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Abstract: Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and syn-
thetic cannabinoids in particular gained significant popularity in the past years. There is an increasing
amount of clinical data associating such compounds with the inflammatory component of depres-
sion, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines
are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsi-
ble for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory
cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin
levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might
represent a possible link between the endocannabinoid system (ECS) and the KP in depression,
via the inflammatory and dysregulated serotonergic component of the disorder. This review will sum-
marize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory
cytokines. Furthermore, the data on such cytokines associated with KP activation will be further
reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated
in some studies previously. This review will further contribute to this yet less explored connec-
tion and propose the KP to be the missing link between cannabinoid-induced inflammation and
depressive symptoms.

Keywords: depression; endocannabinoid system; kynurenine pathway; pro-inflammatory cytokines;
cannabis; synthetic cannabinoids; kynurenines

1. Introduction

Depression affects more than 264 million people around the world [1] and social,
environmental, as well as genetic factors may contribute to its development. Substance
abuse is among the most frequent causes in the development of depression [2]. Recently,
cannabis and synthetic cannabinoid use has gained popularity, unfortunately their misuse
as well at the same time [3–5]. Moreover, there is a great amount of clinical evidence
demonstrating that such compounds can induce depressive symptoms [3–11].
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As with many psychiatric disorders, in depression, multiple neurotransmitter path-
ways, endocrine systems, and brain regions are involved. The endocannabinoid system
(ECS) and the kynurenine pathway (KP) have long been strongly implicated in this disorder.
Both systems contribute to the neuroinflammatory and serotonin hypothesis of depression,
which will be discussed later on. In fact, there is a growing body of evidence showing poten-
tial common points or clear evidence for the interaction of the ECS and the KP. These were
discussed previously by our group [12–14] among others [15–18]. This review will further
support the link between the ECS and KP in the aspect of depression by summarizing
the data of pro-inflammatory cytokines, which can be regulated by exogenous cannabi-
noids and at the same time which can regulate the KP. Additionally, pro-inflammatory
cytokines, the ECS and KP in general, and regarding their role in depression will be also
briefly discussed. Reviewing such data will allow a better understanding of the effect of
cannabinoids on the neuroinflammatory component of depression.

2. Background
2.1. Pro-Inflammatory Cytokines

Pro-inflammatory cytokines are small signaling proteins which up-regulate during in-
flammation, as they are crucial for initiating and promoting inflammatory responses to dis-
eases [19,20]. They are predominantly produced by macrophages, but astrocytes, microglia,
and neurons can also generate them in the brain [21]. Most notable pro-inflammatory
cytokines are the interleukins (IL), like IL-1, 6, 8, 12, or 18, interferons (IFN), such as IFNγ

and tumor necrosis factors (TNF), like TNFα [19]. They are able to freely pass through
the blood–brain barrier (BBB), via multiple mechanisms such as passive diffusion through
the leaky regions of the BBB, active transport, or via nerve fibers such as the vagus or
trigeminal nerves [21]. They bind to cytokine receptors which can be divided into class
I and class II based on their structural differences [22]. However, both classes uniformly
activate the Janus kinase-signal transducers and activators of the transcription (JAK-STAT)
pathway [22]. There is increasing evidence demonstrating that pro-inflammatory cytokines
have a significant role in certain neurological and psychiatric disorders. For instance,
in patients with schizophrenia, Alzheimer’s, or depression, pro-inflammatory cytokine
levels are elevated or dysregulated [23]. In this review, depression will be discussed in
this regard.

2.2. The Endocannabinoid System

The ECS has a crucial role in depression, confirmed by behavioral, anatomical, elec-
trophysiological, and genetic evidence reviewed thoroughly elsewhere [24–27]. The ECS
includes endogenous cannabinoids or endocannabinoids [28–30], the enzymes which syn-
thesize and degrade endocannabinoids [31], and finally cannabinoid receptors, namely type
1 and 2 (CB1R and CB2R) which mediate the effects of endogenous or exogenous cannabi-
noids [32–35]. Both CBRs belong to the G-protein coupled receptor (GPCR) family generally
coupling to Gαi type G-proteins. Accordingly, they inhibit adenylyl cyclase activity, lead-
ing to the presynaptic release inhibition of neurotransmitters such as γ-aminobutyric acid
(GABA), dopamine, or acetylcholine [29,36–38]. On the other hand, there are data demon-
strating other signaling pathways activated by CBRs, involving cell and G-protein type
specificity or G-protein independent mechanisms [32].

