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A B S T R A C T   

In recent decades, eye-movement detection technology has improved significantly, and eye-trackers are available 
not only as standalone research tools but also as computer peripherals. This rapid spread gives further oppor-
tunities to measure the eye-movements of participants. The current paper provides classification models for the 
prediction of food choice and selects the best one. Four choice sets were presented to 112 volunteered partici-
pants, each choice set consisting of four different choice tasks, resulting in altogether sixteen choice tasks. The 
choice sets followed the 2-, 4-, 6- and 8-alternative forced-choice paradigm. Tobii X2-60 eye-tracker and Tobii 
Studio software were used to capture and export gazing data, respectively. After variable filtering, thirteen 
classification models were elaborated and tested; moreover, eight performance parameters were computed. The 
models were compared based on the performance parameters using the sum of ranking differences algorithm. 
The algorithm ranks and groups the models by comparing the ranks of their performance metrics to a predefined 
gold standard. Techniques based on decision trees were superior in all cases, regardless of the choice tasks and 
food product categories. Among the classifiers, Quinlan’s C4.5 and cost-sensitive decision trees proved to be the 
best-performing ones. Future studies should focus on the fine-tuning of these models as well as their applications 
with mobile eye-trackers.   

1. Introduction 

Our everyday life consists of a series of choices starting from 
choosing today’s outfit through buying breakfast at the bakery store, 
choosing a seat on the bus while heading to our workplace (and it is just 
8 a.m.). We make so many choices during a day that many times, we are 
not even aware of them. Among the many decisions, a frequently 
repeated one is the food choice, made in stores, hypermarkets, restau-
rants or even at home during a family dinner. The first action before 
making our decisions is visual contact with the alternatives. In this first 
step, the visual information about choice alternatives is collected 
through the eyes; hence, eye-movement detection gives us the first in-
formation about possible future choices. 

Eye-trackers are widely used to record and follow the eye- 
movements of participants in several research fields (Bojko, 2013; 
Holmqvist, Nyström, Andersson, & van de Weijer, 2011). A book chapter 
by Duerrschmid and Danner (2018) introduces the eye-tracking appli-
cations to consumer researchers in detail. Food choice is being actively 
investigated using eye-tracking in order to describe the connections 
among eye-movement variables and food choice (see e.g., Bialkova, 

Grunert, & van Trijp, 2020; Jantathai, Danner, Joechl, & Dürrschmid, 
2013). 

Choices (and therefore food choices) are determined by several fac-
tors, usually grouped into bottom-up and top-down ones. Bottom-up 
(exogenous or stimulus-driven) factors come from the presented stim-
uli (number, order, saliency, etc.), while top-down (endogenous or goal- 
driven) factors are related to the task. It has been introduced that during 
a decision task, the chosen alternative receives greater visual attention 
in terms of longer fixation and dwell duration as well as more fixation 
and dwell counts. Additionally, the attentional drift-diffusion model 
even states that the alternative that received the last fixation is probably 
the chosen (Krajbich, Armel, & Rangel, 2010). 

It has been recently introduced that duration metrics do not show 
significant differences among choice sets, when a lower number of al-
ternatives (2–5) are presented. When the number of alternatives is 
higher than six, significantly longer fixations/dwells and more fixation/ 
dwell counts are needed to choose one alternative. The same results 
were registered in the case of decision times, too (Gere et al., 2020). 

van der Laan, Hooge, De Ridder, Viergever, and Smeets (2015) 
showed that the first fixation did not influence the choice regardless of 
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the type of stimuli (food or non-food). The authors systematically altered 
the position of the first fixation by placing the fixation cross (calibration 
sign before the stimuli is presented) in the middle (control group), left or 
right of the stimuli. Additionally, the authors showed that the chosen 
product received the greatest visual attention. The greater visual 
attention was linked to the task and not to the preference since longer 
fixations were observed in tasks where participants chose the most and 
least liked alternatives. 

Strong correlations among eye-movement variables and food choice 
have been reported in a four-alternative forced-choice test study. Eight 
choice sets were used as stimuli, all presenting four alternatives to the 
participants. As a general result, a strong correlation between eye- 
movement variables and food choice was present in all cases, regard-
less of the type of the presented food stimuli (Danner et al., 2016). 

