite, aragonite) may be produced, depending on the biological activities of 402 

microorganisms and environmental conditions (Wright 2000; Wright and Wacey 2005; 403 
Spadafora et al. 2010). The co-existence of remains of extracellular polymeric substance 404 

(EPS) and bacterial bodies, associated with Ca/Mg carbonate, implies that organic matter and 405 
microbial metabolism play a fundamental role in the precipitation of the peloid-forming 406 

minerals (Vasconcelos et al. 2006; Bontognali et al. 2008; Sánchez-Román et al. 2008; 407 
Spadafora et al. 2010). Studies on modern organic-rich sediments revealed the importance of 408 

microbially-mediated degradation of organic material that results in removal of sulphate in the 409 
shallow subsurface, increasing carbonate alkalinity and thereby favourable conditions for 410 

dolomite precipitation. Concentration of Mg in the cyanobacterial sheaths and mucilage that 411 
may be liberated in unhydrated form from degraded EPS is another factor that may favour for 412 

dolomite formation (Wright 1997; 2000). From Holocene peritidal deposits in Belize, matrix-413 
replacive and selective dolomitization of Mg-calcite foraminifera and micrite was reported 414 

(Mazzullo et al. 1987). Genetic link between cyanobacterial degradation and early dolomite 415 
formation was pointed out in ancient, silicified microbially dominated carbonates (Wright, 416 

1997). In the course of the shallow subsurface diagenetic evolution, progressive degradation 417 
of cyanobacterial mat led to the appearance and increasing abundance of dolomite and 418 

ultimately to the formation of a mineralized fabric dominated by rhombohedra (Wright, 419 
1997). Sea-level lowering led to shoaling and establishment of tidal-flat environments on the 420 

studied platforms of the Transdanubian Range, beginning in the shallowest parts of the former 421 
lagoon. Microbial mat developed on large parts of the tidal flat. In the supratidal zone, 422 

desiccation and pedogenic processes led to substantial alteration of the previously deposited 423 
sediment. 424 

There are well known examples for the microbial dolomite formation within peritidal 425 
microbial mats under hot and dry climatic conditions (Bontognali et al. 2010). Beneath the 426 

sabkha surface in Abu Dhabi, the distribution pattern of dolomite suggests post-depositional 427 
replacement, which was mostly controlled by the active circulation of near-surface waters 428 

(McKenzie et al. 1980; Baltzer et al. 1994). Progressive replacement resulted in good 429 
preservation of the sedimentary fabric.  430 

Further sea-level lowering led to subaerial exposure of large parts of the studied 431 

platforms, which resulted in erosion, pedogenesis, and meteoric diagenesis. On the subaerially 432 
exposed carbonate platforms, under semi-arid climatic conditions that probably prevailed in 433 

the studied region (Haas et al. 2012), carbonate crusts and carbonate soils, i.e. calcretes / 434 
dolocretes, developed. Most calcretes occur today in regions with mean annual temperature of 435 

16 to 20 °C (Goudie 1983), but rainfall is the more critical factor; carbonate accumulates in a 436 
soil with moisture deficit (Alonso-Zarza and Wright 2010). Pedogenesis could be associated 437 
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with primary dolomite formation, and development of dolocrete horizons (Alonso-Zarza et al. 438 

1998; Wright 2007). 439 
Holocene dolomitized crusts developed on supratidal deposits and heavily penetrated 440 

by mangrove roots were reported from Belize, Central America (Mazzullo et al. 1987). The 441 
dolomite occurs as a replacement of high-Mg calcite micrite and sand-sized high-Mg calcite 442 

grains and as cement. Seasonal alternation of short-term hypersalinity and meteoric influx, 443 
which led to dilution of interstitial water, was also pointed out on the supratidal flats. The 444 

salinity fluctuation resulted in etching of dolomite crystals and selective leaching of aragonite 445 
(Mazzullo et al. 1987).  446 

Deposition of the studied shallow marine successions was interrupted by episodes of 447 
subaerial exposure and pedogenesis, when the previously formed subtidal–peritidal deposits 448 

were subjected to meteoric diagenetic alteration. In the vadose zone from the surface down to 449 
the groundwater table intense dissolution, mostly of the aragonitic components (e.g. 450 

dasycladalean algae) took place. Larger (mm to cm-sized) dissolution cavities may have 451 
formed preferentially along the boundary of the vadose and phreatic zones (Tucker and 452 