The CB1R is the most abundant GPCR in the human brain, with higher expression levels
compared to other GPCRs. Apart from the central nervous system (CNS), CB1Rs are found
in several peripheral tissues, such as adipocytes, gastrointestinal tract, or the reproductive
system [39]. Thus, CB1Rs are responsible for multiple physiological processes such as mood,
appetite, food intake, thermoregulation, cognition, and memory [29,38–41]. CB2Rs are
expressed mainly in cells of the immune system in the periphery [39], but they can be
found in the CNS as well, for instance, in the brainstem or cerebellum [42]. CB2Rs have a
significant role in the maintenance of homeostasis, analgesia, controlling cell proliferation,
differentiation, and survival of neuronal and non-neuronal cells [39,43,44].
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Cannabinoid receptors—apart from endocannabinoids—are also activated by natural
(or plant-derived), semi, or fully synthetic exogenous cannabinoids. Among the plant-
derived or phytocannabinoids, ∆9-tetrahydrocannabinol (THC), the major psychoactive
component of cannabis, and the non-psychoactive cannabidiol (CBD) are the most stud-
ied and well-known. The most relevant structural classes of synthetic cannabinoids (SC)
are aminoalkylindoles (e.g., WIN 55212-2), naphtholylindoles (e.g., JWH-018), and cyclo-
hexylphenols (e.g., CP 55940) [45,46]. Together with the CBR antagonists/inverse agonist
diaryl-pyrazole derivatives, such as rimonabant [47], SCs significantly contributed to the
pharmacological mapping of the ECS. Since SCs greatly mimic the effects of cannabis,
aminoalkylindoles, cyclohexylphenols, and naphtholylindoles especially, are the most
common SCs found in the K2/Spice products, which are the most widely abused class of
drugs nowadays [11,48,49]. Indole, indazole carboxamides structured SCs (e.g., AB-PICA
and AB-PINACA, respectively) were joined to this class very recently [46].

As mentioned previously, there are numerous preclinical and clinical studies point-
ing out that cannabis/THC and SCs use significantly contributes to the development of
depression [3,6,8,50–53]. In fact, a recent study showed that SC users displayed a higher
Beck Depression Inventory score [54] compared to natural cannabis users, with similar
socio-demographic characteristics [51]. Another study pointed out a similar outcome,
where SC use was associated with increased mental health symptomatology—including
depression—compared to natural cannabinoid use [10]. These findings can be explained
by the higher CB1R affinity and agonist potency of the SCs compared to THC [52,55].

