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Abstract

Let V denote an r-dimensional vector space over Fqn , the finite field of qn elements.
Then V is also an rn-dimension vector space over Fq. An Fq-subspace U of V is (h, k)q-
evasive if it meets the h-dimensional Fqn-subspaces of V in Fq-subspaces of dimension
at most k. The (1, 1)q-evasive subspaces are known as scattered and they have been
intensively studied in finite geometry, their maximum size has been proved to be brn/2c
when rn is even or n = 3.

We investigate the maximum size of (h, k)q-evasive subspaces, study two duality
relations among them and provide various constructions. In particular, we present the
first examples, for infinitely many values of q, of maximum scattered subspaces when
r = 3 and n = 5. We obtain these examples in characteristics 2, 3 and 5.
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1 Introduction

Let F be a set of subsets of a set A and let S ⊆ A. In [23, Definition 1] Pudlák and Rödl
called S c-evasive for F if for all W ∈ F

|W ∩ S| ≤ c.

In their work A was then taken to be the set of vectors of an r-dimensional vector space V over
F2, the finite field of two elements, and F was the set of all d-dimensional affine subspaces
of V for some positive integer d. The authors of [23] also showed how such evasive sets
can be used to construct explicit Ramsey graphs. Later, these objects were called subspace
evasive, see Guruswami [13, Section 4], [14, Definition 2] or Dvir and Lovett [12, Definition
3.1] and were studied intensively since they can be used to obtain explicit list decodable
codes with optimal rate and constant list-size. More precisely, following Guruswami, let V
be an r-dimensional vector space over the (usually but not necessarily finite) field F. Then
S ⊆ V is called (d, c)-subspace evasive if for every d-dimensional linear subspace H of V we
have |S ∩H| ≤ c.

Note that Dvir and Lovett used the term (d, c)-subspace evasive to denote c-evasive sets
for the set of all d-dimensional affine subspaces. The two concepts do not coincide, however,
they are strongly related as the next two paragraphs show.

Every d-dimensional affine subspace is contained in a (d+1)-dimensional linear subspace.
Thus if S is c-evasive for the set of all (d+1)-dimensional linear subspaces then it is c-evasive
for the set of all d-dimensional affine subspaces.

Also, if F is a finite field, say Fps , for some p prime, and S is additive (or equivalently,
S is an Fp-linear subspace of V ), then S is c-evasive for the set of all d-dimensional linear
subspaces if and only if it is c-evasive for the set of all d-dimensional affine subspaces. To
see this, consider any d-dimensional affine subspace A and a vector x ∈ S ∩ A. For a set B
we denote by B − x the difference set {b− x : b ∈ B}. Then

|S ∩ A| = |(S − x) ∩ (A− x)| = |S ∩ (A− x)|,

where S−x = S follows from the additivity of S, and A−x is a d-dimensional linear subspace
of V .

In [14] additive subspace evasive sets were constructed, that is, subspace evasive sets
which are also linear subspaces of V over some subfield Fpt of Fps , t | s. Clearly, if Fq is a
subfield of Fps , then ps = qn for some integer n. The aim of this paper is to study these
evasive sets. Note that, if S is linear over Fq then intersections of S with linear (or affine)
Fqn-subspaces of V are also linear (or affine) Fq-subspaces. From now on, we will denote by
V = V (r, qn) an r-dimensional vector space over the finite field Fqn . Note that V is also an
rn-dimensional vector space over Fq.

Definition 1.1. An Fq-subspace U of V will be called (h, k)q-evasive if 〈U〉Fqn
has dimension

at least h over Fqn and the h-dimensional Fqn-subspaces of V meet U in Fq-subspaces of
dimension at most k.

Note that in the definition above the condition on the dimension of 〈U〉Fn
q

is to exclude
trivial examples for which some of our results would not apply. So, take an Fq-subspace U
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of V such that the condition dimqn〈U〉qn ≥ h holds. Then it is easy to find an h-dimensional
Fqn-subspace meeting U in an Fq-subspace of dimension at least h and hence for an (h, k)q-
evasive subspace h ≤ k must hold. Clearly, if dimq U ≤ k then U is an (h, k)q-evasive
subspace. The (r, k)q-evasive subspaces are the Fq-subspaces of dimension at most k which
span V over Fqn . Note that an (h, k)q-evasive subspace is also (h′, k′)q-evasive for any h′ ≤ h
and k′ ≥ k.

If S is c-evasive for F then the same holds for every subset S ′ ⊆ S. Thus there are two
natural questions to ask:

(A) For given c and F , what is the size of the largest c-evasive set for F? We will call
evasive sets of this size maximum.

(B) For given c and F , determine the smallest c-evasive sets for F which are not contained
in a larger one. We will call these evasive sets maximal.

For example if F is the set of edges of a graph G and c = 1 then (A) asks for the size of
a maximum independent set in G and (B) asks for the size of a minimum vertex cover in G.

The concept of evasive sets is well known in finite geometry as well. Denote by Σ a finite
projective space isomorphic to PG(d, q). A cap of kind h is an h-evasive set for the set of
(h− 1)-dimensional projective subspaces of Σ, cf. [27]. The most studied examples are the
arcs (h = d), caps (h = 2) [15] and tracks (h = d−1) [11]. To arcs and tracks correspond the
MDS and almost MDS codes, respectively ([1], [16]). One can weaken further these conditions
and consider point sets meeting each hyperplane in at most n points. For example (k, n)-arcs
are the n-evasive point sets of size k for the set of lines in a projective plane of order q. There
are many famous conjectures regarding the size of a maximum evasive set in this setting.
For example the maximal arc conjecture, which was proved by Ball, Blokhuis and Mazzocca
[4, 2]. The main conjecture for MDS codes is equivalent to ask the maximum size of an arc
in Σ [1, Section 7].

Recently, in [24] Randrianarisoa introduced q-systems. A q-system U over Fqn with
parameters [m, r, d] is an m-dimensional Fq-subspace generating over Fqn a r-dimensional
Fqn-vector space V , where

d = m−max{dim(U ∩H) : H is a hyperplane of V }.

With our notation, it is equivalent to say that U is (r − 1,m − d)q-evasive in V (r, qn) and
it is not (r − 1,m − d + 1)q-evasive. These objects are in one-to-one correspondence with
Fqn-linear [m, r, d]-rank metric codes, cf. [24, Theorem 2].

In [10] the authors investigated the following subspace analogue of caps of kind h: for
0 < h < r an Fq-subspace U of V = V (r, qn) is called h-scattered if U generates V over Fqn
and any h-dimensional Fqn-subspace of V meets U in an Fq-subspace of dimension at most h.
With the notation of this paper, the h-scattered subspaces are the (h, h)q-evasive subspaces
generating V over Fqn .

