Common dace (*Leuciscus leuciscus*) – A new host of the myxozoan fish parasite, *Myxobolus elegans* (Cnidaria: Myxozoa) – Short communication

DARIA A. MOROZOVA¹ *, VLADIMIR N. VORONIN² and ALEXEY V. KATOKHIN³

¹ Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavskaya oblast 109, Borok, 152742, Russia
² Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State Academy of Veterinary Medicine, Saint Petersburg, Russia
³ Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

Received: April 19, 2019 • Accepted: November 14, 2019
Published online: May 8, 2020

ABSTRACT

This paper reports the detection of the myxozoan species *Myxobolus elegans* Kashkovsky 1966 in common dace (*Leuciscus leuciscus*) that has not been previously listed as its host. The problem of differentiation of phenotypically similar *Myxobolus* species is addressed. During parasitological survey of common dace from the desalinated part of the Gulf of Finland at the city of Sestroretsk, Russia, numerous oval-shaped plasmodia, 0.2–0.4 mm in size, filled with *Myxobolus* spores were found on the gills. Pear-shaped myxospores were 15.4 (14.8–16.0) × 10.2 (9.6–10.9) μm in size with a rib on each valve. On the basis of spore morphology, the species appeared to be similar to *M. elegans* and *Myxobolus hungaricus* Jacob, 1940. In order to identify the species, molecular genetic analysis was performed, and the species was identified on the basis of morphological characteristics and 18S rDNA data. The results obtained indicate that the *Myxobolus* species observed on the gills of dace is *M. elegans*. Thus, common dace is another valid host of *M. elegans* besides the type host, ide (*Leuciscus idus*).

KEYWORDS

Myxobolus elegans, *Leuciscus leuciscus*, Baltic Sea, morphotype, 18S rDNA

Members of the genus *Myxobolus* (Cnidaria: Myxozoa) are among the most widespread endoparasites of fish. Over 800 valid species of this genus are known, and the number of new species is increasing constantly (Eiras et al., 2005, 2014). The differentiation of *Myxobolus* species is based on spore morphology, host specificity and tissue tropism. Due to the high degree of morphological similarity, species identification is completed by the use of molecular methods – revealing differences in nucleotide sequences such as 18S rRNA genes (Molnár, 1994; Eszterbauer, 2002, 2004; Kallert et al., 2005; Molnár et al., 2010; Borzák et al., 2018; Sokolov and Lebedeva, 2018). We performed an ichthyoparasitological study of common dace (*Leuciscus leuciscus*) caught in the freshened part of the Gulf of Finland near the city of Sestroretsk (60°05’11.7”N 29°55’31.9”E) in April 2015. On the gills of one fish specimen, multiple oval plasmodia 0.2–0.4 mm in size, containing spores of *Myxobolus*-like shape, were found. Temporary and glycerol-gelatin preparations for microscopy were made from the detected myxospores. Plasmodia were fixed in 96% ethanol for subsequent molecular analysis. Genomic DNA (gDNA) was extracted using a 100x DNA extraction kit (Biosilika LLC, Russia) following the manufacturer’s manual.

Nested PCR assay was used to amplify the 18S rDNA of the parasite, with the pair of universal primers 18e (5’ CTG GTT GAT TCT GCC AGT 3’) and 18g (5’ CGG TAG TAG CGA CGG GCC GTG TG 3’) (Hillis and Dixon, 1991) in the first PCR round, and the primer pair of Myx1F (5’ GTG AGA CTT CGG ACG GCT CAG 3’) and Myx4R
According to the original description (by Kashkovsky, referred to in Shulman, 1966), *M. elegans* was found on the gill arches, gills and fins of two fish species: ide, *Leuciscus idus* (26.2% occurrence) and roach, *Rutilus rutilus* (1.7% occurrence) from the Irikinske Reservoir (the Ural River) and the Chusovaya River (the Volga River basin). They found that ide was the most intensively infested species, with an average of 14 plasmodia per fish. The plasmodia of *M. elegans* were rounded or oval in shape, 0.17–0.34 mm long by 0.23–0.55 mm wide, and encircled by a thin connective tissue envelope. The myxospores were ovoid in shape, narrowing towards the anterior end. The sutural edge was slightly protruded above the spore surface. Each valve possessed one ridge located near the sutural edge, almost parallel to it. The myxospores were 13.5–17 µm long, 7.4–10 µm wide and 7.4–8 thick. Polar capsules were pyriform and uniform in size. They were 6.8–8 µm long and 2.5–3.5 µm wide. The shape and morphometrics of *M. elegans* detected in the present study were similar to those in the original description.