2.3. The Kynurenine Pathway

Tryptophan (Trp) is an essential amino acid, which is pivotal in the brain and in mam-
malian cells, and is mainly metabolized via the KP (Figure 1). Kynurenic acid (KYNA) is one
of the most studied and clinically relevant metabolite of the KP. KYNA is an endogenous glu-
tamate receptor antagonist, which has neuroprotective effects and is produced by kynurenine
aminotransferases (KAT)s from L-kynurenine (L-KYN) mostly in astrocytes [56–58]. L-KYN
is formed by formamidase enzyme from N-formyl-L-kynurenine, which is created from L-
Trp by two enzymes, namely the tryptophan 2,3-dioxygenase (TDO) and the indoleamine
2,3-dioxygenase 1 and 2 (IDO1 and IDO2). It is well known, that L-KYN can transform
not just to KYNA, but is also able to convert into anthranilic acid by kynureninase and
to 3-hydroxykynurenine by kynurenine 3-monooxygenase (KMO). Anthranilic acid can be
further converted to 3-hydroxyanthranilic acid by 3-hydroxyanthranilic acid hydroxylase.
In addition to this, 3-hydroxykynurenine can also convert to 3-hydroxyanthranilic acid by
kynureninase enzyme. Besides that, 3-hydroxykynurenine can modify to xanthurenic acid,
as well. Additionally, 3-hydroxyanthranillic acid further transforms to quinolinic acid (QUIN)
by 3-hydroxyanthranillic acid 3,4-dioxygenase. In the end of the KP, QUIN is degraded to
nicotinamide adenine dinucleotide by quinolinic acid phosphoribosyltransferase. Opposite
to KYNA, QUIN is an endogenous glutamate receptor agonist produced by microglia [59]
and it can cause lipid peroxidation [60] and has a relevant role in the neurodegenerative
process [61,62].
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Figure 1. The tryptophan metabolic pathway including the kynurenine (yellow) and partly the ser-
otonin pathway (blue). Pro-inflammatory cytokines discussed in this review which upregulate 
(highlighted by “+”) the different enzymes are also indicated in red. For further information, see 
Section 4 and Table 2. Metabolites and enzymes of the pathways are shown in bold and italic, re-
spectively. The dashed lines in the serotonin pathway indicates the further continuation of the path-
way, which is not discussed here. Abbreviations: AADC: aromatic acid decarboxylase enzymes; 
HAAH: 3-hydroxyanthranilic acid hydroxylase; HAAO: 3-hydroxyanthranillic acid 3,4-dioxygen-
ase; IDO: indoleamine 2,3-dioxygenase; KATs: kynurenine aminotransferases; KMO: kynurenine 3-
monooxygenase; KYNU: kynureninase; QPRT: quinolinic acid phosphoribosyltransferase; TDO: 
tryptophan 2,3-dioxygenase; TPH: tryptophan hydroxylase. 

2.4. The Serotonin and Inflammatory Hypothesis of Depression: Possible Links between ECS and 
KP in Depression? 

The serotonin hypothesis was introduced more than 50 years ago as a possible patho-
logical background mechanism for depression [63]. The hypothesis refers to a dysregu-
lated serotoninergic system, implicating reduced levels of serotonin, serotonin transport-
ers and/or receptors in patients with depression [64–70]. It has been long since described 
that reduced serotonin levels are due to Trp depletion [71]. Serotonin or 5-hydroxytryp-
tamine is metabolized from Trp through 5-hydroxytryptophan catabolized by the trypto-
phan hydroxylase and aromatic acid decarboxylase enzymes [71] (Figure 1). However, 
only a small fraction of the Trp pool is converted to serotonin, the vast majority (~95%) is 
metabolized via KP, as discussed in the previous section. Thus, even a small change in the 
activity of the KP can have a significant impact on the Trp pool in the brain [72,73]. Indeed, 
there is numerous clinical evidence showing that there is an imbalance in the metabolism 
of KP in depression. The amount of Trp, L-KYN, and KYNA, for instance, is decreased in 
the serum and plasma of patient with depression, whereas QUIN is increased. These data 
have been reviewed in detail previously [74–80]. There are also several genetic mutations 
in the KP, which are connected to depression. Some polymorphisms of the IDO1, 2 and 
KMO encoded genes are identified in patients with depression [81]. On the other hand, 
data on increased levels of KP metabolites in blood serum and CSF in individuals with 
depressive disorders have been inconsistent [82–85]. It has been also proposed that 
changes in enzymes and metabolites of the KP are not necessarily parallel to events in the 

Figure 1. The tryptophan metabolic pathway including the kynurenine (yellow) and partly the serotonin pathway (blue).
Pro-inflammatory cytokines discussed in this review which upregulate (highlighted by “+”) the different enzymes are also
indicated in red. For further information, see Section 4 and Table 2. Metabolites and enzymes of the pathways are shown in
bold and italic, respectively. The dashed lines in the serotonin pathway indicates the further continuation of the pathway,
which is not discussed here. Abbreviations: AADC: aromatic acid decarboxylase enzymes; HAAH: 3-hydroxyanthranilic
acid hydroxylase; HAAO: 3-hydroxyanthranillic acid 3,4-dioxygenase; IDO: indoleamine 2,3-dioxygenase; KATs: kynurenine
aminotransferases; KMO: kynurenine 3-monooxygenase; KYNU: kynureninase; QPRT: quinolinic acid phosphoribosyltrans-
ferase; TDO: tryptophan 2,3-dioxygenase; TPH: tryptophan hydroxylase.