A t-spread of V is a partition of V \ {0} by Fq-subspaces of dimension t. In particular
D := {〈u〉Fqn

\ {0} : u ∈ V } is the so called Desarguesian n-spread of V . An Fq-subspace
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U of V is called scattered with respect to a spread S if U meets each element of S in at
most a one-dimensional Fq-subspace, i.e. when U is q-evasive for S. In [6] Blokhuis and
Lavrauw proved that rn/2 is the maximum dimension of a scattered subspace of V w.r.t. a
Desarguesian n-spread. In other words, the dimension of a maximum (1, 1)q-evasive subspace
is at most rn/2. After a series of papers it is now known that this bound is sharp when
rn is even, cf. Result 2.3. Note that the 1-scattered subspaces are the scattered subspaces
generating V over Fqn .

In [10] the authors generalized the Blokhuis–Lavrauw bound and proved that the dimen-
sion of an h-scattered subspace is at most rn/(h+1). They also introduced a relation, called
Delsarte duality, on Fq-subspaces of V and proved that the Delsarte dual of an rn/(h + 1)-
dimensional h-scattered subspace is h′-scattered with dimension r′n/(h′ + 1) in some vector
space V ′(r′, qn). For the precise statement see [10, Theorem 3.3]. Delsarte duality is a well
known concept in the theory of rank metric codes. There is a correspondence between max-
imum (r − 1)-scattered subspaces, also called scattered subspaces w.r.t. hyperplanes, and
certain MRD (maximum rank metric) codes, see [19, 26]. In fact, if C is the MRD-code
correspoinding to an n-dimensional (r − 1)-scattered subspace U then the Delsarte dual C⊥
of C is the MRD-code corresponding to the Delsarte dual Ū of U which is again maximum
scattered w.r.t. hyperplanes; see [10, Remark 4.11].

In Section 2 we collect existing constructions and present some new ones to obtain large
(h, k)q-evasive subspaces. In particular we study the direct sum of an (h1, k1)q-evasive and
an (h2, k2)q-evasive subspace under various conditions. In Section 3 we investigate the “ordi-
nary” duality (induced by a non-degenerate reflexive sesquilinear form) and Delsarte duality
on evasive subspaces. In Section 4 we present (in some cases sharp) upper bounds on the
size of maximum evasive subspaces. In this direction the first open problem is to deter-
mine the size of a maximum scattered (i.e. (1, 1)q-evasive) subspace in V (3, q5). From the
Blokhuis–Lavrauw bound it follows that scattered subspaces of V (3, q5) have dimension at
most b(3 · 5)/2c = 7. In Section 5 we present scattered subspaces with this dimension for
infinite many values of q. We obtain these examples in characteristics 2, 3 and 5. Note that
these are the first non-trivial examples (i.e. n > 3) for scattered subspaces of dimension
brn/2c in V (r, qn) when rn is odd. To obtain these examples we use MAGMA and com-
bine q-subresultants [8] with the strategy of Ball, Blokhuis and Lavrauw from [3] where the
authors construct maximum scattered subspaces of dimension 6 in V (3, q4). Thanks to the
dualities described in Section 3, our examples yield maximum evasive subspaces for many
other parameters as well.

2 General properties and existence results

In this section we prove basic properties of evasive subspaces and present some construction
methods. Some of these results are inductive and depend on already existing constructions
as an input. We start by presenting the simplest construction of scattered subspaces w.r.t.
hyperplanes. They correspond to MRD-codes known as Gabidulin codes, see [25, Section
3.2].
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Example 2.1. If n ≥ r, then the n-dimensional Fq-subspace

{(x, xq, . . . , xqr−1

) : x ∈ Fqn}

is maximum (r − 1, r − 1)q-evasive in Frqn.

The following example defines subgeometries PG(r, qm) in PG(r, qn).

Example 2.2. If m | n then the mr-dimensional Fq-subspace

{(x1, x2, . . . , xr) : xi ∈ Fqm}

is (h,mh)q-evasive in Frqn for each h.

Next we collect what is known about maximum (h, h)q-evasive subspaces.

Result 2.3. 1. If h + 1 | r and n ≥ h + 1, then maximum (h, h)q-evasive subspaces of
V (r, qn) have dimension rn/(h+ 1), cf. [10, Theorem 2.7];

2. if rn is even, then maximum (1, 1)q-evasive subspaces of V (r, qn) have dimension rn/2,
cf. [3, 5, 6, 9];

3. if rn is even, then maximum (n−3, n−3)q-evasive subspaces of V (r(n−2)/2, qn) have
dimension rn/2, cf. [10, Corollary 3.5];

4. in V (r, qn) the h-scattered subspaces of dimension rn/(h+ 1) are (r − 1, rn/(h+ 1)−
n+ h)q-evasive, cf. [6] for h = 1 and [10] for h > 1.

Next recall Examples 2.4 and 2.5 of Guruswami [14, Section B] which are special (linear)
cases of the construction of Dvir and Lovett [12, Theorem 3.2]. Suppose n ≥ r and take
distinct elements γ1, γ2, . . . , γr ∈ F∗qn . For 1 ≤ i ≤ h define

fi(x1, x2, . . . , xr) =
r∑
j=1

γijx
qr−j

j .

Example 2.4. The Fq-subspace

VFqn
(f1, f2, . . . , fh) := {(x1, x2, . . . , xr) : fi(x1, x2, . . . , xr) = 0 for i = 1, . . . , h}

is (k, (r − 1)k)q-evasive of dimension n(r − h) for every 1 ≤ k ≤ h < r in Frqn. The fact
that 〈VFqn

(f1, f2, . . . , fh)〉Fqn
= Frqn is left as an exercise. Note that when r = 2 (and hence

h = k = 1) then VFqn
(f1) is equivalent to Example 2.1.

Example 2.5. The direct sum of s copies of VFqn
(f1, f2, . . . , fh) in Frqn⊕. . .⊕Frqn ∼= V (rs, qn)

is a (k, (r − 1)k)q-evasive subspace of dimension sn(r − h) for every 1 ≤ k ≤ h < r.
Thus for every divisor m of r′, in V (r′, qn) there exist (k, (m − 1)k)q-evasive subspaces

of dimension nr′ − hnr′/m for every 1 ≤ k ≤ h < m.
Note that when m = 2 (and hence h = k = 1) we obtain maximum scattered subspaces

of V (r, qn), r even, which are direct sum of the maximum scattered subspaces of V (2, qn)
arising from Example 2.1. It is equivalent to the construction of Lavrauw [17, pg. 26].
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Proposition 2.6. If U is a (h, k)q-evasive subspace in V (r, qn), then it is also (h−s, k−s)q-
evasive.

Proof. It is enough to prove the result for s = 1 and then apply induction. Suppose for the
contrary that there exists an (h − 1)-dimensional Fqn-subspace H meeting U in at least qk

vectors. Since 〈U〉Fqn
is not contained in H, there exists u ∈ U \H and hence 〈u, H〉qn meets

U in at least qk+1 vectors, a contradiction.

Proposition 2.7. If there exists an (h, k)q-evasive subspace U of dimension t in V (r, qn),
then there also exists an (h, k+s)q-evasive subspace of dimension t+s for each 0 ≤ s ≤ rn−t.