The results presented by Danner et al. (2016) were used to develop 
prediction models to uncover the underlying patterns present in eye- 
tracking data. Thirteen classification models were tested: decision 
trees are the best option to predict the chosen alternative from the 
presented four. The prediction models were able to capture the pattern 
among eye-movement variables and food choice and showed good 
prediction accuracies, regardless of the type of stimuli (Gere et al., 
2016). 

The above-mentioned studies all agree on the fact that there is a close 
relationship between eye-tracking variables and food choice, and this 
relationship can be used to build prediction models. However, these 
studies have been limited to a four-alternative forced-choice task. 
Whether these results are general to a higher (or lower) number of al-
ternatives has not been analyzed yet. The lack of this information does 
not enable us to define the best models, which would be essential before 
running tests with a high number of participants. With such data set 
(different choice tasks completed by a high number of participants) we 
would have the possibility to analyze the role of the eye-tracking metrics 
(e.g. fixation duration/count, visit duration/count etc.) in choice mak-
ing. We intend to introduce the last step before such study; therefore, the 
main aim of this research is to fill the previously mentioned gap in the 
analysis of different number of alternatives and to apply thirteen pre-
diction models on eye-tracking data sets obtained from two-, four-, six-, 
and eight alternative forced-choice tests. The higher numbers of alter-
natives to be chosen produce a high amount of data, which, in turn, 
provides a possibility to conduct a detailed statistical analysis with 
multiple validation steps. Moreover, we intended to determine which 
prediction models are better suited to the given task and how they are 
grouping together (i.e. which one(s) can be substituted with the other 
(s)). 

2. Materials and methods 

2.1. Eye-tracking experiment 

A multi-alternative forced-choice paradigm was applied without a 
time limit. Seventeen choice tasks were presented to the participants. 
The first choice set was used as a warm-up to familiarize the participants 
with the procedure; hence, it was not included in the data analysis. The 
remaining sixteen choice tasks were ordered into four choice sets, 
introducing two, four, six and eight alternatives, each representing 
different food product categories. The presented pictures were selected 
based on a pilot study of 102 students of the Szent István University. 
Students were asked to rate their familiarity and liking of the presented 
pictures. Collections of images showing no significant differences were 
chosen as stimuli for the main study. The presented stimuli can be found 
in the supplementary material. 

A Tobii Pro X2-60 screen-based eye-tracker (Tobii Technology AB, 
Sweden) (60 Hz) and Tobii Studio software (version 3.0.5, Tobii Tech-
nology AB, Sweden) were used to present the stimuli and to analyze the 
gazing behavior of the 112 volunteered participants (58 males and 54 
females aged between 18 and 36) during the study. Participants reported 

no eye disorders/diseases (e.g. colour vision deficiency), and for par-
ticipants having glasses or contact lenses, the followings were 
controlled: i) internal reflections by lighting in the room, ii) glasses 
moving on the participants, iii) too strong (+/− 6 or more) lens cor-
rections and iv) frame occludes the eye-image. Participants wearing bi- 
or varifocal lenses were excluded (Tobii, 2020). 

The stimuli were presented on a BenQ BL3200PT 32′′ LED monitor 
(1920 × 1080 pixel resolution). Individual calibration was performed 
using a 5-point calibration method (Samant & Seo, 2016; Zhang & Seo, 
2015), and participants were asked to sit about 60 cm from the eye- 
tracker. I-VT (identification by velocity threshold) filter method was 
used that incorporated interpolation across gaps (75 ms), reduced noise 
(median), used velocity threshold at 30◦/s, merged adjacent fixations 
(<0.5◦) between fixations (<75 ms) and discarded short fixations (<60 
ms). The areas of interest (AOIs) were defined as the alternatives 
themselves, and the size of alternatives were set to maximize their size 
on the screen (Fiedler, Schulte-Mecklenbeck, Renkewitz, & Orquin, 
2020). 