2.4. The Serotonin and Inflammatory Hypothesis of Depression: Possible Links between ECS and
KP in Depression?

The serotonin hypothesis was introduced more than 50 years ago as a possible patho-
logical background mechanism for depression [63]. The hypothesis refers to a dysregulated
serotoninergic system, implicating reduced levels of serotonin, serotonin transporters
and/or receptors in patients with depression [64–70]. It has been long since described that
reduced serotonin levels are due to Trp depletion [71]. Serotonin or 5-hydroxytryptamine
is metabolized from Trp through 5-hydroxytryptophan catabolized by the tryptophan hy-
droxylase and aromatic acid decarboxylase enzymes [71] (Figure 1). However, only a small
fraction of the Trp pool is converted to serotonin, the vast majority (~95%) is metabolized
via KP, as discussed in the previous section. Thus, even a small change in the activity of
the KP can have a significant impact on the Trp pool in the brain [72,73]. Indeed, there is
numerous clinical evidence showing that there is an imbalance in the metabolism of KP in
depression. The amount of Trp, L-KYN, and KYNA, for instance, is decreased in the serum
and plasma of patient with depression, whereas QUIN is increased. These data have been
reviewed in detail previously [74–80]. There are also several genetic mutations in the KP,
which are connected to depression. Some polymorphisms of the IDO1, 2 and KMO encoded
genes are identified in patients with depression [81]. On the other hand, data on increased
levels of KP metabolites in blood serum and CSF in individuals with depressive disorders
have been inconsistent [82–85]. It has been also proposed that changes in enzymes and
metabolites of the KP are not necessarily parallel to events in the brain [86]. These data
also clearly show the complexity of depression and that the serotonin hypothesis is not the
only background mechanism responsible for this psychiatric disorder.
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There are multiple studies showing that depression also consists of an inflammatory
component centering not just in the brain but throughout the body. One of the main indica-
tions of such mechanism is the significant enhancement of circulating pro-inflammatory
cytokines in animal models of depression and also in patients with depression, which can
be reversed by antidepressants. These findings have been previously reviewed exten-
sively [21,87–92]. It is well known that enzymes of the KP, especially IDO, can be activated
by pro-inflammatory cytokines, which may lead to Trp depletion and possibly depres-
sion as described above. More interestingly, there are numerous data demonstrating that
exogenous cannabinoids can enhance the levels of pro-inflammatory cytokines, which
may over activate the KP, potentially leading to depression. These findings will be dis-
cussed later on. Therefore, there is a potential link between cannabinoids and the KP in
depression, where exogenous cannabinoids potentially induce inflammation by increasing
pro-inflammatory cytokines. Such effect then enhances the activity of the KP leading
to Trp depletion and reduced levels of serotonin, which eventually may contribute to
depression (Figure 2). This link might be a possible explanation for depressive episodes
induced by natural and synthetic cannabinoids misuse. The following sections will discuss
those exogenous cannabinoids which are known to increase pro-inflammatory cytokines.
Additionally, such cytokines which have been associated with the activation of the KP in
neuroinflammation and/or depression will be further reviewed accordingly.
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Figure 2. Summary of the reviewed data and their proposed connections between exogenous cannabinoids, pro-
inflammatory cytokines, KP, and depression as discussed in the sections below and in Tables 1 and 2. Abbrevia-
tions: IDO: indolamine 2,3-dioxygenase; IFNγ: interferon γ; IL: interleukin; KMO: kynurenine 3-monooxygenase,
KYN: L-kynurenine, KYNA: kynurenic acid; QUIN: quinolinic acid; THC: ∆9-tetrahydrocannabinol; TNFα: tumor necrosis
factor α; Trp: tryptophan; SRT: serotonin.

3. Cannabinoids That Enhance Pro-Inflammatory Cytokine Levels

Cannabinoids, endogenous, synthetic, and natural types have been generally associ-
ated with anti-neuroinflammation by downregulating pro-inflammatory and/or upreg-
ulating anti-inflammatory cytokines typically through CB2Rs [93–95]. However, there is
growing evidence demonstrating that natural and synthetic cannabinoids can indeed up-
regulate pro-inflammatory cytokines and thus possibly induce neuroinflammation and/or
depression. This section will review these data (see Table 1). There is also substantial
evidence that cytokines can induce mood alterations by regulating cannabinoid recep-
tors [96–99], however this is out of the scope of this current review.