Proof. Take w /∈ U . The Fq-subspace 〈U,w〉Fq is (h, k + 1)q-evasive of dimension t + 1.
Indeed, suppose for the contrary that there exist ui ∈ U such that

w + u1,w + u2, . . . ,w + uk+2,

are Fq-linearly independent elements contained in the same h-dimensional Fqn-subspace H of
V . Then u1 − uk+2,u2 − uk+2, . . . ,uk+1 − uk+2 are k+ 1 Fq-linearly independent elements
of U inH, contradicting the fact that U is (h, k)q-evasive. The result follows by induction.

In Proposition 2.7, starting from an evasive subspace of V (r, qn), we construct another
evasive subspace in the same vector space. In the next result we construct an evasive subspace
by enlarging an evasive subspace lying in a hyperplane of V (r, qn).

Proposition 2.8. If there exists an (r− 1, k)q-evasive subspace of dimension d in V (r, qn),
then for a positive integer s with d−k ≤ s ≤ n in V (r+1, qn) there exists an (r, k+s)q-evasive
subspace of dimension d+ s.

Proof. Let W be an (r− 1, k)q-evasive subspace of dimension d in V (r, qn). Embed V (r, qn)
as a hyperplane of V (r + 1, qn) and take a vector v /∈ V (r, qn). Let W ′ be an Fq-subspace
of 〈v〉qn of dimension s. The Fq-subspace W ⊕W ′ of V (r + 1, qn) will be sufficient for our
purposes.

Theorem 2.9. If Ui is an (h, ki)q-evasive subspace of Vi = V (ri, q
n) for i = 1, 2, then

U = U1 ⊕ U2 is (h, k1 + k2 − h)q-evasive in V = V1 ⊕ V2.

Proof. Recall that ki ≥ h, for i = 1, 2, as we explained after Definition 1.1. By way of
contradiction suppose that there exists an h-dimensional Fqn-subspace W of V such that

dimq(W ∩ U) ≥ k1 + k2 − h+ 1. (1)

Clearly, W cannot be contained in Vi since Ui is (h, ki)q-evasive in Vi and k1 + k2 − h + 1
is larger than both k1 and k2. Let W1 := W ∩ V1 and s := dimqn W1. Then s < h and by
Proposition 2.6, the Fq-subspace U1 is (s, k1 − h+ s)q-evasive in V1, thus

dimq(U1 ∩W1) ≤ k1 − h+ s. (2)

Denoting 〈U1,W ∩ U〉Fq by Ū1, the Grassmann formula yields

dimq Ū1 − dimq U1 = dimq(W ∩ U)− dimq(W ∩ U1)
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and hence by (1) and (2)

dimq Ū1 − dimq U1 ≥ (k1 + k2 − h+ 1)− (k1 − h+ s) = k2 + 1− s. (3)

Consider the subspace T := W + V1 of the quotient space V/V1 ∼= V2. Then dimqn T = h− s
and T contains the Fq-subspace M := Ū1 +V1. Since M is also contained in the Fq-subspace
U +V1 = U2 +V1 of V/V1, then M is (h, k2)q-evasive in V/V1 and hence also (h− s, k2− s)q-
evasive. Hence dimq(M ∩ T ) ≤ k2 − s.

On the other hand,

dimq(M ∩ T ) = dimqM = dimq Ū1 − dimq(Ū1 ∩ V1) ≥

dimq Ū1 − dimq(U ∩ V1) = dimq Ū1 − dimq U1,

and hence, by (3),
k2 − s ≥ dimq(M ∩ T ) ≥ k2 + 1− s;

a contradiction.

Note that Example 2.5 is obtained from Example 2.4 by considering direct sum of (h, (r−
1)h)q-evasive subspaces so that their sum is evasive with the same parameters. By Theorem
2.9 we would get only an (h, (r− 1)h+ (r− 2)h)q-evasive subspace. The reason behind this
is the additional property of Example 2.4, i.e. the fact that it is (k, (r − 1)k)q-evasive for
each 1 ≤ k ≤ h. Assuming a similar hypothesis, and copying either the proof of Theorem
2.9 or the proof of [12, Claim 3.4] one can prove the following.

Theorem 2.10. If Ui is a (t, λt)q-evasive subspace of Vi = V (ri, q
n) with i = 1, 2 for each

1 ≤ t ≤ h and for some positive integer λ, then U = U1⊕U2 is (t, λt)q-evasive in V = V1⊕V2
for each 1 ≤ t ≤ h.

With V = 1 then the result above states that the direct sum of two t-scattered subspaces
is again t-scattered, see [10, Theorem 2.5]. When h = 1 then Theorem 2.10 is just a special
case of the following result, which also improves on Theorem 2.9.

Theorem 2.11. If Ui is a (1, ki)q-evasive subspace of Vi = V (ri, q
n) for i = 1, 2, then

U = U1 ⊕ U2 is a (1,max{k1, k2})q-evasive subspace of V = V1 ⊕ V2.

Proof. W.l.o.g. assume k2 ≥ k1 and put dimq Ui = di for i = 1, 2. Suppose for the contrary
that in V there exists a one-dimensional Fqn-subspace X such that dimq(U ∩X) ≥ k2 + 1.
Clearly, X /∈ V1 ∪ V2. Consider the (r1 + 1)-dimensional Fqn-subspace T := 〈V1, X〉Fqn

.
Then Y := T ∩ V2 is a one-dimensional Fqn-subspace. Now consider the Fq-subspace T ′ :=
〈U1, X ∩ U〉Fq . By our assumption on X, dimq T

′ ≥ d1 + k2 + 1. Then

dimq〈T ′, U2〉+ dimq(T
′ ∩ U2) = dimq T

′ + dimq U2.

Since 〈T ′, U2〉Fq = U , this yields dimq(T
′ ∩U2) ≥ k2 + 1. Also, from T ≥ T ′ and V2 ≥ U2, we

have Y = T ∩ V2 ≥ T ′ ∩ U2 and hence the one-dimensional Fqn-subspace Y meets U2 in an
Fq-subspace of dimension at least k2 + 1, a contradiction.
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3 Dualities on evasive subspaces

3.1 “Ordinary” dual of evasive subspaces

Let σ : V × V −→ Fqn be a non-degenerate reflexive sesquilinear form on V = V (r, qn) and
define

σ′ : (u,v) ∈ V × V → Trqn/q(σ(u,v)) ∈ Fq, (4)

where Trqn/q denotes the trace function of Fqn over Fq. Then σ′ is a non-degenerate reflexive
sesquilinear form on V , when V is regarded as an rn-dimensional vector space over Fq. Let
τ and τ ′ be the orthogonal complement maps defined by σ and σ′ on the lattices of the
Fqn-subspaces and Fq-subspaces of V , respectively. Recall that if R is an Fqn-subspace of V
and U is an Fq-subspace of V then U τ ′ is an Fq-subspace of V , dimqn R

τ + dimqn R = r and
dimq U

τ ′ + dimq U = rn. It easy to see that Rτ = Rτ ′ for each Fqn-subspace R of V (for
more details see [28, Chapter 7]).

