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Abstract
A theory is presented by which voltammograms, and dynamic electrochemi-
cal impedance spectroscopy (dEIS) measurements of redox processes of surface-
confined species can be analyzed. By the proposed procedure, from a set
of voltammograms taken at varied scan-rates, two scan-rate independent,
hysteresis-free functions of potential can be calculated. One of them character-
izes the redox kinetics, the other is the electrode charge associatedwith the redox
equilibrium. The theory also comprises the analysis of the impedance spectra of
the same system, which have been measured during dynamic conditions, i.e.,
during potental scans. Because of the formal analogy, the procedure is applica-
ble also for voltammetry and dEIS of adsorption processes.
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1 INTRODUCTION

Cyclic voltammograms,CVs, are usually complicated func-
tions of the scan-rate; they often exhibit large hysteresis.
Comparison of two CVs measured with different scan-
rates is far from being trivial. The comparison is even
more complicated if the scan-rate varies in time or when
two voltammograms aremeasuredwith different, arbitrary
waveforms of potential program – this form of voltamme-
trywill be denoted hereafter as arbitrarywaveform voltam-
metry, AWV.
In rare, simple cases, however, there exist mathematical

transformations by which AWVs taken with different
potential programs (e.g., CVs with different scan-rates)
can be transformed to the one-and-the-same potential-
program invariant (PPI) function – which function is
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independent of the actual form of the potential-time
function. For example, the CVs of reversible redox
couples – whose both forms are soluble – can be trans-
formed to hysteresis-free sigmoid-shaped curves using
semiintegration.[1] In contrast, the AWVs of redox systems
of slower kinetics – of the so-called quasi-reversible
systems – cannot be transformed to a single PPI function.
However, as it has recently been demonstrated in ref. [2],
by measuring a set of quasi-reversible AWVs with varied
scan-rates, two PPI functions can be obtained by a simple
numerical procedure. One of them characterizes charge
transfer kinetics, the other diffusion.
The same electrochemical system can be studied also

by analyzing the electrochemical impedance spectra (EIS)
yielding two elements of the Faradaic impedance: charge
transfer resistance and the coupled Warburg-coefficient at
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F IGURE 1 𝐸(𝑡) of typical experiments for which the theory applies. (a) Single scan experiments with varied scan-rates. (b) CVs of varied
scan-rates. (c) Voltammograms with arbitrary 𝐸(𝑡), performed with any electric (potentiostatic, galvanostatic, or mixed) control. (d)
Voltammetry when 𝐸init is in the peak-potential range (case analyzed in the Appendix)

a given potential. The same applies also to dEIS (dynamic
EIS) measurements, when high-frequency impedance
spectra are measured while the potential is scanned to
simultaneously accomplish CV or AWVmeasurements. In
case of dEIS, both the charge transfer resistance and the
Warburg coefficient depend on the applied potential pro-
gram, e.g., on scan-rate. To eliminate the potential program
dependence, a procedure has been presented [3] yielding
two PPI functions. These are closely related to the EIS
results, and also to the PPI functions which are the trans-
formed forms of the AWVs.
Here, we present the analysis of another important elec-

trochemical situation: when the rate of the electrode pro-
cess is limited by the finite quantity of the reactants. We
have recently derived the transformations yielding PPI
functions for the case of adsorption-desorption of charged
species on an electrode surface with a finite density of
adsorption sites [4]. As it already has been alluded therein,
the AWVs and dEIS of redox reactions of surface-confined
species can be treated analogously. This is the subject of
the present paper.

2 THEORY

2.1 Voltammetry

Consider a metal-electrolyte interface where both forms,
Red and Ox, of some redox species, A, are bound to the
electrode surface. They can be transformed to each other
in the n-electron transfer reaction Red

𝑧+
s ⇌ Ox

(𝑧+𝑛)+
s +

𝑛e−; this is called as a redox reaction of surface-confined
species. Let the interfacial density of the oxidized and
reduced forms be denoted by Γox and Γred (in mol/cm2

unit) whereas their sum, the total interfacial density of the
two forms isΓA. The 𝜃 = Γox∕ΓA ratiowill be named as the
coverage of the oxidized state; the standard potential of the
redox system – at which, in equilibrium, Γox = Γred – will
be denoted as 𝐸0.

We perform a voltammetry experiment, that is, we mea-
sure the current density, j as a function of potential, E,
which varies in time, t. For the sake of simplicity, we will
use the term AWV for this experiment, since it can be
performed not only with regular triangular but with any
arbitrary waveforms, of time-varying scan rate 𝑣 ≡ d𝐸∕d𝑡.
The potential changes according to a program crossing the
𝐸 = 𝜀 levelmore than once during the experiment; its pos-
sible ways – repetitive one-way or cyclic scans with varied
scan rates, or one continuous back-and-forth cycle-series
with varied scan-rates and vertex potentials - are illustrated
in Figure 1. Prior to the potential program (or scans as in
case a), the electrode is assumed to be in a steady state at
potential 𝐸init, where the electrode charge is 𝑞init. In this
Section, we consider the simple case when 𝐸init is suffi-
ciently negative to be out of the redox peak potential range.
The general case of starting the experiment at any value of
𝐸init is analysed in an Appendix.
In what follows, we analyze the rate equations by adher-

ing to the usual theorization of electrochemical kinetics [5]
but ignore the complication factors of IR drop and double-
layer charging. However, these complicating issues will be
shortly considered in the Discussion.
As double layer charging is out of our present scope,

the current density j is always the time derivative of
the electrode charge density q, i.e. the charge density of
redox species bound to the electrode surface. At any time
instance t,

𝑗 (𝑡) = 𝑑𝑞 (𝑡) ∕𝑑𝑡 = 𝜕𝑞∕𝜕Γred ⋅ 𝑑Γred∕𝑑𝑡

+𝜕𝑞∕𝜕Γox ⋅ 𝑑Γox∕𝑑𝑡 = 𝑛F ⋅ 𝑑Γox∕𝑑𝑡 (1)

where F is the Faraday constant. By integrating Equation 1
with respect to time, we get