3.1. Natural Cannabinoids (Cannabis, THC, and CBD)

THC and CBD have been long known to regulate cytokine levels in a concentra-
tion dependent manner. In an earlier study in human peripheral blood mononuclear
cells, THC and CBD in concentrations comparable to plasma levels prior to smoking
marijuana (10–100 ng/mL), increased the concentration of IFNγ, while in higher concen-
trations (5–20 µg/mL), fully blocked the synthesis and/or release of this cytokine [100].
Another study also pointed out the biphasic effect of THC on cytokine regulation in
mononuclear cells: TNF-α and IL-6 synthesis was inhibited by 3 nM THC but stimu-
lated by 3 µM, as was with IFNγ synthesis [101]. Other studies also showed that the
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biphasic effect of THC on pro-inflammatory cytokines seems to be not only dependent
on concentration, but also whether the experimental animals are naïve or neuroinflam-
mation was induced [94,95,102–105]. In eosinophilic leukemia cell lines, both THC and
CBD significantly increased IL-8 production, while in human T-lymphotropic virus type
1 (HTVL-1) positive B cell lines, only THC increased IL-8 levels [106]. Cutando and
co-workers showed that subchronic administration of THC to mice activated cerebellar
microglia and increased the expression of IL-1β and TNFα genes [107]. The neuroin-
flammation induced by THC was reversed by inhibiting IL-1β receptor signaling [107].
It is worth noting that CBD has a peculiar pharmacological profile which differs from
THC and other natural and synthetic cannabinoids. In vitro and in vivo studies have
indicated that CBD may act as a negative allosteric modulator of CB1R and an agonist of
CB2R, transient receptor potential vanilloid 1 (TRPV1), 5-hydroxytryptophan1A receptors,
and peroxisome proliferator-activated receptors γ (PPARy) [108]. Such multi-targeted
action can help explain a prevailing anti-inflammatory action of CBD in vivo and in vitro,
as reviewed elsewhere [109,110]. Briefly, CBD reduces stress and LPS-stimulated release of
pro-inflammatory cytokines [109]. This anti-inflammatory effect could counteract THC-
induced inflammation, thus explaining the beneficial profile of CBD in attenuating some
detrimental effects of THC and in treatment conditions associated with drug abuse and
dependence [111,112].

It is widely accepted that adolescence is a vulnerable period in terms of THC ex-
posure, which can later result in psychiatric disorders in adulthood [50]. Additionally,
multiple studies associated this with neuroinflammation, in particular with regulating
cytokine expression. Moretti and co-workers showed that IL-1β and TNFα gene and
protein expression increased in peripheral macrophages following chronic THC exposure
in adolescent mice. Such was not the case when adult mice were treated chronically [113].
In fact, the opposite was observed if the same cytokines were analyzed right after the final
THC treatment in both adolescent and adult animals [113]. Later on, the same findings
were also confirmed in the hippocampus and hypothalamus by the same group [114].
Another study investigated the chronic effect of THC consumption in adolescent female
rats. Here, the THC treatment enhanced expression levels of TNFα in microglia of the
prefrontal cortex which was associated with depression-like phenotype [115].

Cannabis use disorder has its own set of definitions for diagnosis as it has been
included in the latest edition of Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) [116]. It has been recently demonstrated that patients with cannabis use disorder
have increased serum levels of IL-1β, IL-6, IL-8, and TNF-α levels [117]. In another study,
they compared physically active chronic cannabis users (at least once per week for the
past 6 months) and non-users in terms of the presence of depression and immune health
indicated partly by IL-6 [118]. However, they found no difference between the two groups
in IL-6 serum levels.