Also, U τ ′ is called the dual of U (w.r.t. τ ′). Up to ΓL(r, qn)-equivalence, the dual of an
Fq-subspace of V does not depend on the choice of the non-degenerate reflexive sesquilinear
forms σ and σ′ on V . For more details see [22]. If R is an s-dimensional Fqn-subspace of V
and U is a t-dimensional Fq-subspace of V , then

dimq(U
τ ′ ∩Rτ )− dimq(U ∩R) = rn− t− sn. (5)

From the previous equation the next result immediately follows.

Proposition 3.1. Let U be a t-dimensional (h, k)q-evasive subspace in V = V (r, qn), with
k < hn. Then U τ ′ is an (rn− t)-dimensional (r − h, (r − h)n + k − t)q-evasive subspace in
V .

Proof. From (5) it follows that the (r−h)-dimensional Fqn-subspaces meet U τ ′ in subspaces
of dimension at most (r− h)n+ k − t. The only thing to prove is the fact that 〈U τ ′〉Fqn

has
dimension at least r− h. If this was not true then one could find an (r− h− 1)-dimensional
Fqn-subspace containing U τ ′ and hence also an (r− h)-dimensional Fqn-subspace containing
U τ ′ . Such a subspace would meet U τ ′ in an Fq-subspace of dimension rn− t which is larger
than (r − h)n+ k − t, a contradiction.

Note that in Proposition 3.1 the condition k < hn is not very restrictive since with
k ≥ hn each Fq-subspace of V is (h, k)q-evasive.

Corollary 3.2. Let U be a t-dimensional (h, qh)-evasive subspace in V = V (r, qn) with
t > h. If dimqn〈U τ ′〉Fqn

≥ r−h, then U τ ′ is maximum (r−h, (r−h)n+h− t)q-evasive with
dimension rn− t.

Proof. Suppose for the contrary that there exists an (rn−t+1)-dimensional (r−h, (r−h)n+
h− t)q-evasive subspace W in V . Then dimqW

τ ′ = t− 1 and W τ ′ meets the h-dimensional
Fqn-subspaces of V in Fq-subspaces of dimension at most h− 1. Thus dimqW

τ ′ ≤ h− 1. It
means that t ≤ h, a contradiction.
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3.2 Delsarte dual of evasive subspaces

In this section we follow [10, Section 3]. Let U be a t-dimensional Fq-subspace of a vector
space V = V (r, qn), with t > r. By [21, Theorems 1, 2] (see also [20, Theorem 1]), there is an
embedding of V in V = V (t, qn) with V = V ⊕Γ for some (t−r)-dimensional Fqn-subspace Γ
such that U = 〈W,Γ〉Fq ∩ V , where W is a t-dimensional Fq-subspace of V, 〈W 〉Fqn

= V and
W ∩Γ = {0}. Then the quotient space V/Γ is isomorphic to V and under this isomorphism
U is the image of the Fq-subspace W + Γ of V/Γ.

Now, let β′ : W ×W → Fq be a non-degenerate reflexive sesquilinear form on W . Then β′

can be extended to a non-degenerate reflexive sesquilinear form β : V×V→ Fqn . Let ⊥ and
⊥′ be the orthogonal complement maps defined by β and β′ on the lattice of Fqn-subspaces
of V and of Fq-subspaces of W , respectively. For an Fq-subspace S of W the Fqn-subspace
〈S〉Fqn

of V will be denoted by S∗. In this case (S∗)⊥ = (S⊥
′
)∗.

The next result and definition come from [10, Proposition 3.1 and Definition 3.2].

Proposition 3.3. Let W , V , Γ, V, ⊥ and ⊥′ be defined as above. If U is a t-dimensional
(h, t− r + h− 1)q-evasive subspace of V with t > r, then W + Γ⊥ is a subspace of V/Γ⊥ of
dimension at least (t− r+h+ 1) (and at most t) over Fq. If h is maximal with this property
then W + Γ⊥ has dimension exactly t− r + h+ 1.

Proof. As described above, U turns out to be isomorphic to the Fq-subspace W + Γ of the
quotient space V/Γ. Also, an h-dimensional Fqn-subspace of V/Γ corresponds to a (t−r+h)-
dimensional Fqn-subspace of V containing Γ. Hence, dimq(H ∩W ) ≤ t− r + h− 1 for each
(t− r+ h)-dimensional subspace H of V containing Γ. Next we prove that the dimension of
W ∩ Γ⊥ is at most r − h− 1. Indeed, by way of contradiction, suppose that there exists an
Fq-subspace S of dimension r−h in W ∩Γ⊥. Then the (t− r+h)-dimensional Fqn-subspace
(S∗)⊥ of V contains the subspace Γ and meets W in the (t− r+h)-dimensional Fq-subspace
S⊥
′
, a contradiction. It follows that the dimension of W + Γ⊥ is at least t− (r − h− 1).
Finally, if h is maximal with the property of the statement, then there exists an (h+ 1)-

dimensional Fqn-subspace M of V meeting U in an Fq-subspace of dimension at least t− r+
h+ 1. Then M corresponds to a (t− r + h+ 1)-dimensional subspace H of V containing Γ
such that dimq(H ∩W ) ≥ t − r + h + 1. Then H⊥ is an (r − h − 1)-dimensional subspace
contained in Γ⊥ and intersecting W in the (r − h− 1)-dimensional Fq-subspace (H ∩W )⊥

′
.

It follows that the dimension of W ∩ Γ⊥ is at least r − h − 1 and hence the dimension of
W + Γ⊥ is at most t − (r − h − 1). Combining with the lower bound on the dimension of
W + Γ⊥ the result follows.

Definition 3.4. Let U be a t-dimensional Fq-subspace of V = V (r, qn). Then the Fq-
subspace W + Γ⊥ of the quotient space V/Γ⊥ = V (t− r, qn) will be denoted by Ū and it is
the Delsarte dual of U (w.r.t.⊥).

Arguing as in [10, Remark 3.7] one can show that up to ΓL(t − r, qn)-equivalence, the
Delsarte dual of an Fq-subspace of V does not depend on the choice of the non-degenerate
reflexive sesquilinear forms β′ and β on W and V, respectively.

One can adapt the proof of [10, Theorem 3.3] and give the following generalization.
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Theorem 3.5. Let U be a t-dimensional (h, k)q-evasive subspace of a vector space V =
V (r, qn) with r < t, k < t− r+h−1. Then the (t− r+h−k−1)-dimensional Fqn-subspaces
meet Ū in Fq-subspaces of dimension at most t−k−2. In particular, if 〈Ū〉Fqn

has dimension
at least t − r + h − k − 1 then Ū is a (t − r + h − k − 1, t − k − 2)q-evasive subspace of
dimension at least t− r + h+ 1 in V/Γ⊥ = V (t− r, qn).