Wright 1990; Read and Horbury 1993). During the next transgression the mouldic and vuggy 453 
pores may have been filled by marine cement. However, this earliest cement may have been 454 

dissolved later and the newly-formed pores may have been refilled repeatedly either by 455 
marine or meteoric cement in the course of the sea-level controlled transgression–regression 456 

cycles. Dissolution and calcitization of porphyrotopic dolomite by meteoric fluids most likely 457 
occurred during this stage of the diagenetic evolution.  458 

In the Drt-1 succession the fabric-destructive dolomite intervals are as a rule located 459 
just below the pedogenically altered horizons (Lithofacies A). Taking into consideration the 460 

dry (probably semi-arid) climatic conditions, reflux of evaporated (mesohaline) sea-water 461 
through the previously deposited, semi-consolidated, high-permeability sediment may have 462 

been responsible for this type of near-surface stratiform dolomitization (Jones and Xiao 463 
2005).  464 

Accumulation of the Tagyon Formation was followed by a subaerial exposure interval 465 
of unknown duration (Budai and Haas 1997; Budai and Vörös 2003a). Thereafter acceleration 466 

of tectonic subsidence and contemporaneous sea-level rise resulted in drowning of the 467 
platforms in both areas in the Late Anisian (Budai and Haas 1997; Budai and Vörös 2003b). 468 

Then the evolution of the two areas diverged. In the area of the former Tagyon Platform the 469 
basin conditions were prolonged and the Tagyon Formation was covered by an approximately 470 

100 m-thick pelagic succession by the end of the Ladinian. The area of the Szk section was 471 
located in the transitional belt between the Szentkirályszabadja Platform and the Balatonfüred 472 

Basin where an approximately 500 m-thick sequence of alternating basin, slope and platform 473 
facies were deposited coevally. The different early burial histories of the two platforms may 474 

explain their different burial diagenetic and dolomitization pattern that is also reflected in 475 
their remarkably different δ

18
O isotope values. 476 

Studies carried out in the area of Great Bahama Bank (Melim et al. 2001) and other 477 
Neogene to Quaternary isolated carbonate platforms, which have never been deeply buried 478 

(Budd 1997; Jones and Luth 2003; Choquette and Hiatt 2007) revealed the importance of 479 
dolomitization processes by marine pore-fluids in the early burial stage. Studies of the active 480 
circulation below the Great Bahama Bank (Whitaker and Smart 1993), and results of the 481 

reactive transport modelling (Whitaker and Xiao 2010) pointed out that forced geothermal 482 
convection of cold normal salinity sea-water through carbonate platforms is a viable 483 

mechanism of shallow burial dolomitization. . Inferences of these studies suggest that 484 
dolomitization of the Tagyon Formation probably continued in a shallow burial setting. 485 

Palaeogeographic setting and δ
18

O values of the Szk section allow the application of the 486 
geothermal convection model that may have resulted in replacive dolomitization. Moreover, 487 
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in this area even the precipitation of the last, medium to coarsely crystalline cement phase 488 

probably took place under relatively low-temperature conditions. Occlusion of pores 489 
prevented later water circulation, in the course of the continuing burial. In contrast, during 490 

shallow burial of the Tagyon Formation, the small Tagyon Platform did not exist anymore; 491 
the previously-formed platform carbonates became covered by basinal deposits (cherty 492 

limestone with volcanic tuff intercalations; see Fig. 2). Consequently, suitable conditions for 493 
geothermal convection-driven pervasive, low-temperature dolomitization were not given.  494 

Although the uppermost Triassic and younger Mesozoic rocks are missing in the 495 
studied areas, extrapolation of geological data (thickness and extension of the formations, 496 

tectonic events, periods of regional uplift and erosion) available for the western part of the 497 
Transdanubian Range (Haas and Budai 1999; Vörös and Galácz 1998, Budai et al. 1999; Haas 498 