3.2. Semi- and Fully Synthetic Cannabinoids

Data regarding synthetic cannabinoids and cytokine regulation are relatively recent,
but limited. CP55940 is functionally and structurally analogue to JWH-018 and to CP47497
which is a frequent component of “K2/Spice” synthetic cannabinoid blends [119]. In a
study involving promyelocytic cells HL-60 transfected with CB2R, CP55940 increased TNFα
mRNA after 1 h and protein levels after 24 h [120]. Both effects were CB2R mediated [120].
Very recently, Zawatsky and co-workers have shown that oropharyngeal administration
of the synthetic cannabinoid CP55940 to mice significantly increased the mRNA levels of
CB1Rs and induced the expression levels of IL-1β, IL-6, and TNFα in the lung [119]. In an-
other study, they investigated a representative member of cyclohexylphenols of SCs which
can bind to both CBRs, namely CP-47497-C8 (cannabicyclohexanol). Cannabicyclohexanol
was also found in “Spice” in Germany and Japan [4,121] and was described to increase
IL-6 and TNFα levels in peripheral blood mononuclear cells [122]. A CB2R selective syn-
thetic cannabinoid agonist, HU308 in human primary leukocytes, was shown to induce
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the secretion of IL-6 via GαS coupled signaling [43]. The semi-synthetic CBD derivative
2-(methylsulfonamido)ethyl cannabidiolate (NMSC) enhanced IL-1β and IL-6 mRNA lev-
els in RAW264.7 macrophages upon IL-17 stimulation, but only in higher concentration
(10 µmol/L) [123]. In lower concentration (5 µmol/L), it showed the opposite effect.

An interesting study was conducted with the CB1R selective antagonist/inverse
agonist rimonabant, which was withdrawn from the market due to its adverse psychiatric
side-effects, including depression, anxiety, and suicidal ideation after long-term usage [124].
Such clinical data were strengthened by pre-clinical in vitro results. Namely, in rats which
showed depressive-like phenotype, long-term rimonabant treatment increased the level of
IL-6 and TNFα in the medial prefrontal cortex and in the hippocampus, respectively [125].
In a very recent study, they investigated the level of inflammation apart from oxidative
stress and DNA damage in 40 synthetic cannabinoid (the exact compounds were not
determined) addicts and they found that IL-1β, IL-6, and TNF-α serum cytokine levels
were significantly higher compared to the healthy groups [126].

Table 1. Summary of cannabinoids known to increase pro-inflammatory cytokines.

Cannabinoid Cytokine Studied Sample Ref.

THC

IFNγ PMBC [100,101]
TNFα PMBC [101]

Adult mouse peripheral macrophage [113]
Adult mouse hippocampus and hypothalamus [114]

Female adol. rat microglia PFC [115]
IL-1 Microglia [107]

Adult mouse peripheral macrophage [113]
Adult mouse hippocampus and hypothalamus [114]

IL-6 PMBC [101]
IL-8 Eosinophilic leukemia cell line and HTLV-1 positive B cell line [106]

CBD
IFNγ PMBC [101]
IL-8 Eosinophilic leukemia cell line [106]

Cannabis IL-1, IL-6, IL-8 Serum from patients with CUD [117]

CP55940
TNFα HL-60 transfected with CB2R; mouse lung [119,120]
IL-1 Mouse lung [119]
IL-6 Mouse lung [119]

NMSC IL-1β, IL-6 RAW264.7 macrophage [123]

CP-47497-C8 TNFα, IL-6 PMBC [122]

HU308 IL-6 Human primary leukocytes [43]

Rimonabant
TNFα rat hippocampus [125]
IL-6 rat mPFC [125]

CUD: cannabis used disorder; HTVL-1: human T-lymphotropic virus type 1; PFC: prefrontal cortex; PMBC: peripheral mononuclear cells;
mPFC: medial prefrontal cortex; NMSC: 2-(methylsulfonamido)ethyl cannabidiolate.

4. Pro-Inflammatory Cytokines Parallelly Up-Regulated with the KP in
Neuroinflammation and/or Depression

As we saw in the previous section, there are multiple studies pointing out the upreg-
ulation of IFNγ, IL-1, IL-6, IL-8, and TNFα pro-inflammatory cytokines via cannabinoid
induction. This section will review the data regarding the effect of the above- mentioned
cytokines on the regulation of the KP enzymes and their metabolite production. There are
other reviews describing the relationship between cytokines and the KP in different dis-
orders [127–130]. However, this section is the first to thoroughly review these data in the
aspect of neuroinflammation or depression. Table 2 summarizes the data discussed below.
Important to note that in contrast to multiple reports, a previous study showed reduced KP
metabolism and pro-inflammatory cytokine levels in post mortem ventrolateral prefrontal
cortex tissues from individuals with depressive illness [131]. The study also discussed that
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such unexpected result might be due to the different specific brain region investigated
and/or the distinct diagnosis classification of the depressed samples used, which might
have influenced the overall results. Finally, the study also pointed out that the regulation
of KP in the human brain might be brain-region specific in depression.