The spore morphology of *M. elegans* is similar to that of *Myxobolus hungaricus* Jaczó, 1940. Re-description of *M. hungaricus* found in common bream *Abramis brama* (Hungary, Lake Balaton and the River Danube) showed that mature plasmodia were rounded or elliptical in shape, reaching 0.35–0.45 × 0.17–0.35 mm in size (Baska and Molnár, 1999). The myxospores were symmetric with a distinct ridge parallel to the valve, averaging 11.9 × 7.0 µm. The polar capsules were similar in size and shape. Differentiation of *M. hungaricus* and *M. elegans* spores was found to be difficult as they were morphologically similar although slightly different in size (Baska and Molnár, 1999). Currently, the identification of morphologically indistinguishable *Myxobolus* species is based on the 18S rDNA (Molnár et al., 2010; Cech et al., 2012). The two *Myxobolus* species, *M. hungaricus* and *M. elegans*, could be easily distinguished using the PCR-related restriction fragment length polymorphism (RFLP) technique (Eszterbauer et al., 2001; Eszterbauer, 2002).

We have performed DNA sequencing of the myxozoan found in common dace in order to confirm the identification of *M. elegans*. A 522-bp-long 18S rDNA fragment of *M. elegans* was analysed. The sequenced fragment was located in the region between nucleotide positions 40 and 561 of *M. elegans* sequences available in GenBank (AF448445, JN252485). BLAST search revealed the highest similarity to *M. elegans* sequences (99.43–99.81%). When comparing the obtained *M. elegans* DNA sequence with the ones in GenBank (AF448445, JN252485), the p-distance varies from 0.2 to 0.6%. Comparison of the obtained *M. elegans* DNA sequence to the 18S rDNA of *M. hungaricus* (AF448444) showed a p-distance of 60.9%. The p-distance between *M. elegans* (AF448445) and *M. hungaricus* (AF448444) was 61.3%, while that between the studied *M. elegans* (JN252485) and *M. hungaricus* (AF448444) was 61.7%.

Therefore, the obtained results proved that the myxozoan found in common dace was indeed *M. elegans*. Furthermore, we confirmed that common dace is another...
valid host of *M. elegans* besides the type host, ide. According to Shulman (1966), *M. elegans* has been found in the following hosts: roach (*Rutilus rutilus*), ide (*Leuciscus idus*), common bream (*Abramis brama*), sichel (*Pelecus cultratus*), asp (*Leuciscus aspius*) and lake minnow (*Rynchocephalus percnourus*) (Bauer, 1984). Ide and common dace represent the same genus, while all other fish belong to other cyprinid genera. It is possible that common bream caught in Russia was in fact infested with *M. hungaricus*, and the parasite was misidentified as *M. elegans*. Thus, we assume that the host range of *M. elegans* described so far might contain invalid hosts, and additional studies are required for clarification.

ACKNOWLEDGEMENTS

The authors are grateful to Elena A. Borovikova for valuable comments and discussion. This research was performed in the framework of the state assignment of the Ministry of Education and Science of the Russian Federation (Theme No. AAAA-A18-118012690100-5).

REFERENCES

Hallett, S. L. and Diamant, A. (2001): Ultrastructure and small-subunit ribosomal DNA sequence of *Heneguya lesterti* n. sp. (Myxosporea), a parasite of sand whiting *Sillago analis* (Sillaginidae) from the coast of Queensland, Australia. Dis. Aquat. Organ. 46, 197–212.