2012) allows the evaluation of the subsequent burial history. However, due to the obviously 499 
inexact extrapolated data, the burial depth values given below can be considered as 500 

approximate estimations.  501 
As a result of continuous thermal subsidence of the Tethys margin the Middle Triassic 502 

Tagyon Formation reached 1 to 1.2 km burial depth by the Norian (Haas and Budai 1995). 503 
Depleted δ

18
O values, measured on microcrystalline and finely crystalline dolomite and 504 

calcite in the Drt-1 section, which suggest relatively elevated temperature, may reflect a 505 
resetting during recrystallisation; accordingly these values may characterize the conditions of 506 

the last recrystallisation event (Machel 2004).  507 
In connection with the incipient rifting of the later Alpine Tethys, an extensional 508 

tectonic regime was established during the Late Norian, when the Tagyon Formation reached 509 
the deeper intermediate to deep burial zone (1.8 to 2.2 km; Haas and Budai 1995). The pore 510 

spaces and the fractures created in this stage were filled with medium to coarsely crystalline 511 
dolomite that yielded the most depleted δ

18
O values and locally exhibits characteristics of 512 

saddle dolomite. The appearance of saddle dolomite excludes temperatures lower than 60 to 513 
80°C (Spötl and Pitman 1998). The extensional regime was maintained and differential 514 

subsidence continued during the Jurassic into the Early Cretaceous interval, when the studied 515 
succession reached the deep burial zone (2.5 to 3.5 km). Precipitation of coarsely crystalline 516 

saddle dolomite in cavities and fractures may have also continued at this stage.  517 
A crucial compressional deformation event occurred in the mid-Cretaceous that 518 

resulted in the formation of the large synclinal structure of the Transdanubian Range (Haas 519 
2012). This was followed by uplift and intense erosion during the Turonian to Coniacian 520 

interval that resulted in the denudation of the entire Jurassic–Lower Cretaceous succession 521 
and even a large part of the Triassic sequence on the limbs of the syncline (Haas 1985; 2012). 522 

Consequently, after burial the Tagyon Formation was first raised to a near-surface position at 523 
this time. Similar tectonically-controlled uplift, denudation and fracturing occurred in several 524 

stages during the Cainozoic. As a result of these processes the Tagyon Formation was affected 525 
by karstification that might have resulted in dedolomitization of the last dolomite phase and 526 

precipitation of calcite in fractures and cavities. 527 
 528 

Conclusions 529 
 Coeval Middle Triassic sections, representing the internal part of two carbonate 530 
platforms in the area of the Transdanubian Range, were investigated to determine the 531 

mechanism and history of their complex dolomitization, leading to partial dolomitization of 532 
one of the platform carbonate successions and pervasive dolomitization of the other. 533 

Cyclic successions were deposited on both platforms, controlled by periodic sea-level 534 
oscillation. The unconformity-bounded metre-scale cycles are made up of alternating shallow 535 

subtidal, tidal flat and palaeosoil facies.  536 
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Based on studies performed on the partially dolomitized section (core Dörgicse Drt-1) 537 

primary dolomite precipitation and very early post-depositional dolomitization are interpreted 538 
as the first stage of dolomite genesis. In shallow subtidal facies fabric-selective porphyrotopic 539 

dolomite was found in microbial fabric elements (clotted micrite matrix, micritic nodules, 540 
microbial crusts, cortex of oncoids) that suggest microbially-mediated dolomite precipitation 541 

and/or early diagenetic selective replacement of the microbial Mg-calcite components. 542 
Microbially-induced dolomite precipitation and/or progressive replacement of carbonate 543 

sediments just beneath the surface of the tidal flat resulted in fabric-retentive dolomitization 544 
of some of the stromatolite beds. Dolomite might also have been formed by pedogenic 545 

processes; dolomitic calcretes or dolocretes were developed in this way. Meteoric diagenesis 546 
during the recurrent subaerial exposure episodes may have locally resulted in partial 547 

dissolution and calcitization of the porphyrotopic dolomite. 548 
In the partially dolomitized succession (Drt-1) intervals affected by pervasive fabric-549 

destructive dolomitization were observed under subaerial exposure horizons as a rule. This 550 
preferential stratiform dolomitization may have been formed via reflux of evaporated sea-551 

water in a near-surface diagenetic setting.  552 
As a result of their dissimilar palaeogeographic settings, the burial history and related 553 

diagenetic conditions of the two platforms were different. In the basinward marginal zone of 554 
the Szentkirályszabadja Platform pervasive fabric-retentive dolomitization took place in a 555 

shallow-burial setting, probably via geothermal convection. In the area of the Tagyon 556 
Platform the relatively thin platform carbonate formation was covered by a basinal deposit, 557 

preventing any intense circulation and accordingly any pervasive shallow burial 558 
dolomitization. 559 