Participants of the eye-tracking study were instructed to choose the 
alternative, which appeals to them the most from the presented ones 
without any time limit. The same design was used in our previous work 
(Gere et al., 2016). First, a black fixation cross was presented to the 
participants for three seconds in the middle of the screen, then the 
decision-making screen with the alternatives. As soon as the participant 
made his/her decision, they clicked once with the left mouse button, and 
the cursor immediately appeared on the screen. Using the cursor, par-
ticipants clicked on the chosen alternative and moved on to the next 
choice set, starting with the fixation cross (Danner et al., 2016; Gere 
et al., 2016). Decision tasks were randomized, and all participants rated 
all tasks. Data quality of the recordings was evaluated after the sessions; 
therefore, if low quality of data was achieved, the recording has been 
removed from further analysis. Gaze sample (the percent is calculated by 
dividing the number of eye tracking samples with usable gaze data that 
were correctly identified, by the number of attempts) and weighted gaze 
sample (the percent is calculated by dividing the number of eye-tracking 
samples that were correctly identified, by the number of attempts.) were 
calculated by Tobii Studio software and were used as a quality check. In 
case a participant provided lower than 90% on any of the measures; his/ 
her recording has been excluded from further analysis. Altogether, nine 
participants have been excluded, resulting in 112 valid recordings. 

The following six eye-tracking parameters were measured: i) Time to 
the first fixation: time elapsed between the appearance of a picture, and 
the user first fixating his/her gaze within an area of interest. ii) First 
fixation duration: length of the first fixation (in seconds). iii) Fixation 
duration: length of a fixation (in seconds). iv) Fixation count: number of 
fixations on a product. v) Dwell duration: time elapsed between the 
user’s first fixation on a product and the next fixation outside the 
product (in seconds). vi) Dwell count: number of dwells to an area of 
interest (AOI). The experiment took place under a controlled environ-
ment (illumination, temperature etc.) in the sensory laboratory of Szent 
István University, Budapest, Hungary. 

The study was performed in accordance with the ethical guidelines 
for scientific research of the Szent István University, Budapest, Hungary. 
Before the test, all participants were informed about the procedure and 
that their gazing behavior would be recorded. All participants gave 
written informed consent concerning the use of their eye-tracking data 
for further analysis. Additionally, they were also informed about a 
withdrawal possibility without any explanation at any time. All partic-
ipants agreed to these conditions and were rewarded with a small 
incentive (muesli bar) to thank their time and efforts. 

2.2. Data analysis 

During data analysis, we followed our previously published method 
(Gere et al., 2016), which consisted of three steps (see Fig. 1): 

In the first step, variable selections are made using Relief-F 
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(Urbanowicz, Meeker, La Cava, Olson, & Moore, 2018) and Fisher 
filtering (Duda, Hart, & Stork, 2000) feature selection methods (This 
approach determines a subset of relevant variables for use in model 
construction). Relief-F uses an iterative algorithm, which determines the 
k-nearest neighbors per class by using Euclidean distance at each iter-
ation. It attributes weights (between 0 and 1) updated according to the 
distance from the nearest neighbors from all classes (Kononenko, ̌Simec, 
& Robnik-Šikonja, 1997). The weight of a given attribute is decreased by 
the squared differences from the attributes in nearby cases of the same 
class and is increased by the squared differences from the attributes in 
nearby cases of the other classes. The more important an attribute is in 
the classification, the larger the weight of that attribute becomes. The 
major advantage of the method is that it is highly noise-tolerant and 
robust to interactions. 

Fisher filtering feature selection method calculates the ratio of “be-
tween class variance” to the “within class variance” as it is done by F- 
statistic used in the analysis of variance. After computing the scores for 
all attributes, the algorithm ranks the attributes, and the best can be 
selected. The larger the Fisher score is, the better the selected attribute is 
as it is far from attributes from different classes and closer to attributes 
from the same class. The best attribute has the largest Fisher score. 

In order to obtain more reliable conclusions, both filter-based 
methods have been considered. Although Relief-F is more robust to 
attribute interactions, Fisher F is one of the most widely used selection 
methods due to its generally good performance (Gu et al., 2011) and 
proved superior to Relief F (Li and Xi, 2019). For this reason, we 
calculated the top 10 attributes regarding both algorithms and then 
selected the common attributes to form the prediction models. Both 
methods were run on the following six variables: time to first fixation, 
first fixation duration, fixation duration, fixation count, dwell duration 
and dwell count. 

