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ABSTRACT
Multiplicative interaction terms are widely used in economics to identify heterogeneous effects
and to tailor policy recommendations. The execution of these models is often flawed due to
specification and interpretation errors. This article introduces regression trees and regression tree
ensembles to model and visualize interaction effects. Tree-based methods include interactions by
construction and in a nonlinear manner. Visualizing nonlinear interaction effects in a way that can
be easily read overcomes common interpretation errors. We apply the proposed approach to two
different datasets to illustrate its usefulness.
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I. Introduction

The estimation of interaction effects has received
considerable attention as they are frequently used
by economists to identify heterogeneous treatment
effects (Ai and Norton, 2003; Karaca-Mandic,
Norton, and Dowd 2012). A common approach
is to include multiplicative interactions. However,
the execution of these models is often flawed due
to the lack of conditional hypotheses (specification
errors) and interpretation errors (Brambor, Clark,
and Golder 2006). A conditional hypothesis such
as ‘an increase in X is associated with an increase
in Y when Z = 1ʹ implies the need for an a priori
specification of this interaction effect. If the inter-
action term is not specified, it will not be esti-
mated in a standard regression approach. In many
empirical studies, when interaction effects are
added, constitutive terms are not included, biasing
the estimation and interpretation of coefficients
(Brambor, Clark, and Golder 2006). In addition,
interaction effects are generally included linearly
(Hainmueller, Mummolo, and Xu 2017).

This article introduces regression trees and
regression trees ensembles, rooted in the machine
learning (ML) literature, and illustrates how these
methods can be useful to model interaction effects.

ML methods are increasingly being used in different
fields. Applications include, among others, predict-
ing worker productivity (Burns and Köster 2016),
poverty alleviation (Blumenstock 2016), classifying
economics journal content (Angrist et al. 2017),
textual analysis in real estate (Nowak and Smith
2017), and even modelling judges’ jail-or-release
decisions (Kleinberg et al. 2017). The motivation to
use regression trees and ensembles to model inter-
action effects is threefold. First, tree-based methods
include interactions by construction, without requir-
ing the researcher to have any preconception on this
matter (Su et al. 2011). As a result, common speci-
fication errors can be overcome. Second, discontin-
uous relationships and nonlinear interaction effects
are more naturally accommodated by tree-based
methods, as opposed to multiplicative interactions.
Third, joint plots visualize interactions between vari-
ables, providing applied economists with a useful
tool to explore interaction effects in an intuitive way.

We illustrate the approach using two datasets on
schools in Hungary and Italy. Our data for Hungary
covers the 2008–2010 period and includes variables
with respect to all organizational levels in primary
education (student, class, school and education pro-
vider). Our data for Italy covers the 2013–2016
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period and contains extensive information on stu-
dent characteristics (e.g. socio-economic status
(SES), immigration). Both datasets allow estimating
a value-added (VA) approach since the same stu-
dents are followed over time. Student achievement
can be seen as the outcome of a production process
characterized by many interactions between differ-
ent stakeholders. Analogous to the production func-
tion in social policy applications, Y = f(L,K), this
process has been modelled as the education produc-
tion function (EPF). Interaction effects are particu-
larly interesting in the context of education where
many decisions are taken by different actors at dif-
ferent levels of operations (class, school, provider)
(Burns and Köster 2016). As a direct consequence,
researchers and policymakers that do not acknowl-
edge these interactions will over or underestimate
the impact of education policies. Our findings indi-
cate that classical regression approaches with multi-
plicative interactions fail to identify interesting
nonlinear interactions. Also, visualizing our results
considerably improves interpretability compared to
commonly misinterpreted interaction effects (Berry,
Golder, and Milton 2012).

We contribute to the literature in at least two
ways. First, we introduce regression trees and
regression trees ensembles in the newly devel-
oping literature that proposes to use ML algo-
rithms to explore heterogeneous effects. Second,
we contribute to the broader economic literature
by applying the proposed approach to two edu-
cation datasets, for two different countries. In
doing so, we illustrate the wider applicability of
the proposed approach. Despite the growing
interest in ML methods, applications in educa-
tion only received little attention (Vanthienen
and De Witte 2017). The remainder of the arti-
cle is organized as follows. Section II reviews
multiplicative interactions and introduces
regression trees. A brief overview of the data is
presented in Section III, followed by the discus-
sion of our results in Section IV. Section V
concludes.

II. Methodology

Multiplicative interactions

When modelling heterogeneous effects, most empiri-
cal studies include multiplicative interaction terms:

Y ¼ β0 þ β1X þ β2Z þ β3XZ þ �; (1)

In the simplest model, X and Y are both contin-
uous variables and Z is a dummy variable when Z
is a continuous variable, interpreting β1 or β2 is
often meaningless. A common interpretation error
is to report β1 as the unconditional effect of X on
Y, whereas the unconditional effect depends on
the distribution of Z.1 In the trivial case where Z
takes on 0 or 1, (1) simplifies to:

Y ¼ β0 þ β1X þ � when Z ¼ 0;
ðβ0 þ β2Þ þ ðβ1 þ β3ÞX þ � when Z ¼ 1:

�

(1a)

Hence, when Z ¼ 0, the effect of a unit increase in
X on Y equals β1. When Z ¼ 1, we obtain the
estimated effect of a unit increase in X on Y by
adding up β1 and β3. Note that the coefficient β3
indicates the extent to which the slopes between X
and Y differ for different values of Z.