By the Late Norian the Middle Triassic platform carbonates reached the deeper 560 
intermediate to deep burial zone. Recrystallisation of partially dolomitized limestone and 561 

occlusion of newly-opened fractures and pores by medium to coarsely crystalline dolomite 562 
can be attributed to this stage.  563 

The genesis of dolomitic rocks is usually the result of complex, multiple processes. In 564 
many cases it is initiated by synsedimentary dolomite formation and/or early diagenetic 565 

dolomitization in a near-surface setting, but the subsequent dolomitization stages commonly 566 
destroy the traces of the early dolomitization processes. In these cases the comparative study 567 

of contemporaneously deposited successions that are completely and partially dolomitized 568 
respectively, or the study of transitional intervals between the dolomitized and partially or 569 

non-dolomitized rock-bodies may provide a good opportunity for reconstruction of the 570 
mechanism and history of dolomitization. This study reveals that even neighbouring and 571 

coeval platform carbonates with similar sedimentary features may show remarkably different 572 
dolomitization patterns due to their different palaeogeographic setting and burial history.    573 

 574 
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 732 

Figure captions 733 
Fig. 1 a Position of the studied area in the Transdanubian Range (TR). Abbreviations: A: 734 

Austria, SK: Slovakia, U: Ukraine, RO: Romania, SRB: Serbia, CR: Croatia, SLO: Slovenia. 735 
b Distribution of the coeval Middle Anisian facies on the Balaton Highland (after Budai and 736 

Vörös 2006). D: Dörgicse Drt-1 borehole; Sz: Szentkirályszabadja Quarry 737 
Fig. 2 Geological profile between the central and the north-eastern part of the Balaton 738 

Highland showing the relationship of the Middle Triassic formations (after Budai and Vörös 739 
2006, modified). Log of core Drt-1 is presented on Fig. 4, geological section of 740 

Szentkirályszabadja Quarry (Szk) is shown on Fig 5. 741 
Fig. 3 Petrographic properties and interpreted depositional environment of the basic 742 

lithofacies types defined in the studied sections of the Tagyon Formation. Scale bar is 1 mm. 743 
Fig. 4 Lithological and microfacies characteristics and facies interpretation of core Dörgicse-1 744 

(Drt-1). Abbreviations: s – samples taken for detailed investigation; c – cycle boundaries; lf –745 
lithofacies types; cr/dr – calcrete/dolocrete; ps – pisoidic; o – other; str – stromatolite; br – 746 

brecciated; st – non-brecciated; p – peloidal; on – oncoidal; da – rich in dasycladalean algae; 747 
pd – porphyrotopic dolomite; cd – coarsely crystalline dolomite; sd – saddle dolomite; fd – 748 

fabric-destructive; cc – calcite cement; sp – supratidal; in – intertidal; su – subtidal 749 
Fig. 5 Lithological and microfacies characteristics and facies interpretation of the section of 750 

the upper part of the Tagyon Formation measured in the Szentkirályszabadja Quarry (Szk). 751 
Abbreviations: s – samples taken for detailed investigation; ; c – cycle boundaries; lf –752 

lithofacies types; pa – pedogenic alteration; cr/dr – calcrete/dolocrete; ps – pisoidic; o – other; 753 
str – stromatolite; br – brecciated; st – non-brecciated; p – peloidal; on – oncoidal; bc 754 

bioclastic; pd – porphyrotopic dolomite; cd – coarsely crystalline dolomite; sd – saddle 755 
dolomite; fd – fabric-destructive; cc – calcite cement; sp – supratidal; in – intertidal; su – 756 

subtidal 757 
Fig. 6 Fabric-selective dolomite in Lithofacies A in core Drt-1. (Scale bar is 1 mm) a 758 