In the second step, thirteen classification methods (k-Nearest 
Neighbor’s (KNN), Iterative Dichotomiser 3 (ID3), Cost-sensitive Deci-
sion Tree (CSMC4), Quinlan’s C4.5 decision tree (C4.5), Cost-sensitive 
Classification Tree (CSCTR), Random Trees (RND), Partial Least 
Squares Discriminant Analysis (PLS-DA), Linear Discriminant Analysis 
(LDA), Multilayer Perceptron Neural Network (MLP), Naïve Bayes with 
Continuous variables (NBC), Radial Basis Function Neural Network 
(RBF), Prototype Nearest Neighbor (PNN) and Multinomial Logistic 
Regression (MLR)) were run to predict the class memberships (e.g. the 
chosen alternative) based on the eye-tracking variables. In order to 
balance choice frequencies, bootstrapping (randomized resampling with 
replacement) was applied on each alternative within a choice task. The 
criteria of choosing the classification models were defined as the clas-
sification models should be able to 1) handle categorical outcomes, 2) be 
freely available and 3) have the same model performance indicators. For 

a detailed discussion of the models, see Bhavsar and Ganatra (2012), 
Kotsiantis, Zaharakis, and Pintelas (2006), Kotsiantis (2007) and Gere 
et al. (2016). Values of error rate, cross-validation error rates (minimum, 
maximum and average error rates) averaged prediction accuracy of each 
product in the group, error rates of leave-one-out cross-validation and 
error rates after a 100-times bootstrap validation (randomized resam-
pling with replacement) were computed to compare the performance of 
the models and to choose the superior one. The models’ task was to 
predict the choice based on eye-tracking data for each choice task as 
accurately as possible. Feature selections and modeling was done using 
Tanagra (ver. 1.4.50, Lumière University Lyon 2, Lyon, France) (Rako-
tomalala, 2005). 

The third and last step of data analysis compared the classification 
models based on their performance indicators using the sum of ranking 
differences (SRD) algorithm (Héberger, 2010; Kollár-Hunek & Héberger, 
2013). SRD compares the classification models to a theoretically best 
one based on the computed performance metrics. In our specific case, 
the theoretically best model was defined as having a minimum of all 
error rates. It also has a prediction accuracy (correct classification rates) 
close to one (here, the row maximum was selected as a reference or gold 
standard). SRD assigns rank numbers to the objects (performance met-
rics) and generates a reference vector of ranks. Similarly, rank numbers 
are ordered for each model. This enables us to calculate the absolute 
values of rank differences according to one of the models for each object. 
When the ranks assigned to the objects of the theoretical model and one 
other model’s ranks are the same, their rank differences will be 0. The 
sum of the rank differences gives one value for each classification model, 
the sum of rank difference (SRD). Next, the SRDs are calculated for each 
of the models (thirteen times, since thirteen models were included). 
With the obtained SRDs, the models can easily be compared. Models that 
deviate from the ideal one lesser are ranked better. In other words, the 
lower the SRD of a model, the better its performance (i.e. a model with 
the smallest SRD is closer to the hypothetical best one, than other models 
having larger SRDs). All performance indicators were expressed in 
percentages; hence, no standardization was required. The algorithm for 
the sum of ranking differences was calculated with Microsoft Office 
Excel 2007 macro (retrieved from: http://aki.ttk.mta.hu/srd). 

The workflow of the applied three steps of data analysis is summa-
rized by Fig. 1. 

Later, all cross-validated SRD values were subjected to ANOVA with 
factor 1: resampling variant (two levels: contiguous k-fold resampling: 
A, random resampling with replacement: B), factor 2: k-fold cross- 
validation (three levels, fivefold, sevenfold and tenfold), and classifi-
cation models (13 levels, enumerated in part 2.2.). 

Fig. 1. Workflow of the data analysis. The three steps consisted of i) variable selection, ii) computation of classification models and performance metrics, and iii) 
model comparison. 
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3. Results and discussion 

The sum of ranking differences (SRD) provides the rankings of the 
models for all four choice sets (Fig. 2). Although the figure uses a bar 
plot to visualize the results, both axes present the same units, the 
normalized SRD values in percentages. The models are ranked on a 45- 
degree line are the most similar to the gold standard. A solid black curve 
gives the relative frequencies of random numbers, e.g. if a model is 
ranked between the 5% percentile (denoted by XX1 on the plots) and the 
95% one (denoted by XX19 on the plots), its ranking cannot be distin-
guished from random ranking. All models were placed before XX1 in the 
case of 2 and 4 alternative forced-choice (AFC); therefore, their ranking 
is considered significant. The grouping of lines in Fig. 2 (models) sug-
gests a difference in their performances. Decision tree models are 
grouped together close to zero, which grouping is expressed more as the 
number of alternatives increases. The superiority of decision trees has 
been introduced in our earlier study, where only 4AFC tests were 
analyzed (Gere et al., 2016). On the one hand, the rank of the decision 
trees shows some variations, and a clear winner cannot unambiguously 
be defined based on the SRD plots presented in Fig. 2. On the other hand, 
the superiority of decision trees becomes more expressed as the number 
of alternatives increases. 