The intercept of the estimated regression line
equals β0 + β2 when Z = 1. However, in many
studies some constitutive terms (here: X and Z)
are not specified in the estimated model. For
example, Brambor, Clark, and Golder (2006, 77)
review articles published in the top three political
science journals from 1998 to 2002 and find that
in 31% of the articles, constitutive terms were not
included. The remaining 69% that included those
terms, misinterpreted their coefficient in 62% of
the cases. When leaving out Z, (1) reduces to:

Y ¼ γ0 þ γ1X þ γ2XZ þ v (2)

Comparing (2) to (1) reveals that not including Z
in the specification essentially corresponds to
assuming that β2 ¼ 0. This forces the intercepts
to coincide for both values of Z. Instead of

1In many empirical applications (where Z is not distributed uniformly in the data), averaging coefficients estimated for X for different values of Z does
not yield the unconditional effect of X on Y. Also, the insignificance of the coefficient for X in (1), and the insignificance of the interaction effect
does not imply that the unconditional effect of X on Y is insignificant. To assess the significance of the unconditional effect of X, obtain

σ̂δY
δX
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðβ̂1Þ þ Z2varðβ̂3Þ þ 2Zcovðβ̂1β̂3Þ

q
. More general, if the covariance term is negative, as is often the case, then it is entirely possible for

β1 þ β3Z to be significant for substantively relevant values of Z even if all of the model parameters are insignificant (Brambor, Clark, and Golder
2006, 70). Hence, the straightforward way to infer the unconditional effect of X on Y is to consider coefficients in a specification where interactions
are not included.
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estimating two intercepts (β0 and β0 + β2), (2)
estimates only one (γ0). In other words, omitted
variable (Z) bias occurs whenever β2 is not zero. In
this case, all estimated coefficients will be biased
due to this specification error. Moreover, when
the number of covariates significantly increases,
introducing all the interaction terms and selecting
only the significant ones is not trivial and often
leads to a misinterpretation of the results.

Regression trees and ensembles

This section introduces single regression trees and
the ensemble method boosting. We outline how
these methods, rooted in the ML literature, can be
used to model nonlinear relations and interaction
effects. Also, we illustrate how they can help to
overcome common specification and interpreta-
tion errors, introduced before.

Single regression trees
When modelling a production function in social
policy applications, assumptions need to be made
on its functional form. As opposed to a commonly
imposed linear function form, regression trees
have a very different flavour. When a regression
tree is used to model a production function, no
functional form is imposed and interactions are
allowed between variables. This is done by con-
struction, since building a tree from variables
implies interacting them.

Consider the example in Figure 1 to illustrate
the idea of regression trees. Imagine we want to
regress student test scores (response variable) on
previous scores, SES and gender (covariates). The
regression tree divides the covariates space into a
number of regions, where, the predicted value of
the response variable within each region can be
obtained as the mean of all the observations that
belong to each region. The regions are identified
by the model in order to minimize the residual
sum of squares (RSS). In our example, the regres-
sion tree that we obtain could be displayed in
Figure 1. The threshold values that are identified
(previous score = 50 in the first split, SES = 0 in
the second split), at each split, are able to divide
the sample into subgroups, minimizing the RSS.
The tree continues to divide the covariates space
into subregions until a certain criterion is reached
(e.g. minimum number of observations within
each region or maximum RSS within each region).
It can be the case that not all the covariates are
used in the identification of regions. The covari-
ates that are not involved are the ones that result
to be not predictive for the response variable.
From the tree in Figure 2, we can conclude that,
in this hypothetical example, the only variables
that matter are previous test scores and SES. This
implies that gender is not able to catch any varia-
bility in student test scores otherwise it would
have been included in the regression tree. When
estimating student test scores, we read the tree in
the following way: if the previous score of the
student is less than 50, then the estimated student

(a) Panel a (b) Panel b

Figure 1. Example of a regression tree (panel a), with the partition of the covariates space (panel b). The outcome variable is
student test score (continuous [0,100]), and the two predictors selected by the regression tree are previous score (continuous
[0,100]) and socio-economic status (continuous [−3,3]). The partition of the covariates space is done considering only the two
covariates involved in the splits.
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score is 48; if the previous score of the student is
bigger than 50, it depends on the student SES: if
the student SES is higher than 0, the expected
score is 80, while if it is less than 0, the expected
score is 60. Note how, in this example tree, SES
only matters when the previous score was bigger
than 50, indicating an interaction between pre-
vious test scores and SES. This interaction was
detected by recursively partitioning the observa-
tions into nodes, and without the need to specify
the interaction ex ante.