Pedogenic calcrete/dolocrete profile. A/ host rock–transitional horizon; slightly altered 759 
dolomitic limestone with irregular light yellow patches and scattered cement-filled pores; B/ 760 

nodular horizon with angular to sub-rounded, mm-sized ochre dolomicrite nodules and 761 
scarcely coated grains showing normal grading; C/ coated grain horizon; made up of mm-762 

sized dolomitized coated grains showing upward-fining trend. The horizontally interlocking 763 
planar pores are filled by calcite and dolomite cement. The grains tend to merge upward 764 

forming irregular patches; D/ structureless, massive dolomicrite layer; 125.3–125.4 m. b 765 
Details of the C horizon. Irregular pores among the grains are filled by very fine mosaic 766 

calcite cement (vfc, arrows). Very finely crystalline dolomite (vfd, arrows) appears as fracture 767 
filling that is cut by a younger fissure occluded by bladed calcite (bc, arrows) rich in 768 

inclusions along the fracture wall. Stained thin-section; 125.3 m. c Small and larger pores 769 
occur among the dolomicrite glaebules and coated grains. The small intergranular pores are 770 

filled by finely crystalline mosaic calcite cement. The larger pore in the centre of the picture is 771 
lined by medium crystalline bladed calcite (bc). Within this lining finely to medium 772 

crystalline dolomite (fd) fills a part of the pore (right side) while mostly coarsely crystalline 773 
limpid mosaic calcite cement (cc) fills the remaining space (left side). d CL image of a part of 774 
the C horizon (the area is displayed on Fig. 7b and c) The dolomicrite and finely crystalline 775 

dolomite (fd) components exhibit dull red luminescence, the finely crystalline calcite and 776 
bladed calcite cement (bc) are non-luminescent. e CL image of a part of the C horizon (the 777 

area is displayed in Fig. 7b). The dolomicrite grains and the fracture filling finely crystalline 778 
dolomite (fd) show dull red luminescence; the finely crystalline pore filling calcite cement 779 

(fc) and the bladed fracture filling calcite (bc) are non-luminescent. 780 
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Fig. 7 Fabric-selective dolomite in Lithofacies C in core Drt-1, scale bar is 500 μm. a 781 

Microbial nodule. The tiny dolomite patches (arrows) are particularly abundant in certain 782 
micritic layers of the microbial crust, i.e. their distribution seems to follow the microbial 783 

structures. Stained thin-section; 101.0 m. b Micritic lump with clusters of euhedral to 784 
anhedral dolomite (pd); left: stained thin-section; the porphyrotopic dolomite exhibits dull red 785 

to orange luminescence; right: CL image; 112.6 m. c Vug pore lined by brownish bladed 786 
calcite cement (bc) and filled by coarsely crystalline mosaic calcite (cc) in the central part of 787 

the pore; left. The inclusion-rich calcite (cb) is black under CL with some dull mottles, while 788 
the coarsely crystalline calcite cement has alternating thin bright orange and thicker black 789 

zones; right; 112.6 m. d Clotted micritic–very finely crystalline calcite fabric with a gastropod 790 
fragment. Porphyrotopic dolomite (pd) occurs in micrite aggregates. There are small pores 791 

with finely crystalline calcite cement filling (fc). A larger vug is lined by brownish bladed 792 
calcite (bc) and filled by coarsely crystalline mosaic calcite cement (cc); 142.5 m e Medium 793 

to coarsely crystalline dolomite cement (cd) in the inside of a dissolution cavity. The lower 794 
part of the cavity is filled by dolomicrite internal sediment (md); in its upper part medium to 795 

coarsely crystalline mosaic calcite cement (cc) occurs. A stylolite separates this cement-type 796 
from bladed calcite cement (bc). Stained thin-section. 101.0 m. f Vug in limestone; it is lined 797 

by acicular calcite (ac, arrow). Saddle dolomite cement (cd) occludes the internal part of the 798 
pore. Certain zones of the coarse dolomite crystals transformed to calcite (arrows). Stained 799 

thin-section. 115.0 m. 800 
Fig. 8 Fabric-retentive dolomite in Lithofacies A, B and C in the section of the 801 