𝑞 (𝑡) =

𝑡

∫
0

𝑗 (𝜏) d𝜏 = nF ⋅ Γox (𝑡) − 𝑞𝐢𝐧𝐢𝐭 (2)
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The net rate of redox process, assuming the simplest first-
order kinetics, is written as

dΓox (𝑡) ∕d𝑡 = 𝑘ox (𝐸) ⋅ Γred (𝑡) − 𝑘red (𝐸) ⋅ Γox (𝑡) (3)

where kox and kred are the rate coefficients of oxidation and
reduction, respectively. Note that only the rate coefficients
depend on E, in a yet unspecified way; the time depen-
dence of j stems from that of the Γ surface concentrations.
With the introduction of the

𝐻 (𝐸) = 𝑘ox (𝐸) + 𝑘red (𝐸) (4)

variable, by combining Equations (1) to (3) we get

𝑗 (𝑡) = nF ⋅ ΓA ⋅ 𝑘ox (𝐸) − 𝐻 (𝐸) ⋅ 𝑞init − 𝐻 (𝐸) ⋅ 𝑞 (𝑡) (5)

Eq. (5) applies for any 𝑗(𝑡) vs q(t) plot. As mentioned
above, inwhat follows, the potential program is assumed to
start at time t= 0 from a sufficiently negative value of 𝐸init

where the surface confined redox species is fully reduced;
i.e. at 𝐸init ≪ 𝐸0, 𝑞init = 0. If we have a number of 𝑗(𝑡) vs
E(t) plots, for all data points – measured at time instance 𝜏
with 𝐸 = 𝜀, the

𝑗 (𝜏) = 𝐧F ⋅ Γ𝐴 ⋅ 𝑘ox (𝜀) − 𝐻 (𝜀) ⋅ 𝑞 (𝜏) (6)

equation holds. That is, if we measure a voltammogram
which crosses some potential ε at least two times, then all
the 𝑗 vs 𝑞 points of the same ε potential appear on one
and the same 𝑗 = const1 − const2 ⋅ 𝑞 line. This is shown
in Figure 2, as a dashed line. With increasingly positive
scan-rate, the points move toward the ordinate; the phys-
ical meaning of the ordinate intersect, const1 is the oxida-
tion rate – expressed as current density – as if the complete
surface were completely reduced, Γox = 0. Technically, we
get these points when q is little: if, for a given 𝑘ox , only a
short time has passed since time zero. It is the case when
the experiment is carried out as fast (”infinitely” fast) as to
keep q close to zero. This is why it will be denoted as 𝑗inf .
Thus,

𝑗inf (𝜀) = 𝐧F ⋅ ΓA ⋅ 𝑘ox (𝜀) (7)

Equation (6) now reads as

𝑗 (𝜏) = 𝑗inf (𝜀) − 𝐻 (𝜀) ⋅ 𝑞 (𝜏) (8)

The physicalmeaning of the abscissa intercept is the sur-
face charge acquired by oxidation in a long time. As j = 0,
the anodic and cathodic currents are equal, the system is
kinetically reversible. Technically, we get these points on
–or, in the close vicinity of – the abscissa, when 𝑘ox is very

F IGURE 2 The dashed line and annotations illustrate the
quantities of Equations (7–9). The solid lines a, b, and c are
characteristic to potentials negative to the redox peak, under the
peak, and at positive potentials, respectively

high and/or the experiment is carried out very slowly, a
steady state is attained. Hence the abscissa intersect will be
denoted as 𝑞rev ; therefore Equation (8) can be rearranged
to yield the following form:

𝑞 (𝜏) = 𝑞rev (𝜀) − 𝑗 (𝜏) ∕𝐇 (𝜀) (9)

From Equations (8) and (9) two simple equations
emerge:

𝐻 (𝜀) = 𝑗inf (𝜀) ∕𝑞rev (𝜀) (10)

and

𝑗 (𝜏) ∕𝑗inf (𝜀) + 𝐪 (𝜏) ∕𝑞rev (𝜀) = 1 (11)

Equations (8) and (9) are the key equations using which
we can get 𝑗inf and 𝑞rev as a function of potential. As they
depend on potential only, they do not depend on the scan-
rate, moreover the actual shape of the potential program,
by which the js have been measured. In the same vein,
since they are single-valued functions, the j vs q curves do
not exhibit any hystereses.
Equations (8) to (11) connect j and q values at one and

the same ε potentials. As ε may have any value, in what
follows, the parameters of these equationswill be functions
of E. According to the above equations, for infinitely slow,
kinetically irreversible reactions all points of the 𝑗(t) vs 𝑞(𝑡)
plot, lie on the j axis, in the complete potential range. For
kinetically reversible processes all points are on the q axis.
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The quasi-reversible reactions are the ones for which tilted
lines appear on that plot.
The 𝐻(𝐸) = 𝑘ox(𝐸) + 𝑘red(𝐸) = 𝑗𝑖𝑛𝑓(𝐸)∕𝑞rev(𝐸) equa-

tion is of central importance in coupling aspects of kinetics
and thermodynamics. This is valid for any formof potential
dependence defined for the 𝑘ox and 𝑘red rate coefficients.
However, assuming exponential potential dependences
of the rate coefficients is usual in the electrochemical
kinetics theories in general, and in the case of surface
confined reactions in particular[6,7]). That is, the rate coef-
ficients are of the form of 𝑘ox (𝐸) = 𝑘0ox ⋅ exp(𝛼oxF𝐸∕R𝑇)

and 𝑘red (𝐸) = 𝑘0
red

⋅ exp(−𝛼redF𝐸∕R𝑇) where the
symbols have their usual meaning. With these expo-
nential dependences Equation (7) gets the following
form:

𝑗inf (𝐸) = 𝑛F ⋅ ΓA ⋅ 𝑘0ox ⋅ exp (𝛼oxF𝐸∕R𝑇) (12)

and as 𝑞rev (𝐸) = 𝑗inf (𝐸)∕𝐻(𝐸) (cf. Equation (10)),

𝑞rev (𝐸)=
𝑛F ⋅ ΓA ⋅ 𝑘0ox exp (𝛼𝑜𝑥F𝐸∕R𝑇)

𝑘0ox exp (𝛼𝑜𝑥F𝐸∕R𝑇) + 𝑘0
red

exp (−𝛼𝑟𝑒𝑑F𝐸∕R𝑇)

=
𝑛F ⋅ ΓA

1 + 𝑘0
red

∕𝑘0ox exp (− (𝛼ox + 𝛼𝑟𝑒𝑑) F𝐸∕R𝑇)
(13)