More formally, considering the regression
model Y ¼ f ðXÞ þ �, generalizing (1), the classic
linear functional form is the following:

f ðXÞ ¼ β0 þ
Xj¼1
p

Xjβj; (3)

where X is the (n × p)-matrix of predictors, n is
the number of observations and p is the number of
predictors. On the other side, regression trees
assume a model of the form:

f ðXÞ ¼
Xm¼1
M

cm1ðX2RmÞ; (4)

where R1; . . . ;RM represent a partition of the cov-
ariates space and cm is the mean of all the obser-
vations that belong to region Rm. Algorithm 1
summarizes the two steps involved for building a
regression tree.

Regression trees have several advantages: they do
not force any functional form, they can easily
model interactions among the covariates, they can
easily handle categorical covariates and missing
data. When modelling an EPF, regression trees
are ideally suited to accommodate the hierarchical
structure of education systems, characterized by
interactions between (and within) different levels
(e.g. see Online Figure A1 for Hungary). Despite
the advantages in terms of added flexibility, regres-
sion trees have also some disadvantages: they gen-
erally suffer from high variance and are sensitive to
outliers. However, there are methods that, by
aggregating information from many trees into
ensembles (e.g. boosting), substantially improves
the predictive performance (James et al. 2013).

Regression tree ensemble: boosting
Boosting is a stagewise procedure that aggregates
information from many trees (=ensemble) by

Figure 2. Joint partial plot, estimated by boosting model applied to NABC data of Location (categorical variable) and School size
(continuous variable). The outcome variable is the school added value in mathematics.

Algorithm 1. Single regression trees.
1. Use recursive partitioning to divide the predictor space the set of
possible values for components X1; X2; . . . ; Xpinto M distinct and
non-overlapping regions, R1; R2; . . . ; RM . Being yim the ith
observation within the m-region and given the mean of the
observations within the mth box ŷRm the regions are chosen in

order to minimize the residual sum of squares RSS ¼ PM
m¼1

P
i2Rm
ðriÞ2

where residual ri ¼ yim � ŷRm .
2. For every observation that falls into region Rm , make a
prediction equal to ŷRm .
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growing them sequentially: each tree is grown
using information from previously grown trees.
Boosting does not involve bootstrap sampling.
Instead, each tree is fit on a modified version of
the original data. The idea behind this procedure
is that, unlike fitting a single large tree to the data,
which amounts to fitting the data hard and poten-
tially overfitting (Varian 2014), the boosting
approach instead learns slowly. The algorithm
starts by fitting a regression tree on the original
data and continuously updates it fitting regression
trees on the residuals of the previous model. Given
a current model, a tree is fitted on the residuals of
the model, rather than on the outcome variable.
This new tree is then added into the fitted func-
tion in order to update the residuals. Note that in
boosting, the construction of each tree depends
strongly on the trees that have already been
grown. Algorithm 2 describes this procedure.

Instead of imposing functional form assump-
tions on the production function, the boosting
algorithm requires the specification of three
parameters. First, the number of trees B.
Boosting can result in overfitting if B is too
large, although this overfitting tends to occur
slowly, if at all. In our application, we use
cross-validation to select B.2 Second, the shrink-
age parameter λ, a small positive number. It is
also known as the learning rate as it controls the
magnitude at which each tree contributes to the
model, and is typically equal to 0.01 or 0.001
(we set λ = 0.001). Third, the number of splits
in each tree, d, that controls the complexity, or
interaction depth, as d splits can involve at most
d variables (we set d = 4).

Despite improvements in robustness by aggre-
gating many trees, a price needs to be paid in
terms of interpretability, as it is no longer possible
to graphically display the final tree (as in
Figure 1). Nonetheless, the output of these meth-
ods can still be informative about (i) the percen-
tage of variability explained by the model, (ii) the
variables importance (VI) ranking and (iii) partial
dependence plots. The percentage of variability
explained is indicated by the pseudo R2. The VI
ranking reveals the ranking of the covariates,
based on the ‘importance’ of each covariate in
explaining the response (different measures can
be used to compute importance (e.g. James et al.
2013)). Focusing on the influence of each single
covariate and on the interaction effects, partial
dependence plots (Friedman 2001) are especially
interesting as they allow us to infer the (both
single and joint) relation of specific variables
with the outcome. Given N observations yk, for
k ¼ 1; . . . ;N, and p predictors, boosting generates
predictions of the form:

ŷk ¼ Fðx1;k; . . . ; xp;kÞ; (5)

for some mathematical function Fð. . .Þ. The par-
tial dependence plot, or partial plot, of the jth
covariate is defined as:

ϕjðxÞ ¼
1
N

XN
k¼1

Fðx1;k; . . . ; xj�1;k; x; xjþ1;k; . . . ; xp;kÞ:

(6)

ϕjðxÞ indicates how the jth covariate is related to ŷ

after averaging out the influence of all other vari-
ables. In other words, ϕjðxÞ is the net effect of the
jth covariate. After the identification of the impor-
tant variables by means of the VI ranking, ϕjðxÞ
allows us to investigate which is the range of
values of the jth covariate that is associated to
changes in the response variable and which is the
form of this association. Moreover, the general-
ization of this marginal effect to the multivariate
case is analytically straightforward. The joint par-
tial dependence plot, or joint plot, of the jth and
ith covariates,