Szentkirályszabadja Quarry (Szk). (Scale bar is 1 mm) a Pisolite horizon with light yellow 802 
large reworked palaeosoil clasts. There are cm-sized pores (arrows) lined by multiple 803 

generation of isopachous dolomite cement. Bed 7c. b Nodules with root casts (nd), and grain 804 
aggregates (ag) act as the nuclei of coated grains. Micrite meniscus cement (arrows) occurs at 805 

the grain contacts; the inner part of the intergranular pores is occluded by finely to medium 806 
crystalline dolomite. Stained thin-section; Sample 7c. c Coated grains; intraclasts act as their 807 

nuclei. Stained thin-section. Sample taken from the logged section d Slightly undulating 808 
laminated fabric, made up of alternation of dolomicrite and very finely crystalline dolomite 809 

laminae. Recrystallisation sub-perpendicular to the lamination (arrows) is visible in some 810 
lamina sets. Stained thin-section; Bed 2a. e From the bottom to the top: peloidal grainstone 811 

(pg); uneven erosional surface (e, arrow), the depressions are filled by micrite (m, arrow); a 812 
laminated microlayer composed of micrite and very finely crystalline dolomite laminae (lm); 813 

laminated microlayer made up of clotted micrite and very finely crystalline dolomite laminae 814 
(cl). Stained thin-section; Bed 2b. f Remnants of dasycladalean algae fragments. Micrite 815 

envelope (arrow) preserved the outlines of the bioclasts. The moulds are filled by finely 816 
crystalline dolomite (fd). Very finely crystalline dolomite (vfd) fills the internal hollow of the 817 

algae. Dolomitized fibrous cement (yellow arrows) occurs among the bioclasts and micritised 818 
grains. Szentkirályszabadja Quarry; from the logged section. g Bioclastic wackestone with 819 

dasycladalean alga (Teutloporella peniculiformis). Fenestral pores and intraclasts (soil clasts) 820 
are common (pedogenic alteration). Stained thin-section; Bed 4a 821 

Fig. 9 Fabric retentive dolomite of Lithofacies B in core Drt-1. Scale bar is 500 μm on the 822 
pictures. a Dolomitized clotted micrite fabric. The fenestral pores are filled by very finely 823 
crystalline dolomite internal sediment (vfd) and finely crystalline dolomite (fd) Stained thin-824 

section. b CL image of a: the matrix shows dull red luminescence, the pore-filling dolomite 825 
exhibits a non-luminescent external zone that is followed by bright orange zones; 144.0 m. c 826 

Larger bedding-parallel pore with finely crystalline dolomite internal sediment (vfd). The 827 
upper part of the pore is lined by finely crystalline dolomite (fd) while its internal part is 828 

occluded by medium to coarse crystals (cd); stained thin-section; d CL image of c: the matrix 829 
shows dull red luminescence, the finely crystalline external zone of the pore-filling dolomite 830 
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is black and the coarse crystalline dolomite in the internal part exhibits alternation of dull red 831 

and brighter orange zones; 144.0 m 832 
Fig. 10 Fabric-destructive dolomite in core Drt-1. Scale bar is 500 μm on the pictures; a 833 

Finely to medium crystalline planar-e–planar-s dolomite. Stained thin-section; 75.8 m. b 834 
Coarsely crystalline planar-s dolomite in medium crystalline nonplanar-a and planar-s 835 

dolomite. 84.9 m. c and d Saddle dolomite grown onto the wall of a cm-sized open cavity; c – 836 
parallel polars; d – crossed polars, 83.4 m 837 

Fig. 11 Paragenetic sequence of the Tagyon Formation in the succession of core Dörgicse 838 
Drt-1  839 