By defining 𝐸0 = R𝑇∕[(𝛼ox + 𝛼red)F] ⋅ ln(𝑘0
red

∕ 𝑘0ox) as a
standard potential, and assuming 𝛼ox + 𝛼red = 𝑛, we get

𝑞rev (𝐸) =
𝑛F ⋅ ΓA

1 + exp (−𝑛F(𝐸 − 𝐸0)∕R𝑇)

= (𝑛F ⋅ ΓA∕2) ⋅ [1 + tanh (nF(𝐸 − 𝐸0)∕R𝑇)]

(14)

or in another, Nernst-equation-like format

𝐸 = 𝐸0 +
R𝑇

𝑛F
ln

[
𝑞rev (𝐸)

𝑛F ⋅ ΓA − 𝑞rev (𝐸)

]
(15)

Equations (14) and (15) are the algebraic forms of the
well-known sigmoid curves frequently showing up in elec-
trode kinetics in various contexts (e.g., as the functional
form of the polarographic waves).

2.2 Dynamic electrochemical
impedance spectroscopy

Consider the same system and measurement as in the pre-
vious section, but the potential program comprises also
a high frequency, low amplitude sinusoidal perturbation
of angular frequency ω upon the top of a slow poten-

tial scan. In other words, the potential program is a sum
of a quasi-dc and of an ac term; the ac perturbation is
used for the measurement of impedance. We assume that
the temporal change rates of the dc and ac voltages dif-
fer much, hence the steady state – the basic condition
of measuring impedance spectra – at least approximately
applies. In what follows, we calculate the impedance
function of this system. The perturbed quantities, 𝑥p(𝑡),
(any of j, E, and q) are of the form 𝑥p (𝑡) = 𝑥(𝑡) +

𝑥acexp(i𝜔𝑡) where i is the imaginary unit, and the overlin-
ing refers to a complex amplitude. For brevity, this form
will be abbreviated as 𝑥p (𝑡) = 𝑥(𝑡) + 𝛿𝑥. Since the
potential perturbation amplitude is assumed to be low,
we may apply the usual assumption that no superhar-
monics are generated. Accordingly, the yp(E) quantities
with a perturbation (the k(E) rate coefficients, and H(E))
can be expanded to a series and the higher order terms
can be dropped, yielding formulae 𝑦p (𝐸p(𝑡)) = ⋅𝑦(𝐸) +

d𝑦∕d𝐸 ⋅ 𝐸ac ⋅ exp(i𝜔𝑡) = 𝑦 + 𝛿𝑦 . This way Equation (6) is
written as

𝑗 (𝑡) + 𝛿𝐣 = 𝑛F⋅ΓA ⋅ (𝑘ox + 𝛿𝑘ox)

− (𝐻 + 𝛿𝐇) ⋅ (𝑞 (𝑡) + 𝛿𝐪) (16)

The dc terms cancel each other (cf. Equation (6)), for the
remaining ac terms of 𝜔 frequency we get

𝛿𝐣 = 𝑛F ⋅ ΓA ⋅ 𝛿𝑘ox − 𝑞 (𝑡) ⋅ 𝛿𝐇 − 𝐻 ⋅ 𝛿𝐪 (17)

with 𝛿𝑘ox ≡ d𝑘ox∕d𝐸 ⋅ 𝐸ac ⋅ exp(i𝜔𝑡), and 𝛿𝐻 ≡ d𝐻∕d𝐸 ⋅

𝐸ac ⋅ exp(i𝜔𝑡), we obtain

𝑗ac = 𝑛F ⋅ ΓA ⋅ 𝐝𝑘ox∕𝐝𝐸 ⋅ 𝐸𝐚𝐜

−𝐻 ⋅ 𝑞ac − 𝑞 (𝑡) ⋅ 𝐝𝐻∕𝑑𝐸 ⋅ 𝐸𝐚𝐜 (18)

Taking into account the integral relation of q and j, i.e.
𝑞ac = 𝑗ac ∕(i𝜔); introducing 𝑗inf as defined by Equation (7),
we get

𝑍 (𝜔) ≡ 𝐸ac∕𝑗ac =

(
1 +

𝐻

i𝜔

)
∕

(
d𝑗inf
d𝐸

−
d𝐻

d𝐸
𝑞 (𝑡)

)
(19)

Equation (19) expresses the impedance of a charge trans-
fer resistance, Rct, and an associated pseudocapacitance,
Cct connected serially. These elements are as follows:

1

𝑅ct (𝐸)
=

d𝑗inf
d𝐸

−
d𝐻

d𝐸
𝑞 (𝑡) (20)

𝐶ct (𝐸) =
1

𝐻
⋅

(
d𝑗inf
d𝐸

−
d𝐻

d𝐸
𝑞 (𝑡)

)
(21)
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Two points are noteworthy: First, the product of Equa-
tions (20) and (21) reveals that Rct and Cct are coupled,
through the coupling constant 1/H(E):

𝐶ct (𝐸) ⋅ 𝑅ct (𝐸) = 1∕𝐻 (𝐸) (22)

Second, for 1/Rct and Cct both, a const1 – const2 × q type
equation applies where the constants are related also to
the constants of the dc relations. Equations (20) and (21)
are equations by which the information on kinetics can be
extracted from the Faradaic impedance data.
To extract the surface charge, i.e., the thermodynamic

data, Equations (20) and (21) are to be changed to show the
impedance elements vs 𝑗(𝑡) connection. To this, we substi-
tute 𝑞(𝑡) by 𝑗(𝑡) using Equation (9), and 𝑗inf by 𝑞rev using
Equation (10). Equations (20) and (21) can be re-written to
yield Rct vs j and Cct vs j equations as follows:

1

𝑅ct (𝐸)
=

d𝑗inf
d𝐸

−
d𝐻

d𝐸
𝑞 (𝑡) =

d𝑗inf
d𝐸

−
d𝐻

d𝐸

(
𝑞rev −

𝑗 (𝑡)

𝐻

)

= 𝐻 ⋅
d𝑞rev
d𝐸

+
1

𝐻
⋅
d𝐻

d𝐸
𝑗 (𝑡) (23)