A recently introduced validation method to SRD (Héberger & Kollár- 
Hunek, 2019) enables us to compare the performance of the models 
more deeply since some influential factors can significantly affect the 
evaluation of SRDs. The two validation variants of cross-validations are 
manifested in ANOVA factors and coded by F1, F2 which covers the 
sampling (F1: two levels: contiguous and resampling without and with 
replacement, respectively), the number of folds (F2: three levels: five-
fold, sevenfold, and tenfold cross-validation) and the third factor (F3) 
are the models to be compared (F3: 13 levels). In order to be able to find 
a generally good performing model, the data sets have been merged (e.g. 
the four choice sets, each set consisting of four choice tasks) and 
analyzed as one large data table. 

The validation results are presented in Table 1, where factor F3 (the 
classification models) exhibit highly significant behavior as compared to 
the theoretically best possible model, as expected. Although the two 
other factors (the way of cross-validation and number of folds) show no 
significant effects, their interaction proved to be significant, although 
the p-value is close to 0.05. The other factors and their interactions show 
no significant effects as expected and this is reassuring insofar, we have 
not introduced any bias with resampling (bootstrapping). 

ANOVA of Table 2 is visualized in Fig. 3. Although the interaction is 
significant on the 5% level but not at the 1% level, the observed trend is 
the same; the bias increases between 5 and 7-folds and then decreases at 
10-folds cross-validation. Our findings are in accordance with the 
literature as it has been shown that “Smaller training set produces bigger 
prediction errors.” (Efron & Tibshirani, 1995). These results also support 
the view that we have not introduced any bias with resampling 
(bootstrapping). 

Fig. 4 introduces factor 3 (classifiers). Smaller SRD% values mean 
less difference from the gold standard. The grouping of the classifiers is 
still clear; decision trees show lower SRD values compared to the others. 
Roughly two large clusters can be observed “good” and “bad ”classifiers 
or, better to say, recommended and not recommended classifiers for the 
given task. 

In order to compare the rankings statistically, multiple post hoc tests 
have been applied (Scheffé, Tukey-HSD, Bonferroni and LSD); however, 
all agreed on the homogenous subgroups; therefore only the results of 
Tukey HSD will be presented in Table 2. Tukey post hoc tests have been 
run on the four choice sets of separate SRD calculations and on the 
merged (All) SRD data, as well. C4.5 and CSMC4 proved to be the most 
reliable method. While C4.5 was ranked as first in the case of a lower 
number of alternatives (2AFC and 4AFC), CSMC4 showed better per-
formance in the case of 6AFC and 8AFC. However, in the case of the 
merged data set, C4.5 proved to be better. Possible causes of these 

Fig. 2. The SRD values (scaled between 0 and 100) of the performance pa-
rameters determined by the sum of ranking differences. An optimum model was 
used as a reference (benchmark) column, which had the best possible charac-
teristics of the performance metrics used. Scaled SRD values are plotted on x 
axis and left y axis, right y axis shows the relative frequencies of the random 
ranking distribution function: black curve. Probability levels 5% (XX1), Median 
(Med), and 95% (XX19) are also given. If a line for a model overlaps the Gauss- 
curve (XX1) say at p = 0.10 then, the method ranks the variable as random with 
a 10% chance. a) two-alternative forced choice test, b) four-alternative forced- 
choice test, c) six-alternative forced-choice test, d) eight-alternative forced 
choice test. Abbreviations: AFC – alternative forced-choice test, KNN - k-nearest 
neighbor’s, ID3 - Iterative Dichotomiser 3, CSMC4 - Cost-sensitive Decision 
Tree, C4.5 - Quinlan’s C4.5 decision tree, CSCTR - Cost-sensitive Classification 
Tree, RND - Random Trees, PLS-DA - Partial Least Squares Discriminant Anal-
ysis, LDA - Linear Discriminant Analysis, MLP - Multilayer Perceptron Neural 
Network, NBC - Naïve Bayes with Continuous variables, RBF - Radial Basis 
Function Neural Network, PNN - Prototype Nearest Neighbor, MLR - Multino-
mial Logistic Regression. 
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differences might come from the participants, as significant differences 
could be observed between participants regarding their mood, 
emotional state, thinking style et cetera during eye-tracking measure-
ments. It has to be mentioned that the best performances were observed 
in the case of decision trees with one exception. MLR also performed 
well at 4AFC. 