Fig. 12 (Scale bar is 500 μm) a Micrite with irregular darker patches, and 100 to 2000 μm-840 
sized fenestrae. A cm-sized planar-shaped dissolution cavity is visible in the centre of the 841 

picture. It is lined by fibrous cement; above it laminated micritic internal sediment (is) occurs 842 
in the lower part and mosaic cement is present in upper part of the cavity. Similar geopetal fill 843 

occurs in some of the smaller pores. The vugs are cut by desiccation cracks (cr), which are 844 
filled by fine-grained sediment and/or finely crystalline calcite cement. 115.4 m. b Dolomite 845 

of well-preserved peloidal microbial fabric is visible below, fabric-destructive fine to medium 846 
crystalline nonplanar-a and planar-s dolomite occurs above it; Note the sharp contact between 847 

the fabric-retentive and the fabric-destructive dolomites (arrow). 89.2 m c Partially 848 
dolomitized limestone, cut by a fracture with medium crystalline dolomite infilling. A 849 

younger fissure filled by coarsely crystalline calcite cross-cuts the previous one. 77 m. d 850 
Saddle dolomite (dc) and coarsely crystalline calcite vug-filling cement in limestone. Note the 851 

fine CL zonation of the calcite (non CL - non CL zone with thin bright orange bands - dull red 852 
CL with thicker zones). 82.2 m  853 

Fig. 13 Relationship between δ
18

O (V-PDB) and δ
13

C (V-PDB) values measured in the 854 
samples of core Dörgicse-1 (Drt-1) and Szentkirályszabadja (Szk) section 855 

 856 
Table I δ

18
O (V-PDB) and δ

13
C (V-PDB) values measured in the samples of core Dörgicse-1 857 

(Drt-1) and Szentkirályszabadja (Szk-1) section 858 
 859 
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Sample  
Depth 

(m) 
Description 

δ
13

C  
(V-PDB) 

δ
18

O  
(V-PDB) 

Szk 129C-3   nonplanar-a very finely crystalline dolomite, exhibiting fibrous appearance dolomite (replaced cement)? 2.78 0.10 

Szk 133-2 
 

medium crystalline, inclusion-rich, nonplanar-a dolomite, filling the pore among coated grains dolomite (replaced cement) 2.76 -0.49 

Szk 133-3 
 

medium to coarsely crystalline, inclusion-rich, nonplanar-a dolomite filling the pore among coated grains 
dolomite (replaced cement) / 
dolomite cement? 

2.28 -2.22 

Szk 135A-B-1 
 

fracture-filling medium to coarsely crystalline nonplanar-a dolomite 
dolomite (replaced cement) / 
dolomite cement? 

2.26 -1.16 

Szk 135B-1 
 

vug-filling, finely to medium crystalline, nonplanar-a dolomite dolomite (replaced cement) 2.47 -1.05 

Szk 135B-2 
 

domal structure of planar-s to nonplanar-a very finely crystalline dolomite, exhibiting fibrous appearance dolomite (replaced cement)? 2.51 -0.79 

Szk 135C-1 
 

nonplanar-a bladed dolomite filling a sheet crack dolomite (replaced cement) 2.23 -1.64 

Szk 135C-2 
 

pore-filling bladed dolomite overgrown by coarsely crystalline saddle dolomite 
dolomite (replaced cement) + 
dolomite cement 

1.98 -0.96 

Szk 131a 
 

vug-filling medium to coarsely crystalline saddle dolomite dolomite cement 1.10 -3.90 

Szk 134A 
 

vug-filling medium to coarsely crystalline nonplanar-a dolomite dolomite cement 1.26 -3.20 

Szk 134B-3 
 

vug-filling medium to coarsely crystalline dolomite dolomite cement 2.52 1.28 

Szk 129A-2 
 

nonplanar-a very finely crystalline to finely crystalline dolomite, exhibiting fibrous appearance fabric-retentive dolomite 2.80 -0.94 

Szk 129B-2 
 

laminated planar-s to nonplanar-a, very finely crystalline to finely crystalline dolomite matrix fabric-retentive dolomite 2.86 -0.20 

Szk 129B-3 
 

clotted, nonplanar-a, very finely crystalline to finely crystalline dolomite fabric-retentive dolomite 2.86 -1.01 

Szk 129C-2 
 

nonplanar-a,  very finely crystalline to finely crystalline dolomite, exhibiting fibrous appearance fabric-retentive dolomite 2.66 -0.70 