Proof. By Proposition 3.3, Ū = W + Γ⊥ has dimension at least t − r + h + 1 in V/Γ⊥. By
way of contradiction, suppose that there exists a (t−r+h−k−1)-dimensional Fqn-subspace
of V/Γ⊥, say M , such that

dimq(M ∩ Ū) ≥ t− k − 1. (6)

Then M = H + Γ⊥, for some (t + h − k − 1)-dimensional Fqn-subspace H of V containing
Γ⊥. For H, by (6), it follows that dimq(H ∩W ) = dimq(M ∩ Ū) ≥ t− k − 1.

Let S be an (t−k−1)-dimensional Fq-subspace of W contained in H and let S∗ := 〈S〉Fqn
.

Then, dimqn S
∗ = t− k − 1,

S⊥
′
= W ∩ (S∗)⊥ and S⊥

′ ⊂ (S∗)⊥ = 〈S⊥′〉Fqn
. (7)

Since S ⊆ H ∩W and Γ⊥ ⊂ H, we get S∗ ⊂ H and H⊥ ⊂ Γ, i.e.

H⊥ ⊆ Γ ∩ (S∗)⊥. (8)

From (8) it follows that dimqn
(
Γ ∩ (S∗)⊥

)
≥ dimqn H

⊥ = k − h+ 1. This implies that

dimqn〈Γ, (S∗)⊥〉qn = dimqn Γ + dimqn(S∗)⊥ − dimqn
(
Γ ∩ (S∗)⊥

)
≤ t− r + h

and hence 〈Γ, (S∗)⊥〉Fqn
is contained in a (t− r+ h)-dimensional T space of V containing Γ.

Also, dimq(S
⊥′) = dimqW − dimq S = k + 1 and, by (7), we get

S⊥
′
= W ∩ (S∗)⊥ ⊆ W ∩ T.

Then T̂ := T ∩ V is an h-dimensional subspace of V and, by recalling U = 〈W,Γ〉Fq ∩ V ,

dimq(T̂ ∩ U) = dimq(T ∩W ) ≥ dimq(S
⊥′) = k + 1,

contradicting the fact that U is (h, k)q-evasive.

Remark 3.6. Note that 〈Ū〉Fqn
has dimension at least t− r+ h− k− 1 whenever dimq Ū >

t− k − 2, which clearly holds when k + h+ 3 > r.

4 On the size of maximum evasive subspaces

In this section we determine upper bounds on the dimension of maximum evasive subspaces
and in some cases we show the sharpness of our results.

We will need the following Singleton-like bound of Delsarte which can be proved easily
by the pigeonhole principle.

Result 4.1. Let C be an additive subset of HomFq(U, V ) where dimq U = m and dimq V = n
such that non-zero maps of C have rank at least δ. Then |C| ≤ qmin{m,n}(max{m,n}−δ+1).
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Theorem 4.2. Let U be an (r − 1, k)q-evasive subspace of V = V (r, qn).

1. If k < (r − 1)n then dimq U ≤ n+ k − 1.

2. If k < r − 2 + n/(r − 1) then dimq U ≤ n+ k − r + 1.

Proof. By definition, dimqn〈U〉qn ≥ r− 1. First assume dimqn〈U〉qn = r− 1. Then dimq U ≤
k ≤ n+k−1 proving the first part. Since k ≥ r−1, the condition of the second part implies
n > r − 1 and hence dimq U ≤ k < n+ k − r + 1 proving the second part.

Thus from now on we assume dimqn〈U〉qn = r. Fix an Fqn-basis in V and for x ∈ V
denote the i-th coordinate w.r.t. this basis by xi. For a = (a0, . . . , ar−1) ∈ Frqn define the

Fq-linear map Ga : x ∈ U 7→
∑r−1

i=0 aixi ∈ Fqn and put CU := {Ga : a ∈ Frqn}.
Let d denote the dimension of U over Fq. First we show that the non-zero maps of CU

have rank at least d − k. Indeed, if a 6= 0, then u ∈ kerGa if and only if
∑r−1

i=0 aiui =
0, i.e. kerGa = U ∩ H, where H is the hyperplane [a0, a1, . . . , ar−1] of V . Since U is
(r− 1, k)q-evasive, it follows that dim kerGa ≤ k and hence the rank of Ga is at least d− k.
Next we show that any two maps of CU are different. Suppose for the contrary Ga = Gb,
then Ga−b is the zero map. If a− b 6= 0, then U would be contained in the hyperplane
[a0 − b0, a1 − b1, . . . , ar−1 − br−1], a contradiction since 〈U〉Fqn

= V . Hence, |CU | = qnr.
The elements of CU form an nr-dimensional Fq-subspace of HomFq(U,Fqn) and the non-

zero maps of CU have rank at least d− k. By Result 4.1 we get |CU | = qrn ≤ qd(n−d+k+1) and
hence

rn ≤ d(n− d+ k + 1). (9)

To prove the first part, suppose for the contrary d ≥ n + k. Substituting in (9) gives
rn ≤ n+ k and hence (r − 1)n ≤ k, contradicting our assumption.

To prove the second part, suppose for the contrary d ≥ n + k − r + 2. By (9) we get
rn ≤ rn+ kr− r2 + 2r− n− k+ r− 2 and hence r− 2 + n/(r− 1) ≤ k, a contradiction.

Motivated by the proof of [24, Lemma 1], we present another bound which also implies
the first bound in Theorem 4.2.

Theorem 4.3. Let U be an (h, k)q-evasive subspace of V = V (r, qn). Then

|U | ≤ (qk − 1)(qrn − 1)

qhn − 1
+ 1.

Proof. First note that the number of h-dimensional Fqn-subspaces of V is the Gaussian
binomial coefficient (

r

h

)
qn

=
(qrn − 1)(qrn − qn) . . . (qrn − q(h−1)n)

(qhn − 1)(qhn − qn) . . . (qhn − q(h−1)n)
.

The number of h-dimensional Fqn-subspaces of V containing a fixed non-zero vector x is(
r

h

)
qn

qhn − 1

qrn − 1
.
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Consider the pairs (x, H), where H is an h-dimensional subspace of V and x is a vector of
H. Then 0 is contained in every h-dimensional Fqn-subspace and hence double counting the
pairs above yields (

r

h

)
qn

+ (|U | − 1)

(
r

h

)
qn

qhn − 1

qrn − 1
≤ qk

(
r

h

)
qn
,

and the assertion follows.

Corollary 4.4 (First bound in Theorem 4.2). Let U be (r−1, k)q-evasive with k < (r−1)n.
Then dimq U ≤ n+ k − 1.

Proof. In Theorem 4.3 put h = r − 1. Then

|U | ≤ (qk − 1)(qrn − 1)

qrn−n − 1
+ 1

follows. Since |U | is a q-power, to prove our assertion, it is enough to show

(qk − 1)(qrn − 1)

qrn−n − 1
+ 1 < qn+k.