Algorithm 2. Boosting.
1. Set f̂ ðxÞ ¼ 0 and residuals ri ¼ yi for all i in the training set
2. For b ¼ 1; 2; . . . ; B, repeat:

(a) Fit a tree f̂ b with d splits (d þ 1 nodes) to the training data
using ri as response variable

(b) Update f̂ by adding a shrunken version of the new tree:

f̂  f̂ ðxÞ þ λf̂ bðxÞ
(c) Update the residuals: ri  ri � λ̂f bðxiÞ

3. Output the boosted model: f̂ðxÞ ¼PB
b¼1 λf̂

bðxÞ

2We use 70% of the data as a training set and set B = 3000. Online Figure C4 plots cross-validation errors against the number of trees used in the boosting model.
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ϕi;jðx; yÞ ¼
1
N

XN
k¼1

Fðx1;k; . . . ; xi�1;k; x; xiþ1;k; . . . ;

xj�1;k; y; xjþ1;k . . . ; xp;kÞ
(7)

represents the joint effect of two covariates on ŷ.
ϕi;jðxÞ indicates how the jth and ith covariates are

related to ŷ after averaging out the influence of all
other variables. The advantage is that it is possible to
display the joint relation of the two covariates with
the outcome, showing how the two variables interact
in their joint association with the response variable.
As a result, it is still possible to obtain a visual
interpretation of the relationship between variables
in an intuitive way. We will use these joint plots to
visualize and explore interaction effects in Section
IV, as an alternative approach to estimating (2).

III. Application

A trend towards more accountability in the educa-
tion sector has led to the emergence of instruments
to benchmark schools. The most prominent example
is the VA estimate, which is considered a best prac-
tice to rank schools and has been adopted in the
United Kingdom, the Netherlands and the USA.
Although VA estimates are generally preferred over
raw test scores, estimating VA is a high-stakes statis-
tical exercise, as VA estimates often determine per-
sonnel decisions or school closure, and remains
under debate (Koedel, Mihaly, and Rockoff 2015).
Another discussion closely related is the identifica-
tion of variables that are able to explain quality (VA)
differences between schools. Here, interaction effects
are particularly interesting as many decisions are
taken by different actors at different levels of opera-
tions (class, school, provider) (Burns and Köster
2016). As a direct consequence, not acknowledging
these interactions will lead to a misrepresentation of
variables and their relationship with school quality.

In this section, we illustrate the usefulness of the
approach proposed above using Hungarian and

Italian datasets. In doing so, we explore the deter-
minants of school added value, i.e. components of
the EPF and interactions that determine its shape.
The boosting algorithm can be presented graphi-
cally, which facilitates interpretation. We con-
structed an indicator of school added value using
data envelopment analysis (DEA).3 Note that this
nonparametric specification overcomes the
assumption that the functional form of achieve-
ment is linear and additively separable (Todd and
Wolpin 2003).4 The indicator of school added value
ranges between 0 and 1 and can be interpreted as
the relative ability of a school to transform its
inputs (prior achievement and socio-economic
background) into outputs (current achievement).5

Data

Hungary: NABC
Our dataset for Hungary was constructed by inte-
grating information on student, class and school
characteristics from the National Assessment of
Basic Competencies (NABC). The NABC covers
all students in primary schools in Hungary (see
Online Appendix A for a brief introduction to the
Hungarian education system). It is a standard
based assessment for mathematics and reading
that follows the model of the Programme for
International Student Assessment (PISA), but is
conducted every year in May. Students are tested
at grade 6 (age 12) and before graduation from
primary school, in grade 8 (age 14). In addition to
mathematics and literacy test scores, which are
common in education datasets, NABC contains
extensive information on school principal charac-
teristics and the socio-economic composition of
schools. This study uses data on students from
the sixth grade 2008 cohort, graduating from
their primary schools in grade 8 in 2010. Our
main analysis is performed on school level
NABC data. After the removal of statistical units
with missing values, the final dataset contains

3DEA generates a frontier based on the data and allows comparison of schools with their reference school, given inputs, without any assumption on the
functional form. This reference school is not the average school, but a school that is situated on the ‘efficiency frontier’. The frontier for a given school
consists of schools attaching the same weights to the inputs (prior achievement and socio-economic background), see Online Appendix B.

4As we are mainly interested in studying the importance of discretionary inputs (e.g. class and school size, and principal characteristics), we choose to
include the socio-economic background and prior achievement in the DEA specification (see Online Appendix B).

5In order to obtain a measure of the added value of schools, input and output variables were averaged for every school. Test scores and the SES indicator are
z-standardized indices, with mean 0 and standard deviation 1. The generation of this index follows the logic of the economic-social and cultural status
(ESCS) index of the OECD PISA studies.
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2122 schools. All variables used in subsequent
analyses are presented in Table 1. A further
description of the data used here can be found in
Kertesi and Kezdi (2011) and OECD 2010. As can
be seen in Table 1, the average added value of
schools is 0.71 for reading and 0.53 for mathe-
matics. For reading, this can be interpreted as
follows: on average, a school can improve its read-
ing achievement by 29% if it were to perform as
well as its reference school.