4.1. IFN-γ

IFN-γ has long been known for regulating IDO activity [132,133], which has been
discussed extensively in a previous review in 2014 [127]. Since then, additional research
has been done in this area. The synergistic effect between IFN-γ and IL-1 is well-known in
regulating IDO enzyme activity and transcription [134–136]. Moreover, in THP-1 human
monocytic cell lines, Fujigaki and co-workers also demonstrated that LPS-induced IDO
enzyme activity was upregulated when IFN-γ together with IL-1β, IL-6, and TNFα were
present [137]. However, galectins, which also play an important role in neuroinflammation,
and corticosteroids have also been shown to enhance the effect of IFN-γ in controlling IDO
expression. In the mouse hippocampus, it has been shown that galectin-9, dexametha-
sone, corticosterone, and aldosterone interacted with IFN-γ to further enhance the mRNA
expression of different IDO variants [138,139]. In a chronic social defeat mouse model,
which models the anhedonic and social-avoidance aspect of depression, IFN-γ plasma
levels increased together with KYN, 3-HK [140]. On the other hand, KYNA plasma levels
were also enhanced, which seem to be in contrast with the elevated QUIN/KYNA ratio
attributed to depression. The study did not further elaborate on this result. Another animal
model of depression, the chronic mild stress procedure significantly increased IFNγ and
IDO mRNA and decreased KAT II mRNA in the rat cortex [141]. The latter case may project
ahead the increased QUIN/KYNA ratio observed in depression, since due to reduced KAT
II availability, KYN conversion is more likely to be directed towards QUIN rather than
KYNA production.

4.2. IL-1

Apart from IFN-γ, IL-1 is the most significant pro-inflammatory cytokine to regulate
IDO. IL-1 alone transcriptionally activates the IDO gene in primary macrophages and is
able to enhance the activity of the enzyme but only in the IFN-γ pretreated THP1 monocytic
leukemia cell line [142].

Fractalkine receptor (CX3CR1) deficient mice have been demonstrated to display
depressive-like behavior following LPS treatment [143]. In such mice, increased microglial
mRNA expression of IL-1β, IDO, and KMO after LPS treatment was observed [143]. In a
Bacille Calmette Guérin (BCG) depressive-like behavior mouse model, both IL-1β and KMO
but not IDO-1 and -2 mRNA were upregulated in microglia [144]. Upon LPS stimulation,
mRNA expression of IL-1β was dose-dependently increased parallelly with IDO-1 and
KMO in murine microglia [145]. Additionally, KMO deletion prevented the LPS-induction
of IL-1β.

Laumet and co-workers demonstrated the involvement of IL-1β in nerve injury-
induced depression associated with enhanced KMO mRNA brain expression and activity
in mice brain [146]. Additionally, functional IDO-positive dendritic cells produced signifi-
cantly more IL-1β than IDO-negative cells upon CD40L stimulation [147]. IL-1β treatment
in human hippocampal progenitor cells induced the transcription of IDO, KMO, and KYNU,
which resulted in an increase in KYN production [148]. In the same study, inhibiting the
KMO enzyme reversed the reduction of neurogenesis in human hippocampal progenitor
cells induced by IL-1β. In another study involving the hippocampus, IDO1 mRNA expres-
sion was also enhanced by the upregulation of IL-1β production in the hippocampus of
rats with coexisting chronic temporal lobe epilepsy and depressive behavior [149]. The two
forms of the alarmin protein, high mobility group box-1 (HMGB1)—the fully reduced
(fr-HMGB1) and the disulfide (ds-HMGB1) form—are known to induce depressive-like be-
havior [150]. Recently, it has been shown in mouse hippocampal tissues ds-HMGB1 directly
activated IDO, KMO, and KYNU in parallel with IL-1β upregulation [151]. With fr-HMGB1,
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the same observations were made following H2O2 treatment. In the study, both forms of
HMGB1 induced depressive-like behavior.