𝐶ct (𝐸) =
1

𝐻 ⋅ 𝑅ct (𝐸)
=

d𝑞rev
d𝐸

+
1

𝐻2
⋅
d𝐻

d𝐸
𝑗 (𝑡) (24)

It is worth to define 𝑅ct,inf ≡ 1∕(d𝑗inf ∕d𝐸) and 𝐶ct,rev ≡
d𝑞rev∕d𝐸 with these denotions Equations (20) and (24)
read as

1

𝑅ct (𝐸)
=

1

𝑅ct,𝑖𝑛𝑓
−

d𝐻

d𝐸
𝑞 (𝑡) (25)

and

𝐶ct (𝐸) = 𝐶ct,rev −
d (1∕𝐻)

d𝐸
𝑗 (𝑡) (26)

Equations (20) to (24) are the key equations using which
we can get 1/Rct,inf and Cct,rev as a function of potential.
Three points are to be emphasized here:

a. Just as 𝑗inf and 𝑞rev in the case of voltammetry, 1/Rct,inf
and Cct,rev are PPI invariant functions.

b. Just as in voltammetry, the𝐻 (𝐸) = 1∕(𝐶ct(𝐸) ⋅ 𝑅ct(𝐸))

quantity is the coupling quantity of kinetics and ther-
modynamics. However, in this case,𝐻(𝐸) connects the
directly measured impedance parameters rather than
the extrapolated currents and charges.

c. Note that in the usual, steady-state EIS measurements
– as no steady-state Faraday-current flows in such a
system, 𝑗(𝑡) = 0, hence then, 𝐶ct(𝐸) is the potential

derivative of 𝑞rev (cf. Equation (24)). Just as in dEIS,
information on kinetics can be obtained using Equation
(22), directly from 𝑅ct(𝐸) and 𝐶ct(𝐸).

2.3 Common features of the PPI
functions

Summarizing the findings of Sections 2.1 and 2.2, we
present a table with the connections of the relevant quan-
tities. In Table 1, the linear dependences connecting the
four important measured quantities (j, q, Rct, Cct) with the
four PPI quantities (𝑗inf , 𝑞

eq
ox , d𝑗inf /dE, d𝑞

eq
ox/dE) are sum-

marized.
These equations have been derived with the assump-

tion that 𝑞init = 0. As it is demonstrated in the Appendix,
if 𝑞init > 0; the linear equations of Table 1 still hold with
unchanged slopes but with changed intercepts. The con-
sequences are discussed therein with the practical conclu-
sion that both for the understanding and for performing
data analysis the above theory is just sufficient.

3 DISCUSSION

3.1 Numerical illustration of the
transformation yielding the PPI form

Although the derivation presented in the Theory section is
simple and straightforward, it is instructive to show how
to perform the calculation by which from AWVs can be
transformed to PPI form. First, based on Equations (1)
to (3), four CVs have been simulated with different scan
rates. Just as described in the context of Equations (12)-
(15) for the rate coefficients exponential dependences on
potential were assumed. The simulation parameters were
as follows: 𝛼ox = 0.3, 𝛼red = 0.7, 𝑛 = 1, 𝑘0ox = 𝑘0

red
=

1 s−1, ΓA = 2 × 10−9 mol∕cm2. These CVs, for visibil-
ity reasons normalized by the scan-rate, are displayed in
Figure 3a; they are rather similar to the ones in the lit-
erature (cf. Figure 4 of [6] and Figure 2 of [7], the slight
differences are due to the asymmetry of the 𝛼 transfer
coefficients).
The steps of the procedure of getting the PPI forms are

as follows: First, the integrated forms are calculated (see
Figure 3b). As it is shown in Figure 3c for a couple of
potentials, the 𝑗 − 𝑞 dependence is linear. According to
Eq. (8), straight lines were fitted to each set of 𝑗 − 𝑞 points
by a linear least squares program. Finally, from the fit-
ted slopes and intercepts 𝑗inf and 𝑞rev values were calcu-
lated for each potential; these are shown in Figure 3d. Both
curves are hysteresis-free; the lg(𝑗inf ) vs 𝐸 is a straight
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TABLE 1 The linear dependencies. Note the reciprocal symmetries of the slopes

Equation No. Dependence Intercept Slope
(8) j(𝑡) vs q(𝑡) 𝑗inf −𝐻

(20) 1/Rct vs q(𝑡)
d𝑗inf

d𝐸
[≡ 1

𝑅ct,inf

] −
dH

d𝐸

(21) Cct vs q(𝑡)
1

𝐻
⋅
d𝑗inf

d𝐸

−1

𝐻
⋅
dH

d𝐸

(9) q(𝑡) vs j(𝑡) 𝑞rev −1∕𝐻

(24,26) Cct vs j(𝑡)
d𝑞rev

d𝐸
[≡ 𝐶ct,rev ] −

d(1∕𝐻)

d𝐸

(23,25) 1/Rct vs j(𝑡) 𝐻 ⋅
d𝑞rev

d𝐸
+

1

𝐻
⋅
dH

d𝐸
[ = −

1

1∕𝐻
⋅
d(1∕𝐻)

d𝐸
]

F IGURE 3 Simulated CVs of surface confined redox systems, and the procedure of calculation of the PPI representation. (a) The
calculated scan-rate normalized CVs at scan-rates as indicated; (b) The integrated CVs; (c) The linear connection of j and q at potentials as
indicated; (d) 𝑗inf and 𝑞rev as a function of potential

line, the 𝑞rev vs 𝐸 is a sigmoid shape (tanh) function, as
predicted by Equations (12) and (14), respectively. The
characteristic values of the curves: 𝑗inf , 𝑞rev and the
dlog(𝑗inf )∕d𝐸 slope at 𝐸 = 0 are exactly the same
as the ones which can be calculated from the input
data.
In general, Equations (8) and (9) hold without any con-

straint to the specific form of potential dependence of
the rate coefficients. Accordingly, other than exponential
𝑘ox(𝐸) and 𝑘red(𝐸) functions also lead to the two PPI func-
tions, as it is demonstrated in Figure 4. For simulating
the CVs of Figure 4a, we assumed rate coefficients with
power-law potential dependences (though such a depen-
dence is highly unusual and irrealistic in electrochemi-
cal kinetics). This way the rate coefficients are 𝑘ox (𝐸) =

const1 ⋅ (𝐸 − 𝐸1)
4 and 𝑘red (𝐸) = const1 ⋅ (𝐸 − 𝐸1)

−4 with
𝐸1 = −0.4 [𝑉]. As it is seen in Figure 4b, both 𝑗inf (𝐸) and
𝑞rev(𝐸) are hysteresis-free. The lg(𝑗inf ) vs lg(𝐸 − 𝐸1) plot is
a straight line with a slope of 4, in accord with 𝑗inf (𝐸) ∝

𝑘ox(𝐸) ∝ (𝐸 − 𝐸1)
4.