Using information from the NABC data, we
include class, school and provider size. Since our
analysis is at school level, ‘class size’ is measured as
the average class size in a school. Provider size is
measured as the number of schools under super-
vision of the same provider of education. In the
decentralized Hungarian system, the type and size
of education providers varies widely from very small
local government providers with only one school to
large centralized networks of church schools. Also,
we include the number of computers in the

dedicated computer class, as a proxy for school
resources, and the percentage of teachers receiving
additional training.

Complementing the administrative data, we also
include several variables from a questionnaire in
NABC completed by the school principal. These
additional variables can be used to describe the orga-
nizational setting of the schools. The school level
questionnaire includes variables such as principal
experience, age and satisfaction. Also, the perceived
ratio of Roma students is indicated by the principal
of each school.6 Finally, to capture geographical dis-
crepancies in schools’ performance, we include both
regional and school location categorical variables
(e.g. village or city). ‘School location’ is a categorical
variable indicating the geographical area where a
school operates. Categories include Budapest, cities
(not Budapest), county centres and villages (grouped
by size). Summary statistics are presented in Table 1.

Italy: INVALSI
For Italy, we use data from the National Institute for
the Evaluation of the Educational System of
Education and Training (INVALSI). The INVALSI
data closely resembles the NABC structure, albeit
that students are observed in grades 5 and 8 (see
Online Appendix A for a brief introduction to the
Italian education system). In the application at hand,
we use data for the 2013 cohort. Hence, the added
value measured here reflects the added value of
middle schools (‘scuola media’) as students enter
school in the fifth grade and graduate from middle
schools in the eighth. In contrast to the Hungarian
dataset, we do not have access to comprehensive
managerial and organizational variables.
Nonetheless, the dataset allows inclusion of regional
variables and school characteristics. Furthermore,
the INVALSI dataset contains extensive information
regarding the immigration status of students. All
subsequent analyses are performed on school level
data. After the removal of statistical units with miss-
ing values, the final dataset contains 5751 schools.
All variables are presented in Table 2. A more com-
prehensive description can be found in De Simone

Table 1. Descriptive statistics for the continuous and the dis-
crete variables in the NABC dataset, respectively.
Continuous variables (N = 2122) Mean SD Min Max

School size 292 187 0 2195
Class size (school average) 21 6 3 37
% Roma students 16.46 22.43 0 100
Number of computersa 17.47 6.617 0 80
Teacher with training (%) 32.17 28.49 0 100
Experience principal (years) 8.238 6.532 0 55
Age principal (years) 56.4 6.507 31 75
Principal satisfaction (%)b 71.1 20.87 0 100
Provider size 7.48 12.06 1 97
School added value, Math 0.53 0.11 0.13 0.89
School added value, Reading 0.71 0.11 0.18 0.99

Discrete variables (N = 2122)

Location Budapest City County V < 2k V (2k–5k) V > 5k

11% 28% 14% 29% 16% 2%

Region C H C T N GP N H S GP S T W T

22% 12% 16% 16% 13% 9% 12%

Provider SD gov. Ecc. Private Other

85% 7% 2% 6%

Note for the continuous variables: aNumber of computers measures the total
number of computers as counted in the dedicated computer class.
bPrincipal satisfaction answers the question ‘If you were to assigned to
another school, what percentage of the current teaching staff would you
take with you to your new place?’. Note for the discrete variables: V:
Village, N: Northern, W: Western, S: Southern, H: Hungary; T:
Transdanubia; GP: Great Plain; SD gov.: settlement or district government,
Ecc.: Ecclesiastical.

6Even though it seems that the individual performance of Roma students does not differ significantly from other (non-Roma) students, once socio-economic
background is accounted for (see Kertesi and Kezdi 2011), the inherent discriminatory tendencies in the Hungarian society might cause some families (or
even teachers) to refrain from entering schools where large Roma ratios are present. On average, 16% of students are considered to be from Roma origin.
Because of an increasingly segregated education system where so called ‘Roma schools’ are being ghettoized (Kertesi and Kezdi 2011), the median value is
much lower at 8%.
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(2013, 14) or Bertoni, Brunello, and Rocco (2013,
66–67). From Table 2, it can be seen that the average
added value of schools is 0.83 for mathematics and
0.78 for reading. For mathematics, these findings
suggest that school can improve their mathematics
test scores by 17% if they were to perform as well as
the school in their reference sets.

Summary statistics are presented in Table 2. We
included school size in terms of physical locations –
grade size and class size measured as the average
class size in a school. In addition, we included the
share of immigrants (first and second generation
combined), and the gender balance of the school,
calculated as the share of girls. To capture well-
documented geographical discrepancies in educa-
tional outcomes in Italy (e.g. Agasisti, Ieva, and
Paganoni 2017), we also consider regional dummies.
Finally, we included a dummy indicating whether
schools are privately or publicly organized.