There is an inconsistency between Fig. 2d and Table 2 here. Fig. 2d 
suggests that ID3 has the most similar performance to the reference 
(benchmark) column; however, Table 2 shows different results. Results 
of Table 2 present the rank of the models after cross-validation. The high 
variance and bias of ID3 during cross-validation made the changes in the 
ranking. 

The superiority of C4.5 model has been identified in other data sci-
ence studies and has been described as“ a landmark decision tree program 
that is probably the machine learning workhorse most widely used in practice 
to date” (Witten, Frank, & Hall, 2011). The obtained results show right 
consistency since decision trees have been identified in an earlier study 
conducted by Austrian participants using only 4AFC choice sets (Gere 
et al., 2016). It must be mentioned that these results should not be 
generalized, and the authors encourage researchers to test a wide range 
of classification models before choosing one. It is promising, however, 
that the SRD algorithm is sensitive to very small differences among the 

Table 1 
Analysis of variance of all models’ SRDs.   

Effect SS Df MS F-value p-value 

Intercept Fixed 481758.8 1 481758.8 21739.09 <0.001 
F1: Contiguous/resampling Random 9.6 1 9.6 5.68 0.099 
F2: Fivefold, 

sevenfold, and tenfold CV 
Random 27.9 2 13.9 8.43 0.062 

F3: Classifier Fixed 77834.5 12 6486.2 6741.53 <0.001 
F1*F2 Random 2.7 2 1.4 4.06 0.030 
F1*F3 Random 8.0 12 0.7 1.98 0.074 
F2*F3 Random 15.2 24 0.6 1.90 0.062 
F1*F2*“F3 Random 8.0 24 0.3 0.05 1.000 
Error  3476.3 468 7.4   

Abbreviations: CV, cross-validation; MS, mean square residuals; Df, degree of freedom; MS, mean sum of squares; F, Fisher statistics; p, probability of significance; SS, 
sum of squared residuals. Significant items are indicated by bold. 
F1—way of cross-validation (validation variants), two levels: contiguous and resampling. F2—number of folds, three levels: fivefold, sevenfold, and tenfold cross- 
validation. F3—classifiers to be compared, 13 levels. 

Table 2 
Tukey post hoc test results (denoted by letters) of the SRD’s.  

2AFC 4AFC 6AFC 8AFC All 

C4.5a C4.5a CSMC4a CSMC4a C4.5a 

KNNa CSMC4a C4.5a C4.5a RNDa 

RNDa RNDa RNDa ID3b ID3b 

ID3b MLRa ID3b RNDb CSMC4c 

CSMC4c LDAb KNNb KNNc KNNcd 

CSCRTd ID3b CSCRTb CSCRTd CSCRTd 

LDAde MLPc MLPc MLPe MLPe 

MLPde KNNc LDAcd RBFf LDAf 

NBCe CSCRTcd NBCcde LDAg NBCf 

PLS-DAe PLS-DAd PNNdef PNNg PNNfg 

PNNe NBCe MLRef NBCg RBFgh 

MLRe PNNef RBFf MLRh MLRh 

RBFf RBFf PLS-DAg PLS-DAh PLS-DAi 

Letters in superscript denote the homogenous subgroups determined by Tukey 
HSD post hoc test after ANOVA. Abbreviations: KNN - k-nearest neighbor 
neighbor’s, ID3 - Iterative Dichotomiser 3, CSMC4 - Cost-sensitive Decision Tree, 
C4.5 - Quinlan’s C4.5 decision tree, CSCTR - Cost-sensitive Classification Tree, 
RND - Random Trees, PLS-DA - Partial Least Squares Discriminant Analysis, LDA 
- Linear Discriminant Analysis, MLP - Multilayer Perceptron Neural Network, 
NBC - Naïve Bayes with continuous variables, RBF - Radial Basis Function Neural 
Network, PNN - Prototype Nearest Neighbor, MLR - Multinomial Logistic 
Regression, AFC – alternative forced-choice test (numbers before AFC indicate 
the number of alternatives), All – the merged data set of all AFCs. 