After rearranging, this is equivalent to

q−n (qn − 1)
(
qnr − qk+n

)
> 0,

which clearly holds since k < (r − 1)n.

In the next result we show that the second bound of Theorem 4.2 is sharp.

Proposition 4.5. If k < r−2+ n
r−1 then in V (r, qn) there exist maximum (r−1, k)q-evasive

subspaces of dimension n+ k − r + 1.

Proof. From the assumption on k, we get k ≤ n + r − 1. Let W be an n-dimensional
(r − 1, r − 1)q-evasive subspace of V (r, qn), cf. Example 2.1 (note that n ≥ r follows from
k ≥ r − 1) and W ′ be an Fq-subspace of dimension k − r + 1 contained in a 1-dimensional
Fqn-subspace 〈v〉Fqn

of V (r, qn), with 〈v〉Fqn
∩W = {0}. Then the direct sum W ⊕W ′ is an

(r − 1, k)q-evasive subspace of dimension n+ k − r + 1.

In the next result we show that the first bound of Theorem 4.2 is sharp when k ≥
(r − 2)(n− 1) + 1.

Proposition 4.6. If k ≥ (r − 2)(n− 1) + 1, then in V (r, qn) there exist (r − 1, k)q-evasive
subspaces of dimension n+ k − 1.

Proof. If r = 2 and k = n then V (2, qn) is (1, n)q-evasive of dimension 2n. If r = 2 and k < n
then the result follows from Proposition 4.5. From now on assume r > 2. By Proposition 2.8
with d = n and s = n− 1, starting from a maximum (1, 1)q-evasive subspace in V (2, qn), we
get a (2, n)q-evasive subspace of dimension 2n−1 in V (3, qn). Continuing with this process it
is possible to construct an (r−1, (r−2)(n−1)+1)q-evasive subspace in V (r, qn) of dimension
(r−1)(n−1)+1. By Proposition 2.7 the result follows for k > (r−2)(n−1)+1 as well.
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When rn is even then we can prove the sharpness of the first bound of Theorem 4.2 also
for smaller values of k.

Proposition 4.7. If there exists a t-dimensional scattered subspace in V (r, qn) then there
exists an (r − 1, (r − 1)n + 1− t)q-evasive subspace of dimension (rn− t). In particular, if
rn is even and k ≥ rn/2− n+ 1 then there exist (r − 1, k)q-evasive subspaces of dimension
n+ k − 1.

Proof. The first part follows from Proposition 3.1. The second part follows from the fact
that when rn is even then there exist scattered subspaces of dimension rn/2, cf. Result 2.3,
and from Proposition 2.7.

The first case when we do not know the sharpness of Theorem 4.2 is when r = 3, n = 5
and k = 4. In this case our bound states that the dimension of an (2, q4)-scattered subspace
is at most 8. The existence of such subspaces will follow from the results of Section 5 and
Proposition 4.7 for infinitely many values of q.

To prove the next result, we follow some of the ideas of the proof of [10, Theorem 2.3].

Theorem 4.8. Suppose that there exists a d2-dimensional (h1 − 1, k2)q-evasive subspace W
in V (h1, q

n). Let U be a d1-dimensional (h1, k1)q-evasive subspace of V = V (r, qn) with
d2 + h1 − k2 − 1 > k1. Then

d1 ≤ rn− rnh1
d2

. (10)

Proof. Take W in Fh1qn = V (h1, q
n), as in the assertion. Let G be an Fq-linear transformation

of V with kerG = U . Clearly, dimq ImG = rn − d1. For each (u1, . . . ,uh1) ∈ V h1 consider
the Fqn-linear map

τu1,...,uh1
: (λ1, . . . , λh1) ∈ W 7→ λ1u1 + . . .+ λh1uh1 ∈ V.

Consider the following set of Fq-linear maps

C := {G ◦ τu1,...,uh1
: (u1, . . . ,uh1) ∈ V h1}.

Our aim is to show that these maps are pairwise distinct and hence | C | = qrnh1 . Suppose
G ◦ τu1,...,uh1

= G ◦ τv1,...,vh1
. It follows that G ◦ τu1−v1,...,uh1

−vh1
is the zero map, i.e.

λ1(u1 − v1) + . . .+ λh1(uh1 − vh1) ∈ kerG = U for each (λ1, . . . , λh1) ∈ W. (11)

For i ∈ {1, . . . , h1} put zi = ui−vi, then T := 〈z1, . . . , zh1〉qn with dimqn T = t. We want to
show that t = 0.

First assume t = h1. By (11)

{λ1z1 + . . .+ λh1zh1 : (λ1, . . . , λh1) ∈ W} ⊆ T ∩ U,

and t = h1 yields dimq(T ∩ U) ≥ dimqW = d2 ≥ k1 + 1 (because of our assumption on k1
and from k2 ≥ h1− 1), which is not possible since T is an h1-dimensional Fqn-subspace in V
and U is (h1, k1)q-evasive.
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Next assume 1 ≤ t ≤ h1−1. W.l.o.g. we can assume T = 〈z1, . . . , zt〉qn . Let Φ: Fh1qn → T
be the Fqn-linear map defined by the rule

(λ1, . . . , λh1) 7→ λ1z1 + . . .+ λh1zh1

and let Φ̄ be the restriction of Φ on W ≤ Fh1qn . It can be easily seen that

dimqn ker Φ = h1 − t and ker Φ̄ = ker Φ ∩W. (12)

Also, by (11)
Im Φ̄ ⊆ T ∩ U. (13)

By Proposition 2.6, W is also an (h1− t, k2− t+1)q-evasive subspace in Fh1qn and hence taking
(12) into account we get dimq ker Φ̄ ≤ k2 − t+ 1, which yields

dimq ImΦ̄ ≥ d2 − (k2 − t+ 1). (14)

By Proposition 2.6, U is also a (t, k1 − h1 + t)q-evasive subspace in V , thus by (13) we get
dimq ImΦ̄ ≤ k1 − h1 + t, contradicting (14).

Thus we proved t = 0, i.e. zi = 0 for each i ∈ {1, . . . h1} and hence | C | = qrnh1 . The

trivial upper bound for the size of C is the size of Fd2×(rn−d1)q and the result follows.

Then we obtain the following result which for k < n slightly generalizes [10, Theorem
2.3].

Corollary 4.9. If k < n and U is an (h, k)q-evasive subspace in V (r, qn), then

dimq U ≤ rn− rnh

k + 1
. (15)

Proof. Note that in V (h, qn) there exist (h−1, h−1)q-evasive subspaces of dimension k+1 ≤
n, cf. Result 2.3. Then the result follows from Theorem 4.8 with k1 = k, h1 = h, d2 = k + 1
and k2 = h− 1.

5 Maximum evasive subspaces of V (3, qn), n ≤ 5

Let U be a maximum (h, k)q-evasive subspace of V = V (r, qn). In this section we investigate
the size of U for small values of r and n. First recall h ≤ k. We will also assume h < r and
k < nh since an h-dimensional Fqn-subspace has dimension nh over Fq. If k = nh, then the
whole vector space V (r, qn) is (h, k)q-evasive.