Results

In this section, we graphically display the results of
the application of boosting to both the Hungarian
and Italian data, when school added value in mathe-
matics is the outcome variable and the school level

variables shown in the previous section are the
predictors.7 In order to allow a comparison of mod-
els, we included the output of ordinary least squares
(OLS) regressions in Tables 3 and 4. Using the
boosting approach, the importance of variables in
explaining the added value of schools can be ranked
(see Section ‘Regression tree ensemble: boosting’).8

Finally, we present joint plots to visualize interac-
tions between explanatory variables and the added
value of schools. Joint plots display a net effect,
accounting for all other control variables in the
model. In order to allow an intuitive interpretation,
boosting requires choosing two variables and dis-
plays their joint plot.9 It is important to note that this
choice does not affect the model outcome. In fact,
the structure of the model (see Figure 1) assures that
interactions within and between levels are included
by construction. As a result, no assumptions will be
needed on the existence and functional form of
interaction effects. In this vein, we can interpret the
results in the joint plots as a data-driven estimation
of possibly nonlinear interactions between compo-
nents of the EPF. The outcome variable for all joint
plots is the added value of schools in mathematics,
where the mean is set to 0 in order to ease the
interpretation.

Hungarian schools
In Figures 2 and 3, we present three examples of
variable combinations to illustrate how boosting can
be used to explore heterogeneous effects in an intui-
tive way.10 Corresponding OLS coefficients are pre-
sented in Table 3 (A, B, C and D). Regression A
presents the baseline model, without interactions. It
includes size variables (class, school and provider),
the share of Roma students, the number of compu-
ters, principal characteristics (age, experience, satis-
faction), in addition to dummies for school location,
the type of education provider and region. All sub-
sequent models (B, C and D) extend the baseline
model by adding an interaction effect. This way, the
regression results can be easily compared to the

Table 2. Descriptive statistics for the continuous and the dis-
crete variables in the INVALSI dataset, respectively.
Continuous variables (N = 5751) Mean SD Min Max

Grade size 71 44 1 370
Class size (school average) 20 4 1 32
% Immigrant students 9.76 9.13 0 87.23
Gender balance (% girls) 50.50 9.05 0 100
School added value, Math 0.83 0.05 0.33 0.99
School added value, Reading 0.78 0.04 0.40 0.97

Discrete variables (N = 2122)

Region Centro Isole Nord est Nord ovest Sud

19% 12% 18% 26% 25%

Locations per school 1 2 3 or more

75% 17% 8%

Type of education Private Public

11% 89%

Note for the discrete variables: Locations per school denotes the number of
physical locations (or ‘plessos’) supervised by one administrative unit.

7Results for reading are analogous and hence left out for the sake of brevity.
8The relative importance of variables in the EPF, as modelled by boosting, is displayed in Online Figure C1. Online Figure C2 presents partial plots for the
share of Roma students, school size, school location and class size, identified as important determinants of school added value in Hungary. Online
Figure C3 presents partial plots for the share of immigrants, grade size, school region and class size, identified as important determinants of school added
value in Italy. Partial plots display the partial influence of a variable on the outcome, averaging out the influence of all other variables included in the
model. This graphical approach can be compared to plotting the OLS coefficients obtained in Tables 3 and 4, without assuming this coefficient is constant
(or varies at given rate) across values of a specified variable.

9Selecting three variables would be possible if a 3D plot is used.
10Additional joint plots and alternative variable combinations, together with the R code are available upon request.
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boosting approach. In terms of model fit, the boost-
ing approach outperforms the linear regression
model (pseudo R2 of 24.9 compared to an R2 of
21.9 for OLS). This model improvement, as mea-
sured by R2, might be due to the actual relationships
not being linear (Varian 2014).

In Figure 2, we interact a categorical and a
continuous variable, school location and school
size, with the aim of showing how our variable

of interest (school VA) is jointly affected by the
two variables. Although the shape of the relation-
ship in all school locations looks similar, its
strength can be seen on the vertical axis, indicat-
ing a strong discrepancy across locations. For
example, the variation in added value related to
school size differences appears to be much smaller
in cities compared to county centres and
Budapest, as showed by the steeper slope of the
line measuring the outcome of interest. This might
indicate that school size reform could have a dif-
ferential impact across school locations, confirm-
ing the need to account for heterogeneous effects.
OLS results indicate a similar pattern but compli-
cate the interpretation, as is often the case in
empirical studies (Hainmueller, Mummolo, and
Xu 2017). When schools in cities are set as the
reference category, we can see from B that the
school size slope is significantly steeper for schools
in Budapest and county centres. The coefficient on
school size is now close to 0 and no longer sig-
nificant. This does not imply that the uncondi-
tional effect is no longer significant after including
interactions in the specification, it simply captures
the school size effect in cities (i.e. the reference
category, or Z = 0), i.e. averaging effects that
instead are heterogeneous across the school size

Table 3. Results of the OLS regression model applied to NABC data.
Variables A B C D