3.2 General comments

Apparently Equations (8) to (11) are trivial combinations
of three well-known, basic equations of physical chem-
istry. The novelty of the theory of this paper is that we

do not attempt to calculate the j(E) function of a single
CV as it was done by in the previous studies employing
exponential potential dependences for the rate coefficients
[6,7]. Instead, we set aside the potential dependence of the
rate coefficients and evaluate a set of AWVs with differ-
ent scan-rates together at the same potential. This is how
we can extrapolate to standard surface conditions of kinet-
ics and redox equilibrium at a certain potential. Another
novelty is the calculation of the PPI forms of both of the
large and small-signal response functions (AWV and dEIS,
respectively) and demonstrating their functional connec-
tions. Hence this derivation – just as the results – are anal-
ogous to those of the quasireversible diffusion-controlled
redox reaction case of refs. [2] and [3].
There is another analogy: the theory of the present paper

with little terminology changes applies also for adsorption
processes. A preliminary version of such a theory is the one
in Ref. [4] – which lead to equations similar to those of the
present Equations (8) to (10); however, it contained nei-
ther the impedance analysis part, nor the derivation of the
present Appendix. The present theory, mutatis mutandis,
can be simply used for the analysis of adsorption-related
AWV and dEIS measurement results. The most impor-
tant conceptual changes to be done are the replacement
of 𝑘ox(𝐸) to 𝑐 ⋅ 𝑘ad(𝐸), 𝑘red(𝐸) to 𝑘d(𝐸) and n to 𝛾 (where
c is the adsorbate concentration and 𝛾 is the formal partial
charge number [8]).
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F IGURE 4 (A) CVs generated with a power-law function of the potential and (B) their PPI form

TABLE 2 The relation of the four important equations connecting the four important measured quantities (j, q, Rct, Cct) with the four
PPI quantities (𝑗𝑖𝑛𝑓 , 𝑞rev , d𝑗𝑖𝑛𝑓 /dE, d𝑞rev/dE)

Kinetics Coupling Thermodynamics
AWV 𝑗 = 𝑗inf − 𝐻 ⋅ 𝑞

Eq. (8)
𝐻 = 𝑗inf ∕𝑞rev
Eq. (10)

𝑞 = 𝑞rev − (1∕𝐻) ⋅ 𝑗

Eq. (9)

dEIS 1

𝑅ct

=
d𝑗inf

d𝐸
−

d𝐻

d𝐸
𝑞

Eq. (20)
𝐻 = 1∕(𝑅ct ⋅ 𝐶ct)

Eq. (22)
𝐶ct =

d𝑞rev

d𝐸
−

d(1∕𝐻)

d𝐸
𝑗

Eq. (24)

There exist two usual complicating effect when we ana-
lyze voltametric curves: the IR drop, due to the non-zero
solution resistance and the double layer charging. Both
effects are – in principle – easy to be corrected following
the ideas described in the context of diffusion-controlled
charge transfer reactions [9]: if wemeasure high-frequency
EIS and determine solution resistance Rs (at any potential)
and double layer capacitance (as a function of potential).
Since all potentials of this text are of interfacial nature,
the IR drop must be subtracted from the applied poten-
tial; i.e. we have to plot 𝑗 vs 𝑞 points (and also the other
point pairs of plots included in Table 1) corresponding to
the same E–jRs potential, and analyze these plots to extract
𝑗lim and 𝑞rev . The charging current error can be corrected
if the double layer capacitance, Cdl, is also known from the
high-frequency impedance measurements. As the charg-
ing current appears in the rhs of Eq. (1) as a 𝐶dld𝐸∕d𝑡

term, one has to plot 𝑗 − 𝐶dld𝐸∕d𝑡 vs 𝑞 instead of Equa-
tion (8), Actually, this is the point where the big advantage
of dEIS is apparent over the traditional, simple AWV and
EISmeasurements: dEIS provides not only the information
on kinetics (cf. Eq. 22) but simultaneously also the correc-
tion factors, Rs and 𝐶dl.
The rate constant determination of the present paper

is evidently much more correct than that of the widely
used method, based on CV peak separation [10] (see also
Ch. 14.3.3 of [1]). The superiority can be traced back to
that complete CVs and/or multiple impedance spectra are

evaluated together, rather than single (albeit characteris-
tic) data points only.
The relations of the PPI functions of the present sub-

ject: 𝑗inf , 𝑞rev and their d∕d𝐸 derivatives are summarized
in Table 2. Three points are worth to be noted:

1. Information on kinetics and thermodynamics can be
obtained from extrapolations to zero charge or to zero
current, respectively, that is, to zero and to infinite time.
Both the intercepts and the slopes of the linear equa-
tions of the dEIS are the potential derivatives of those of
the AWV. This is how the large-signal and small-signal
response functions (AWV and dEIS, respectively, of the
given systems) are related to each other through their
PPI forms.

2. The coupling constant H can be obtained from PPI
functions calculated from AWV data; in contrast, from
dEIS data one can calculate directly. This is why dEIS
measurement is technically superior to AWV when the
determination of rate coefficients is the goal.