Fig. 3. Interaction between factors F1 and F2 (the 5-, 7-, and 10-fold cross- 
validations done after stratified selection (A, blue lines) and repeated random 
selection (B, red lines)). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Comparison of classifiers. Abbreviations: KNN - k-nearest neighbor-
neighbor’s, ID3 - Iterative Dichotomiser 3, CSMC4 - Cost-sensitive Decision 
Tree, C4.5 - Quinlan’s C4.5 decision tree, CSCTR - Cost-sensitive Classification 
Tree, RND - Random Trees, PLS-DA - Partial Least Squares Discriminant Anal-
ysis, LDA - Linear Discriminant Analysis, MLP - Multilayer Perceptron Neural 
Network, NBC - Naïve Bayes with Continuous variables, RBF - Radial Basis 
Function Neural Network, PNN - Prototype Nearest Neighbor, MLR - Multino-
mial Logistic Regression. 
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performance parameters of the classifiers (Héberger, 2010; Rácz, Bajusz, 
& Héberger, 2019); therefore, there is a good chance of finding a deci-
sion tree (C4.5 and CSMC4) as the best performing classifier. 

Another important aspect of generalization might be cultural dif-
ferences since visual attention toward food-item images can vary as a 
function of culture (Zhang & Seo, 2015). However, a recent study 
introduced that “For foods with higher preference levels, the number of gaze 
point fixations increased significantly and the total gaze point fixation time 
significantly increased.” (Yasui, Tanaka, Kakudo, & Tanaka, 2019). Based 
on these findings, we might propose that prediction models are good 
tools to predict food choice with a high accuracy using eye-tracking 
data. 

4. Conclusions 

Decision trees proved to be superior in all cases, regardless of the 
choice sets and food product categories. Our validation process proved 
that C4.5 and CSMC4 decision trees are to be suggested to predict choice 
based on eye-movements. These results are somewhat deviating since on 
the one hand, C4.5 showed the best performance at 2AFC, 4AFC, while 
CSMC4 proved to be the best at 6AFC and 8AFC. On the other hand, C4.5 
was defined as best performing with the merged (all choice sets) data set. 

Comparing the results to our previous ones (Gere et al., 2016), the 
joint observation is that decision trees showed the best performance 
regardless of the number of alternatives. The earlier best ID3 is still 
ordered into the best four algorithms (see Fig. 2a, c, d). We cannot define 
a globally best performing method, reasonably, we can suggest decision 
trees as the best family of classifiers for choice prediction based on eye- 
movements. As the number of alternatives increases, the judgments 
become more and more uncertain, SRD values are shifted in the direc-
tion of random ranking (c.f. Fig. 2). It is also interesting to observe that 
CSMC4 models showed better performance in the case of higher 
numbers of alternatives (6AFC and 8AFC), while C4.5 had the best 
performance for lower ones (2AFC and 4AFC). 

In the presented study, we used default settings of the classification 
models since fine-tuning was expected to increase overfitting. However, 
fine-tuning of C4.5 and CSMC4 could help to define the superior one in a 
given situation. A further future challenge is the application of these 
models on data from mobile eye-trackers in order to be able to predict 
choice in more realistic situations. 
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Héberger, K., & Kollár-Hunek, K. (2019). Comparison of validation variants by sum of 
ranking differences and ANOVA. Journal of Chemometrics, 33(6), Article e3104. 
https://doi.org/10.1002/cem.3104. 

Holmqvist, K., Nyström, M., Andersson, R., & van de Weijer, J. (2011). Eyetracking. A 
comprehensive guide to methods and measures. Oxford: Oxford University Press.  

Jantathai, S., Danner, L., Joechl, M., & Dürrschmid, K. (2013). Gazing behavior, choice 
and colour of food: Does gazing behavior predict choice? Food Research International, 
54(2), 1621–1626. https://doi.org/10.1016/j.foodres.2013.09.050. 
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