School size 0.001*** 0.000 0.001*** 0.001***
Average class size 0.011** 0.0100** 0.011** 0.011**
Roma students −0.014*** −0.014*** −0.012*** −0.014***
Number of computers 0.003 0.003 0.002 0.003
P age −0.006* −0.006* −0.006* −0.006
P experience 0.012*** 0.012*** 0.001*** 0.013
P satisfaction 0.001 0.001 0.001 0.001
Provider size 0.004 0.004 0.004 0.004
Interactions
(Reference = Cities)
Budapest × School size 0.001***
County centre × School size 0.001***
Village (<2k) × School size 0.000
Village (2k–5k) × School size −0.000
Village (>5k) × School size 0.000
Roma students × School size −0.000***
P experience × Age 0.000
Constant 0.844*** 0.778*** 0.423 0.837**
Controls
School location X X X X
Education provider X X X X
Region X X X X
Observations 2122 2122 2122 2122
R2 0.213 0.221 0.221 0.219

Note: P: principal, Provider size indicates the number of schools affiliated to a district, as in Table 1. The outcome variable is the added value of schools in
terms of mathematics.

*, **, *** indicate significance at the 10%, 5% and 1% level, respectively.
For conciseness, standard errors are not displayed here.

Table 4. Results of the OLS regression model applied to
INVALSI data .
Variables A B C

Grade size 0.000 0.000 0.000
Average class size 0.001*** 0.001*** 0.001***
Immigrant students −0.048*** 0.047 −0.047
Gender balance −0.008 −0.007 −0.007
Interactions
(Reference = Sud)
Centro × Immigrant % −0.077*
Isole × Immigrant % −0.049
Nord est × Immigrant % −0.098**
Nord ovest × Immigrant % −0.128***
Immigrant % × Gender balance −0.001
Constant 0.806*** 0.785*** 0.789***
Controls
Locations per school X X X
Type of education X X X
Region X X X
Observations 5751 5751 5751
R2 0.137 0.140 0.137

Note: The outcome variable is the added value of schools for mathematics.
*, **, *** indicate significance at the 10%, 5% and 1% level, respectively.
For conciseness, standard errors are not displayed here.
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distribution. In order to obtain an estimate of the
unconditional school size effect, we need to add
up coefficients for all categories, weighted by their
relative frequency. Although the coefficients for
each location are not included in Table 2, inter-
preting them in B would be nonsensical as there
are no schools without students. Also, the insig-
nificance of the coefficient for school size in this
specification, and the insignificance of some inter-
action effects does not imply that the uncondi-
tional school size effect is insignificant, but only
that ‘average’ effects do not reveal the complex
heterogeneous effect of the two joint variables
over the outcome of interest.

As another example, the joint plots in Figure 3
interact two continuous variables: % Roma stu-
dents and school size (top), and principal age
and experience (bottom). The added value of
schools is now indicated using a colour scale,
ranging from blue (high) to purple (low). The
colours correspond to schools characterized by
the interaction of two variables indicated on the
axes. In this perspective, the areas of the graph
where the colour is more intense (blue) are those
where schools report higher VA, and reading their
partitioning can reveal their characteristics about
joint levels of percentage of Roma students and
size. Clearly, the highest added value can be found

(a)

(b)

Figure 3. Joint partial plot, estimated by boosting model applied to NABC data of School size and Roma students (%) (a) and
Principal Age and Principal Experience (b). In both the plots, the outcome variable is the school added value in mathematics. The
joint plot can be interpreted as follows: the lighter the colour, the more pronounced the added value of the school in mathematics
at this specific point. Each point in every graph corresponds to an intersection of two values of the variables denoted on the
horizontal and vertical axes.
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in relatively large schools with a low share of
Roma students. The joint plots allow us to explore,
possibly nonlinear, interaction effects. For exam-
ple, in schools where the share of Roma students is
rather low, a clear positive relationship between
school size and added value can be seen in
Figure 3, while schools with a majority of Roma
students seem to be adding more value in rela-
tively small and large schools. Middle-sized
schools with many Roma students appear to per-
form the worst in terms of added value. Perhaps
highly segregated schools benefit from either a
tailored approach facilitated by a smaller school
size, or from scale economies experienced by lar-
ger schools. From Table 3C, we find that the
interaction effect Roma students × School size is
significantly negative, indicating that the positive
school size effect (see Table 3A) is decreasing with
the share of Roma students. Although we do not
claim to present a causal relationship, it is clear
from this comparison that joint plots reveal pat-
terns that cannot be obtained using multiplicative
interactions, which instead are able only to repre-
sent average effects, i.e. in the middle of the dis-
tribution of the variable of interest.

The bottom panel of Figure 3 interacts the age
and experience of school principals. In contrast to
the top panel, and Figure 2, no clear interaction
effect can be observed between age and experi-
ence. Nonetheless, interacting two continuous
variables in joint plots allows us to identify an
‘optimum’: schools led by a relatively young
(50 years) and experienced (around 17 years)
principal. In this vein, the figure can be used to
obtain information about the complexity of the
interactions between two continuous variables,
whose relationship is not linear along the whole
distribution of each of them. The difference
between these schools and schools led by relatively
old (60 years) and inexperienced principals
amounts to 15% points in school added value. In
addition, and in contrast to coefficients from
Table 3D, the graphical approach reveals a cutoff
around 10 years, where the added value of schools
‘jumps’ to higher values. Consistent with this find-
ing, it has been argued before that school princi-
pals ‘take time to realize their full effect at schools’
(Coelli and Green 2012, 92). Again, the graphical
approach proposed here reveals interesting

patterns, which cannot be obtained from Table 3,
where the coefficient for the variable Principal
experience × Principal age actually measures the
non-statistically effect on school value-added, that
is easily observable in the white cells in the middle
of the graph reported in Figure 3(b).