3. The set of equations in Table 2 is analogous to that of
the quasireversible diffusion-controlled redox reaction
(see Table 2 of Ref. [3]). The differences are as follows:
𝑞 (as 𝑞(𝑡) and 𝑞rev) is to be replaced by 𝑀, the semi-
integral of current density; H is a different combina-
tion of rate coefficients with diffusion coefficients and
𝐶ct is to be replaced by 𝜎W, the Warburg admittance
coefficient.
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4 CONCLUSIONS

The AWVs just as the Faraday-impedances obtained from
dEIS of surface-confined redox species are complicated,
scan-rate dependent curves with a hysteresis. By using
the equations derived in this paper, one can transform
these AWVs and the dEIS results to yield two independent
potential functions of PPI forms for both methods. One
of them is the charge transfer rate (or its potential
derivate) as if the redox state of the surface were constant,
whereas the other is the surface charge (or its potential
derivate) as if there were steady-state at the given poten-
tial. This way it is possible to extrapolate to the purely
kinetics-controlled and to the purely equilibrium-based
situations.
The theory leading to the equations of Table 1 opens a

new route for the data analyses related to the charge trans-
fer rates of surface-confined redox reactions. Two practical
advice are due here: (i) Use dEIS, and determine kinetics
from the𝑅ct ⋅ 𝐶ct products using also the correction factors,
Rs andCdl; (ii) Start themeasurement from a potential well
outside of the redox peak. Due to the algebraic analogies,
the theory can be used also for evaluation of adsorption
AWV and dEIS measurement results.
Two features of the theory bear special aesthetic value:

1. As 𝑗inf (𝐸) and 𝑞rev(𝐸) are the PPI forms of the large-
signal response curves (“global” response functions)
of the system. The 1∕𝑅ct,inf (𝐸) and 𝐶ct,rev(𝐸) are the
small signal, or “local” response functions. The local
response functions are the potential derivatives of the
global ones.

2. The connections between the measured quantities and
the PPI functions, as summarized in Table 2, are sur-
prisingly simple. The structure of the set of equations
therein – mutatis mutandis – is just the same as in
Table 2 of Ref. [4] that refers to diffusion-controlled
charge transfer.

LIST OF SYMBOLS

t; E; v, j time, electrode potential (in general), scan
rate, current density

ε electrode potential, in the context of
Eqs. 5–10

ΓA, q surface concentration of the surface con-
fined redox system, and its charge density

Γox , Γred surface concentration of the oxidized and
reduced form of the redox system

𝑗inf (𝐸) limiting value of j at potental E if the redox
system were completely reduced.

𝑞rev(𝐸) charge density at potential E in equilibrium
state

kox, kred rate coefficient of the anodic and cathodic
reactions

𝛼ox , 𝛼red charge transfer coefficient of the anodic and
cathodic reactions

𝑘0ox, 𝑘
0
red
, 𝐸0 standard rate coefficients and standard

potential of the redox reaction
H(E) parameter combination (sum) of kox and

kred (see Eq. 4.)
𝑅ct(𝐸) charge transfer resistance at potental E
𝐶ct(𝐸) pseudocapacitance associated with charge

transfer at potental E
𝑅ct,inf (𝐸) limiting value of 𝑅ct(𝐸) as if the redox sys-

tem were completely reduced
𝐶ct,rev(𝐸) limiting value of 𝐶ct(𝐸) in equilibrium state
𝐸init, 𝑞init initial (equilibrium) potential and charge

density of the voltammetry measurement
𝑗
qinit

inf
(𝐸) 𝑗inf (𝐸), if the initial charge of the redox sys-

tem were 𝑞init
𝑞
qinit
rev (𝐸) 𝑞rev(𝐸), if the initial charge of the redox sys-

tem were 𝑞init
𝑅
qinit

ct,inf
(𝐸) 𝑅ct,inf (𝐸), if the initial charge of the redox

system were 𝑞init
𝐶
qinit
ct,rev(𝐸) 𝐶ct,rev(𝐸), if the initial charge of the redox

system were 𝑞init
n charge number of the electrode reaction

F, R, T Faraday’s number, universal gas constant,
temperature

ACKNOWLEDGMENTS
The research within project No. VEKOP-2.3.2-16-2017-
00013 was supported by the European Union and the
State of Hungary, co-financed by the European Regional
Development Fund. Financial assistance of the National
Research, Development and Innovation Office of through
the project OTKA-NN-112034 is acknowledged.

DATA AVAILAB IL ITY STATEMENT
Data available on request from the author.

ORCID
TamásPajkossy https://orcid.org/0000-0002-9516-9401

REFERENCES
1. K.B. Oldham, Anal. Chem. 1972, 44, 196.
2. T. Pajkossy, S. Vesztergom, Electrochim. Acta 2019, 297, 1121
3. T. Pajkossy, Electrochim. Acta 2019, 308, 410.
4. T. Pajkossy, Electrochem. Comm. 2020, 118, 106810.
5. A. J. Bard, L. R. Faulkner, Electrochemical Methods, 2nd ed.

Wiley, Hoboken, NJ, 2001
6. S. Srinivasan, E. Gileadi, Electrochim. Acta 1966, 11, 321.

https://orcid.org/0000-0002-9516-9401
https://orcid.org/0000-0002-9516-9401


9 of 11 Electrochemical Science Advances
Full article
doi.org/10.1002/elsa.202000039

7. J. C. Myland, K. B. Oldham, Electrochem. Comm. 2005, 7, 282
8. S. Trasatti, R. Parsons, Pure & Appl.Chem. 1986, 58, 437
9. J.C. Imbeaux, J.M. Savéant, J. Electroanal. Chem. 1973, 44, 169
10. E. Laviron, J. Electroanal. Chem. 1979, 101, 19

How to cite this article: T. Pajkossy. Electrochem.
Sci. Adv. 2021, e2000039. https://doi.org/10.1002/
elsa.202000039

APPENDIX
Dependence of the PPI forms on Einit
In this Appendix, the derivation of Equations (8) to (11)
and of Equations (20) to (24) is generalized for the case
when the experiment starts from an arbitrary steady state
𝐸init potential, where the electrode charge is 0 < 𝑞init ≤
𝑛FΓA. This is done in two steps, as illustrated in Fig. 1d.
In the first step, the potential is jumped or swept from
a very negative potential to 𝐸init, then we wait up till
steady state is attained. Then, the following condition
holds:

𝑞init (𝐸init) = 𝑞rev (𝐸init) = 𝑗inf (𝐸init) ∕𝐻 (𝐸init)

= 𝑛F ⋅ ΓA ⋅ 𝑘ox (𝐸init) ∕𝐻 (𝐸init) (27)

From the time of the potential program onward, irre-
spectively of the actual value of 𝑞init, Equation (5) holds.
Note that this 𝑗(𝑡) vs 𝑞(𝑡) function is linear, the slope,
−𝐻(𝐸), is the same as if 𝑞init were zero as in Equation (6).
Hence Equation (8) and (9) are to be modified by simply
replacing the 𝑞(𝑡) terms to 𝑞(𝑡) + 𝑞init.The modified equa-
tions are as follows:

𝑗 (𝑡) = 𝑗𝑖𝑛𝑓 (𝐸) − 𝐻 (𝐸) ⋅ 𝑞𝐢𝐧𝐢𝐭 − 𝐻 (𝐸) ⋅ 𝑞 (𝑡)

= 𝑗
𝐪𝐢𝐧𝐢𝐭

𝑖𝑛𝑓
(𝐸) − 𝐻 (𝐸) ⋅ 𝑞 (𝑡) (28)

𝑞 (𝑡) = 𝑞rev (𝐸) − 𝑞init − (1∕𝐻 (𝐸)) ⋅ 𝑗 (𝑡)

= 𝑞
qinit
rev (𝐸) − (1∕𝐻 (𝐸)) ⋅ 𝑗 (𝑡) (29)

The course of Eq. 28 is shown in Fig. A1. Here 𝑗qinit
inf

(𝐸)

and 𝑞
qinit
rev (𝐸) are the modified ordinate intercepts. In what

follows, the intercept-related quantities, for which 𝑞init >

0, are denoted by the superscript “qinit.”
As the slope of the 𝑗(𝑡) vs 𝑞(𝑡) line is −𝐻(𝐸),

𝑞
qinit
rev (𝐸) = 𝑗

qinit

𝑖𝑛𝑓
(𝐸) ∕𝐻 (𝐸) (30)

F IGURE A1 Illustration of how the characteristic line of
Equation (28) shifts in negative direction with the positive shift of
𝐸init (and 𝑞init). Note that the slope is constant (as potential is
constant) and the overall length of the line along the abscissa is
𝑛F ⋅ ΓA

Substituting the expressions of 𝑞init, Equation (27), and
𝐻(𝐸init), Equation (4), into Equation (28) we get

𝑗
𝑞𝑖𝑛𝑖𝑡

𝑖𝑛𝑓
(𝐸)

= nF ⋅ ΓA ⋅
𝑘ox (𝐸) ⋅ 𝑘red (𝐸init) − 𝑘red (𝐸) ⋅ 𝑘ox (𝐸init)

𝑘ox (𝐸init) + 𝑘red (𝐸init)

(31)

By combining Equations (30) and (31) we get

𝑞
𝐪𝐢𝐧𝐢𝐭
rev (𝐸) = 𝐧F ⋅ ΓA

⋅
𝑘ox (𝐸) ⋅ 𝑘red (𝐸init) − 𝑘red (𝐸) ⋅ 𝑘ox (𝐸init)

(𝑘ox (𝐸) + 𝑘red (𝐸)) (𝑘ox (𝐸init) + 𝑘red (𝐸init))
(32)

The impedance-related part of the theory can be gener-
alized for the case of 𝑞init ≠ 0 in such a way that we start
from Equation (5) and modify the Equations (16) and the
ones onwards by replacing all 𝑞(𝑡) terms to 𝑞(𝑡) + 𝑞init.This
way Equation (16) is written as

𝑗 (𝑡) + 𝛿𝐣 = 𝑛F ⋅ ΓA ⋅ (𝑘ox + 𝛿𝑘ox)

− (𝐻 + 𝛿𝐇) ⋅ (𝑞 (𝑡) + 𝑞init + 𝛿𝐪) (33)

Following the same line of thoughts as in the b section
of the Theory we arrive at the expression of the Faradaic
impedance:

𝑍 (𝜔) ≡ 𝐸ac∕𝑗ac

=

(
1 +

𝐻

i𝜔

)
∕

(
d𝑗𝑖𝑛𝑓

d𝐸
−

d𝐻

d𝐸
(𝑞 (𝑡) + 𝑞init)

)

≡ 𝑅ct (𝐸) +
1

i𝜔𝐶ct (𝐸)
(34)

https://doi.org/10.1002/elsa.202000039
https://doi.org/10.1002/elsa.202000039
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TABLE 3 The relation of the four important equations connecting the four important measured quantities (j, q, Rct, Cct) with the four
PPI quantities (𝑗𝑖𝑛𝑓 , 𝑞rev , d𝑗𝑖𝑛𝑓 /dE, d𝑞rev/dE) in the case when 𝑞init > 0. Note that qinit does not appear in the 𝐶ct - related equations

Kinetics Coupling Thermodynamics
AWV 𝑗 = 𝑗

qinit

𝑖𝑛𝑓
− 𝐻 ⋅ 𝑞 with𝑗

qinit

𝑖𝑛𝑓
=

𝑗𝑖𝑛𝑓 − 𝐻 ⋅ 𝑞init
Eq. (28)

𝐻 = 𝑗
qinit

inf
∕𝑞

qinit
rev

Eq. (35)
𝑞 = 𝑞

qinit
rev − (1∕𝐻) ⋅ 𝑗 with𝑞

qinit
rev =

𝑞rev − 𝑞init
Eq. (29)

dEIS 1

𝑅ct

=
1

𝑅
qinit

ct,𝑖𝑛𝑓

−
d𝐻

d𝐸
⋅ 𝑞 with

1

𝑅
qinit

ct,𝑖𝑛𝑓

=

d𝑗𝑖𝑛𝑓

d𝐸
−

d𝐻

d𝐸
𝑞init

Eq. (36)

𝐻 = 1∕(𝑅ct ⋅ 𝐶ct)

Eq. (35)
𝐶ct = 𝐶

qinit
ct,rev −

d(1∕𝐻)

d𝐸
𝑗 with𝐶

qinit
ct,rev =

𝐶ct,rev =
d𝑞rev

d𝐸
Eq. (39)

Equation (19) expresses the impedance of a charge trans-
fer resistance, Rct, and an associated pseudocapacitance,
Cct, connected serially. Their values are coupled to each
other as

𝑅ct (𝐸) ⋅ 𝐶ct (𝐸) = 𝐇 (𝐸) (35)

holds for any 𝑞(𝑡) and 𝑞init. These elements are as follows:

1

𝑅ct (𝐸)
=

d𝑗𝑖𝑛𝑓

d𝐸
−

d𝐻

d𝐸
𝑞init −

d𝐻

d𝐸
𝑞 (𝑡)