Szk 133-1 
 

concentrically laminated, planar-s to nonplanar-a, very finely crystalline to finely crystalline dolomite crust around a 
nodule 

fabric-retentive dolomite 2.80 -0.48 

Szk 130A-1 
 

dolomicritic nodule, with 100 to 500 µm-sized vugs filled by finely crystalline nonplanar-a dolomite fabric-retentive dolomite 2.72 -1.28 

Szk 134B-2 
 

dolomicrite to very finely crystalline dolomite nodule with 50 to 300 µm-sized vugs filled by finely crystalline 
nonplanar-a dolomite 

fabric-retentive dolomite 2.60 1.41 

Szk 135A-B-2 
 

laminated, nonplanar-a, very finely crystalline to finely crystalline dolomite matrix fabric-retentive dolomite 2.32 -1.30 

Szk 135B-3 
 

vug-filling, nonplanar-a, finely crystalline dolomite, exhibiting fibrous appearance fabric-retentive dolomite 2.54 -0.94 

Szk 136A-1 
 

clotted, nodular, nonplanar-a, very finely crystalline to finely crystalline dolomite fabric-retentive dolomite 2.31 0.40 

Szk 132A-1 
 

nonplanar-a, very finely crystalline to finely crystalline dolomite matrix with relic micritic fabric elements fabric-destructive dolomite 2.72 1.15 

Szk 135C-3 
 

laminated, nonplanar-a, very finely crystalline to finely crystalline dolomite fabric-destructive dolomite 1.86 -1.97 

Szk 131-1 
 

very finely crystalline dolomite, with finely crystalline nonplanar-a dolomite patches and relic micritic fabric elements fabric-destructive dolomite 2.51 -1.17 

Szk 134B-1 
 

dolomicrite to very finely crystalline dolomite matrix with medium-crystalline nonplanar-a dolomite in patches fabric-destructive dolomite 2.29 -0.15 

Drt-1 142-3 77 dark, nodule of dolomicrite to very finely crystalline dolomite, with 10 to 400 µm-sized vugs filled by calcite (< 10 %) fabric-retentive dolomite 2.38 -3.44 

Drt-1 142-2 77 dark, nodule of dolomicrite to very finely crystalline dolomite, with 10 to 400 µm-sized vugs filled by calcite (< 10 %) fabric-retentive dolomite 2.50 -5.49 

Drt-1 67-3 110.2 dolomicritic matrix with small fenestral pores filled with very finely crystalline dolomite fabric-retentive dolomite 2.65 -5.89 

Table I



Drt-1 65-2 125.3 dark, brownish pisoid of very finely crystalline dolomite with micropores filled by calcite microspar (< 5 %) fabric-retentive dolomite 2.04 -6.20 

Drt-1 141-1 82.2 nonplanar-a, very finely crystalline to finely crystalline dolomite matrix fabric-destructive dolomite 3.03 -6.97 

Drt-1 67-2 110.2 planar-s to nonplanar-a, finely crystalline dolomite  
fabric-destructive dolomite 
(with remnants of peloids) 

2.66 -6.30 

Drt-1 67-4 110.2 planar-s to nonplanar-a, very finely crystalline dolomite matrix fabric-destructive dolomite 1.95 -3.48 

Drt-1 65-4 125.3 fracture-filling planar-s to nonplanar-a  very finely crystalline to finely crystalline dolomite dolomite (replaced cement) 2.12 -5.24 

Drt-1 63-2 144 medium to coarsely crystalline nonplanar-a dolomite filling fenestral pores dolomite cement 2.15 -7.35 

Drt-1 139-1 101 peloidal clotted micrite, very finely crystalline to finely crystalline calcite   calcite matrix 1.65 -5.39 

Drt-1 66-2 112.6 
peloidal, nodular micrite, very finely crystalline to finely crystalline calcite (with less than 2 % of porphyrotopic 
dolomite) 

calcite matrix 1.66 -5.74 

Drt-1 142-1 77 mosaic calcite filling a vug below a nodule (with less than 5 % dolomite inclusions) calcite cement 1.44 -7.22 

Drt-1 139-3 101 pore-filling radiaxial fibrous calcite calcite cement 1.94 -2.87 

Drt-1 65-3 125.3 fracture-filling bladed calcite calcite cement 1.92 -4.43 

 