Italian schools
In order to illustrate the wider applicability of the
proposed approach to visualize interaction effects,
we repeat the methodological approach of our
analysis using Italian data described in ‘Results’
section. Regression A presents the baseline
model, without interactions. It includes size vari-
ables (grade and class), the share of immigrant
student, the gender balance, and dummies for
the number of locations per school (1, 2 and 3
or more), the type of education (public or private),
and the geographical region. Subsequent models B
and C extend the baseline model by adding an
interaction effect. This way, the regression results
can be easily compared to the boosting approach.
In terms of model fit, the boosting approach again
outperforms the linear regression model (pseudo
R2 of 15.9 compared to an R2 of 14.0 for OLS). As
noted before, this model improvement, might be
due to the actual association not being linear
(Varian 2014). Figure presents two examples of
variables combinations and their joint relationship
with the added value of Italian schools. As in
Figure 2 for Hungary, we interact a categorical
and a continuous variable in Figure 4(a): region
and immigrant students (%). Both the shape and
the position of the relationship between school
added value and the share of students from an
immigrant background appears to depend on the
region where a school is located, as it appears
evident from the different shapes of the plots in
the different quadrants. On the one hand, the
discrepancies in Figure 4(a) capture regional dif-
ferences in added value between schools. On the
other hand, this figure suggests differential effects
of immigrant students on the added value of
schools, depending on the region, corroborating
the need for a more nuanced view of marginal
effects. Looking at Table 4, the OLS results
(Table 4B) suggest a similar pattern, i.e. all slopes
are more negative compared to the reference
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region (Sud), although this difference is not sig-
nificant for Isole. Again, complications arise in
terms of interpreting the constitutive terms,
because of their value in interpreting ‘average
effects’ and not the whole distribution of the
effects of the variable of interest on outcome,
which is overcome by the intuitive graphical
approach.

Figure 4(b) presents the joint plot of the inter-
action between two continuous variables in influ-
encing the outcome of interest (school VA): the
gender balance (% girls) and the share of students
from an immigrant background. As before, the
colour scale represents the added value of schools.
In contrast to Figure 3, no clear interaction effect
can be observed here. However, as in Figure 4(a)

(a)

(b)

Figure 4. Joint partial plots, estimated by boosting model applied to INVALSI data, of Geographical location (categorical variable)
and Immigrant students (%) (continuous variable) (a) and Principal Age and Principal Experience (both continuous variables) (b). In
both the plots, the outcome variable is the school added value in mathematics. The joint plot in panel (b) can be interpreted as
follows: the lighter the colour, the more pronounced the added value of the school in mathematics at this particular point.
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the graphical approach reveals interesting pat-
terns, which cannot be obtained from Table 4.
For example, schools with the highest added
value in mathematics are those schools whose
students are mainly boys and do not come from
an immigrant background. On the contrary,
schools consisting of mainly girls with an immi-
grant background appear to perform the worst.
Finally, schools with mostly immigrant boys (top
left) are adding value in mathematics to their
students, roughly equivalent to schools that con-
sist of mostly girls without an immigrant back-
ground (bottom right). Although we do not claim
to provide any causal evidence on this matter, this
example once again illustrates the exploratory
benefits of visualizing how variables interact to
determine an outcome. In particular, the graph
allows to visualize those cases where the joint
effect of two variables is associated with higher
school VA (darker colour), avoiding the risk of
capturing a ‘zero effect’ in the middle of the dis-
tribution of the two interacted variables where the
colour of the relationship is lighter.

IV. Conclusion

This article demonstrates how regression trees and
ensembles can be used to model and visualize inter-
action effects. Multiplicative interactions are com-
monly used to identify heterogeneous treatment
effects and to tailor policy recommendations. The
method proposed in this article provides applied
economists with an innovative tool to explore inter-
action effects in a way that overcomes common
specification and interpretation errors. Our empiri-
cal application illustrates the usefulness of joint plots
generated by the boosting algorithm to model inter-
action effects in education. For example, we find that
school size has different effects on the added value of
schools, depending on the socio-economic composi-
tion and location of schools. This means that the
effect of each predictor might depend also on the
values of the other predictors, suggesting that, when
making considerations about each single aspect of
schools, its effect needs to be related to the setting in
which it acts. Visualizing results in joint plots allows
an intuitive interpretation of interaction effects.
Despite the complexity of the model, results can be
easily read, while at the same time, flexible

interactions provide a more realistic insight into
the (education) production function. As illustrated
using two datasets, a potential data-driven approach
can be derived. Practitioners could explore relation-
ships between variables using the boosting algorithm
and visualize them, before formally testing interac-
tions in a regression framework. In many applica-
tions, boosting and regression could prove
complementary to uncover and test complex
relationships.
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