If r = 2, then h = 1 and k < n. By Theorem 4.2 dimq U is at most n + k − 1 and this
bound is sharp, c.f. Example 4.6.

From now on assume r = 3. Then h is 1 or 2. First note that when h = k = 1, i.e. U
is scattered, then the bound 3n/2 can be reached for n even, cf. Result 2.3. If h = 2 and
n ≤ k < 2n, then by Theorem 4.2 the dimension of U is at most n+k−1 and by Proposition
4.6 this bound can be reached. So from now on, we omit the discussion of these cases. It
also means that we may assume n ≥ 3.

Recall that if U has dimension t over Fq then the dual of U is (r − h, (r − h)n+ k − t)q-
evasive of dimension rn− t in V (r, qn).
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• Case n = 3.

If h = k = 1, then U has dimension at most 4 and such examples can be easily obtained
by taking the Fq-span of a maximum scattered subspace in L = V (2, q3) ≤ V and a
vector v ∈ V \ L.

If h = 1 and k = 2 then Corollary 4.9 gives dimq U ≤ 6 and the dual of Example 2.2
with m = 1 reaches this bound.

If h = 2 and k = 2 then Corollary 4.9 gives dimq U ≤ 3 and Example 2.2 with m = 1
reaches this bound.

• Case n = 4.

If h = 1 and k = 2 then Corollary 4.9 gives dimq U ≤ 8, and this can be reached as
the dual of Example 2.1.

If h = 1 and k = 3 then Corollary 4.9 gives dimq U ≤ 9, and this can be reached
starting from the previous example, cf. Proposition 2.7.

If h = 2 and k = 2 then Corollary 4.9 gives dimq U ≤ 4, and this can be reached, see
Example 2.1.

If h = 2 and k = 3 then Theorem 4.2 gives dimq U ≤ 6, and it is reached by the
maximum scattered subspaces of V , cf. Result 2.3.

• Case n = 5.

If h = k = 1 then the Blokhuis–Lavrauw bound gives dimq U ≤ 7.

If h = 1 and k = 2 then Corollary 4.9 gives dimq U ≤ 10, and this can be reached as
the dual of Example 2.1.

If h = 1 and k = 3 then Corollary 4.9 gives dimq U ≤ 11, and this can be reached from
the previous example, cf. Proposition 2.7.

If h = 1 and k = 4 then Corollary 4.9 gives dimq U ≤ 12, and this can be reached from
the previous example, cf. Proposition 2.7.

If h = 2 and k = 2 then Corollary 4.9 gives dimq U ≤ 5, and this can be reached, cf.
Example 2.1.

If h = 2 and k = 3 then the second bound of Theorem 4.2 gives dimq U ≤ 6 and this
bound is sharp, cf. Proposition 4.5.

If h = 2 and k = 4 then the first bound of Theorem 4.2 gives dimq U ≤ 8.

We can see that the first open cases are when n = 5 and h = k = 1 or h = 2 and k = 4.
Note that if the bound in one of these two cases is reached then, by duality, the other bound
is sharp as well. In the last part of this paper our aim is to find 7-dimensional scattered
subspaces of V (3, q5). Then the dual of such a subspace is (2, 4)q-evasive of dimension 8.
Then by Theorem 3.5 and Remark 3.6 its Delsarte dual is an 8-dimensional 2-scattered
Fq-subspace in V (5, q5), which is maximum, by Corollary 4.9. Its dual is a (3, 9)q-evasive
subspace of dimension 17. Here we cannot use Corollary 4.9 since k = 9 and n = 5. However,
we know that it is maximum by Corollary 3.2.
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Maximum scattered subspaces of V (3, q5)

In this section our aim is to construct scattered subspaces of dimension 7 in V (3, q5). To
do this, we will work in Fq15 considered as a 3-dimensional vector space over Fq5 . Then
the one-dimensional Fq5-subspaces can be represented as follows: x ∈ 〈u〉Fq5

if and only if

x = λu for some λ ∈ Fq5 and hence xq
5−1 = uq

5−1. In particular, x is a root of xq
5 − dx with

d = uq
5−1. We proceed with the following steps.

(1) Find q-polynomials P (x) =
∑7

i=0 αix
qi ∈ Fq15 [x] with q7 roots in Fq15 . Then U :=

kerq P is an Fq-subspace of dimension 7.

(2) Apply [8, Theorem 2.1] to obtain conditions when P (x) has at most q common roots
with the polynomial xq

5 − dx for each d ∈ Fq15 with d1+q
5+q10 = 1. This is equivalent

to ask that dimq(〈u〉Fq5
∩ U) ≤ 1, where d = uq

5−1.

(3) Show that P (x) can be chosen such that these conditions are satisfied.

For some a, b ∈ Fq15 , aq
3
b 6= abq

3
put

Ra,b(x) = R(x) =

x xq
3
xq

6

a aq
3
aq

6

b bq
3

bq
6

 = xq
6

(abq
3 − aq3b) + xq

3

(aq
6

b− abq6) + x(aq
3

bq
6 − aq6bq3).

Then kerR = 〈a, b〉Fq3
has dimension 2 over Fq3 and hence dimension 6 over Fq. Take

any x̄ /∈ kerR and put c = R(x̄). Define

Pa,b,c(x) = P (x) = cR(x)q − cqR(x). (16)

Then P vanishes on 〈kerR, x̄〉Fq , i.e. on an Fq-subspace of dimension 7. The coefficients of
P (x) are:

α0 = −cq(aq3bq6 − aq6bq3), α1 = c(aq
4

bq
7 − aq7bq4), α2 = 0,

α3 = −cq(aq6b− abq6), α4 = c(aq
7

bq − aqbq7), α5 = 0,

α6 = −cq(abq3 − aq3b), α7 = c(aqbq
4 − aq4bq).

By [8, Theorem 2.1] U is scattered if and only if for each d ∈ Fq15 with d1+q
5+q10 = 1 the
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following two matrices are not singular at the same time:

αq
4

7 αq
4

6 0 αq
4

4 αq
4

3 0 αq
4

1 αq
4

0 0 0 0 0

0 αq
3

7 αq
3

6 0 αq
3

4 αq
3

3 0 αq
3

1 αq
3

0 0 0 0

0 0 αq
2

7 αq
2

6 0 αq
2

4 αq
2

3 0 αq
2

1 αq
2

0 0 0
0 0 0 αq7 αq6 0 αq4 αq3 0 αq1 αq0 0
0 0 0 0 α7 α6 0 α4 α3 0 α1 α0

1 0 0 0 0 −dq6 0 0 0 0 0 0

0 1 0 0 0 0 −dq5 0 0 0 0 0

0 0 1 0 0 0 0 −dq4 0 0 0 0

0 0 0 1 0 0 0 0 −dq3 0 0 0

0 0 0 0 1 0 0 0 0 −dq2 0 0
0 0 0 0 0 1 0 0 0 0 −dq 0
0 0 0 0 0 0 1 0 0 0 0 −d




αq
3

7 αq
3

6 0 αq
3

4 αq
3

3 0 αq
3

1 αq
3

0 0 0

0 αq
2

7 αq
2

6 0 αq
2

4 αq
2

3 0 αq
2

1 αq
2

0 0
0 0 αq7 αq6 0 αq4 αq3 0 αq1 αq0
0 0 0 α7 α6 0 α4 α3 0 α1

1 0 0 0 0 −dq5 0 0 0 0

0 1 0 0 0 0 −dq4 0 0 0

0 0 1 0 0 0 0 −dq3 0 0

0 0 0 1 0 0 0 0 −dq2 0
0 0 0 0 1 0 0 0 0 −dq
0 0 0 0 0 1 0 0 0 0


Theorem 5.1. Let h be a non-negative integer. Consider q = p15h+s, with gcd(s, 15) = 1
if p = 2, 3 and with s = 1 if p = 5. Then in V (3, q5) there exist scattered subspaces of
dimension 7.

Proof. We will prove that there exist a, b, c ∈ Fq15 with aq
3
b 6= abq

3
and c ∈ ImRa,b \ {0}

such that the kernel of Pa,b,c(x) as in (16) is scattered of dimension 7 in Fq15 .
First consider the case p = 2 and s = 1. Choose as a generator of F215 an element ξ

such that ξ15 + ξ5 + ξ4 + ξ2 + 1 = 0. Then put V = ξ31369. It can be verified with the help
of the Software MAGMA [7] that λ15 + λ + 1 = 0. Then for any element z ∈ F215 we have
zq = z2

15h+1
= z2. Set a = λ2, b = λ4 and

c := Ra,b(λ) = λ273 + λ266 + λ161 + λ140 + λ98 + λ84 = ξ8539 6= 0.
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Then the second matrix above, which we will call M(d), reads as

ξ3757 ξ22429 0 ξ17 ξ20559 0 ξ10610 ξ9472 0 0
0 ξ18262 ξ27598 0 ξ16392 ξ26663 0 ξ5305 ξ4736 0
0 0 ξ9131 ξ13799 0 ξ8196 ξ29715 0 ξ19036 ξ2368

0 0 0 ξ20949 ξ23283 0 ξ4098 ξ31241 0 ξ9518

1 0 0 0 0 dq
5

0 0 0 0

0 1 0 0 0 0 dq
4

0 0 0

0 0 1 0 0 0 0 dq
3

0 0

0 0 0 1 0 0 0 0 dq
2

0
0 0 0 0 1 0 0 0 0 dq

0 0 0 0 0 1 0 0 0 0


and its determinant is

detM(d) = ξ5977dq
4+q3+q2+q + ξ2592dq

3+q2+q + ξ4799dq
2+q + ξ8832dq

+ ξ4161dq
4+q3+q2 + ξ19121dq

4+q2 + ξ28007dq
4

+ ξ27801.

Next we prove detM(d) 6= 0 for each d ∈ Fq15 with dq
10+q5+1 = 1. To do this, we define the

following multivariate polynomial over the algebraic closure F2 of F2:

F0(D0, . . . , D14) := ξ5977D4D3D2D1 + ξ2592D3D2D1 + ξ4799D2D1 + ξ8832D1

+ ξ4161D4D3D2 + ξ19121D4D2 + ξ28007D4 + ξ27801 ∈ F2[D0, . . . , D14].

Clearly, detM(d) = F0(d, d
q, . . . , dq

14
). For i = 1, 2, . . . , 14 define Fi ∈ F2[D0, . . . , D14] as the

polynomial obtained from F0 by taking qi-th powers of its coefficients and by replacing Dj by
Dj+i (mod 15) for j = 0, 1, . . . , 14. Then, by d ∈ Fq15 , detM(d) = 0 yields Fi(d, d

q, . . . , dq
14

) =
0 for i = 0, 1, . . . , 14.

We first compute the ideal I generated by the polynomials Fi, i = 1, . . . , 14. Then
we compute the elimination ideal of I with respect to the variable D0, which is gen-
erated by G(D0) := D3

0 + ξ7925D2
0 + ξ24175D0 + ξ31682. The three roots of G(D0) are

ξ15773, ξ16482, ξ32194 and therefore putative values d ∈ Fq15 for which detM(d) = 0 belong

to S := {ξ15773, ξ16482, ξ32194} ⊂ F215 . Recall that d should also satisfy dq
10+q5+1 = 1 and,

since d ∈ S ⊂ F215 and q = 215h+1, this equation reads d2
10+25+1 = 1. None of the elements of

S is a (210+25+1)-th root of unity in F215 . This shows that detM(d) 6= 0 when dq
10+q5+1 = 1.

A similar argument applies to all the other cases. In particular, elements λ ∈ Fp15 for
p = 2, 3 and gcd(s, 15) = 1 are summarized in Table 1. As a notation, if p = 2 then ξ satisfies
ξ15 + ξ5 + ξ4 + ξ2 +1 = 0, whereas if p = 3 then ξ15 +2ξ8 + ξ5 +2ξ2 + ξ+1 = 0 holds. Finally,
for p = 5 and s = 1, the element λ = ξ24079949306, where ξ15 + 2ξ5 + 3ξ3 + 3ξ2 + 4ξ + 3 = 0,
can be chosen.

Remark 5.2. A computer search in MAGMA [7] shows that random 7-dimensional Fq-
subspaces in V (3, q5), for q = 2, 3, are in general not scattered. Indeed, we tested in total
5180000 and 3700 Fq-subspaces of dimension 7 in V (3, 25) and V (3, 35), respectively, and we
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found that 332477 (6.4%) and 625 (16.9%) of them are scattered. The number of subspaces
examined represents only a tiny part of the whole search space. However, our computations
seem to suggest that the property of being scattered is not so rare for 7-dimensional Fq-
subspaces in V (3, q5). On the other hand, such scattered subspaces are completely random
and a suitable description seems far from being reached.
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Canteaut, Gaëtan Leurent, Maria Naya-Plasencia, Apr 2015, Paris, France. hal-
01276222

[17] M. Lavrauw: Scattered Spaces with respect to Spreads and Eggs in Finite Pro-
jective Spaces, Ph.D. Thesis, 2001.

[18] M. Lavrauw: Scattered spaces in Galois Geometry, Contemporary Developments
in Finite Fields and Applications, 2016, 195–216.

[19] G. Lunardon: MRD-codes and linear sets, J. Combin. Theory Ser. A 149 (2017),
1–20.

[20] G. Lunardon, P. Polito and O. Polverino: A geometric characterisation of
linear k-blocking sets, J. Geom. 74 (1-2) (2002), 120–122.

[21] G. Lunardon and O. Polverino: Translation ovoids of orthogonal polar spaces,
Forum Math. 16 (2004), 663–669.

[22] O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310(22)
(2000), 3096–3107.
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