=
1

𝑅
qinit

ct,𝑖𝑛𝑓
(𝐸)

−
d𝐻

d𝐸
𝑞 (𝑡) (36)

𝐶ct (𝐸) =
1

𝐻
⋅

(
d𝑗𝑖𝑛𝑓

d𝐸
−

d𝐻

d𝐸
𝑞init

)
−

1

𝐻
⋅
d𝐻

d𝐸
𝑞 (𝑡) (37)

For 1/Rct and Cct both, a const1–const2 × q type equa-
tion applies where the constants are related also to the con-
stants of the dc relations:
The 𝑞(𝑡) function is replaced by 𝑗(𝑡) using Equation (29),

and 𝑗inf is expressed by 𝑞rev using Equation (10). This way,
Equation (36) is transformed to

1

𝑅ct (𝐸)
=

d𝑗inf
d𝐸

−
d𝐻

d𝐸
𝑞 (𝑡) −

d𝐻

d𝐸
𝑞init =

=
d(𝐻 ⋅ 𝑞rev)

d𝐸
−
d𝐻

d𝐸

(
𝑞rev (𝐸)−𝑞init −

1

𝐻 (𝐸)
⋅𝑗 (𝑡)

)

−
d𝐻

d𝐸
𝑞init = 𝐻 ⋅

d𝑞rev
d𝐸

+
1

𝐻
⋅
d𝐻

d𝐸
𝑗 (𝑡) (38)

For theCct vs j equation, we combine Equations (35) and
(38) to yield

𝐶ct (𝐸) =
1

𝐻 (𝐸) ⋅ 𝑅ct (𝐸)
=

d𝑞rev
d𝐸

+
1

𝐻2
⋅
d𝐻

d𝐸
𝑗 (𝑡)

= 𝐶ct,rev (𝐸) −
d (1∕𝐻)

d𝐸
𝑗 (𝑡) (39)

Note that 𝑞init does not appear in Equations (38) and
(39). As it is shown in Table 3, all but one intercepts

depend on the 𝑞init. (𝐶
qinit
ct,rev is the exception, because it

would depend on the potential derivative of a constant
(𝑞init).
Note that up till here, no functional form of 𝑘ox(𝐸)

and 𝑘red(𝐸) has been specified; a trivial assumption is
that 𝑘ox(𝐸) is small at negative and large at positive
potentials; for 𝑘red(𝐸) just the opposite trends apply. For
𝑗
qinit

inf
and 𝑞

qinit
rev we have the complicated Equations (31)

and (32). They can be simplified only if exponential
potential dependences are assumed, i.e. 𝑘ox (𝐸) = 𝑘0ox ⋅

exp(𝛼oxF𝐸∕R𝑇) and 𝑘red (𝐸) = 𝑘0
red

⋅ exp(−𝛼redF𝐸)∕R𝑇).
With these dependencies Equation (31) changes to

𝑗
qinit

𝑖𝑛𝑓
(𝐸) = nFΓA ⋅

𝑘red (𝐸init) ⋅ 𝑘ox (𝐸init)

𝑘ox (𝐸init) + 𝑘red (𝐸init)

⋅ [exp(𝛼oxF(𝐸 − 𝐸init)∕R𝑇) − exp(−𝛼redF(𝐸 − 𝐸init)∕R𝑇)]

(40)

This is the generalized form of Equation (12). Note that
Equation (40) is of the same form as the Butler-Volmer
equation.
For obtaining 𝑞qinitrev (𝐸), consider Equation (29). Accord-

ing to it, 𝑞qinitrev (𝐸) = 𝑞rev (𝐸) − 𝑞init. The second term of
the rhs is a constant, the first term has already been ana-
lyzed in the voltammetry theory section, cf. Equations (12)
and (13), leading to the sigmoid-shape curve of Equations
(14) and (15). Because of the−𝑞init term, this sigmoid-shape
curve gets shifted in negative direction with 𝑞init, and the
equations have the following form:

𝑞
qinit
rev (𝐸) = (𝑛F ⋅ ΓA∕2) ⋅ [1 + tanh (𝑛F(𝐸 − 𝐸0)∕R𝑇)]

−𝑞rev (𝐸init) (41)

and

𝑬 = 𝐸0 +
R𝑇

𝑛F
ln

[
𝑞
qinit
rev (𝐸) − qrev (𝐸init)

𝑛F ⋅ ΓA − 𝑞
qinit
rev (𝐸)

]
(42)

Equations (41) and (42) are the general forms of Equa-
tions (14) and (15).
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F IGURE A2 PPI forms of the CVs of the system of Figure 3,
with 𝐸init -1 V (a), -0.03 V(b), 0 V (c), +0.3 V (d), and +1 V (e)

There are two, simple, trivial special cases of Equations
(40) and (41):
First, when 𝐸init − 𝐸0 is sufficiently negative (typically,

when the difference exceeds a few hundred mV) then

𝑗
qinit

𝑖𝑛𝑓
= 𝑗𝑖𝑛𝑓 = 𝑛F ⋅ ΓA ⋅ 𝑘0ox ⋅ exp (𝛼oxF𝐸∕R𝑇)

and

𝑞
qinit
rev = 𝑞rev = (𝑛FΓA∕2) ⋅ [1 + tanh (𝑛F(𝐸 − 𝐸0)∕R𝑇)]

(43)
Second, for sufficiently positive 𝐸init − 𝐸0,

𝑗
qinit

𝑖𝑛𝑓
(𝐸) = −𝑛F ⋅ ΓA ⋅ 𝑘0

red
⋅ exp (−𝛼redF𝐸)∕R𝑇)

and

𝑞
qinit
rev = 𝑞rev − 𝑛F ΓA

= (𝑛FΓA∕2) ⋅ [−1 + tanh (𝑛F(𝐸 − 𝐸0)∕R𝑇)] . (44)

The 𝑗
qinit

inf
vs 𝐸 and the 𝑞

qinit
rev vs 𝐸 dependencies are

illustrated in Figure A2. for various 𝐸init initial poten-
tials. Note that the “simple” curves (a and e) are the ones
when the voltammetry experiment started from potentials
where the redox system is either fully reduced or fully
oxidized (cf. Equations (43) and (44)). Hence a practi-
cal suggestion: start the measurements with either com-
pletely reduced or completely oxidized redox systemon the
surface.
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