4.3. IL-6

The correlation between IL-6 and KP metabolites and enzymes has been long known.
For instance, lower Trp levels in patients with depression are known to be inversely corre-
lated to serum concentrations of IL-6 [152]. There is evidence that depressive and anxiety
symptoms in the early puerperium in fare causally related to an increased catabolism
of Trp into KYN, which may be associated with increased plasma levels of IL-6 [153].
Schwieler showed that in patients with unipolar treatment-resistant depression, IL-6 plasma
levels and the QUIN/KYNA ratio in the plasma significantly increased compared to healthy
volunteers [154]. Kruse and co-workers demonstrated that in a human experimental model
of endotoxin-induced depressed mood, there was a positive correlation in plasma concen-
trations of KYN and QUIN and IL-6. However, changes in the KP metabolites did not
mediate the correlation between cytokines and depressed mood [80]. In a recent study,
IL-6 and QUIN plasma levels were positively correlated in women with peripartum onset
depression (PPD) [155]. In another recent study with frail patients, it was found that the
KYN/Trp ratio and KYN levels were strongly correlated with IL-6 plasma levels [156].
The authors concluded that these results are in accordance with the serotonin-KYN hy-
pothesis of depression and also may explain the high prevalence of depression among
individuals with frailty status [156].

IL-6 may also contribute to cortisol’s induction of TDO, as increased IL-6 in depression
are implicated in elevated hypothalamic–pituitary–adrenal activity and cortisol levels,
which in turn activates TDO [157,158]. Bay-Richter and colleagues found that cerebrospinal
fluid levels of QUIN and KYNA increased and decreased, respectively, in suicide at-
tempters, which remained over time and also high IL-6 cerebrospinal fluid levels correlated
with more severe suicidal symptoms [159].

In another study with microglia, LPS stimulation dose-dependently increased the
mRNA expression of IL-6 and parallelly of IDO-1 and KMO [145]. There is also multiple
evidence for IL-6 regulating KP enzymes in the brain. Kim and co-workers have shown
that intra-hippocampal administration of IL-6 in rats induces IDO1 expression through the
JAK/STAT pathway [160]. Xie and co-workers demonstrated in rats with coexisting chronic
temporal lobe epilepsy and depressive behavior that the upregulation of IL-6 production
in the hippocampus enhanced IDO1 mRNA expression too in the same brain area [149].
In rats with ovariectomy-induced depressive-like behavior, showed parallelly elevated IL-6
and IDO protein levels in the hippocampus [161]. In another model, the enhancement of
LPS induced IDO and KMO mRNA expression was accompanied by a significant increase
in IL-6 expression in the rat hippocampus and cortex and in cultured glial cells [162].

In the Netherlands Study of Depression and Anxiety (NESDA), a cohort consisting
almost 3000 participants, no indications were found in KYN/Trp ratio for mediating the
relationship between changes in IL-6 levels and depressive symptoms [83].

4.4. IL-8

Maes and colleagues demonstrated that hepatitis C patients who received IFNα

treatment showed an increase in depressive symptoms and KYN/Trp quotient along with
elevations in IL-8 plasma levels [163]. In the previously mentioned study, where they
investigated the relation between KYNUs, immune activity and depressive and anxiety
symptoms in the early puerperium, they observed enhanced IL-8 plasma levels parallelly
with increased KYN/Trp quotient [153].

4.5. TNFα

TNFα and IDO serum levels parallelly increased in major depressive disorder (MDD)
patients, which was reduced by post-treatment [164]. Chronic social defeat depression
mouse model led to increased plasma levels of TNF-α in parallel with KYN, 3-HK,
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and KYNA as seen with IFNγ [140]. Similar to IL-6, there was also a positive correla-
tion in plasma concentrations of KYN and QUIN and TNFα in the human experimental
model of endotoxin-induced depressed mood. However, changes in the KP metabo-
lites did not mediate the correlation between cytokines and the depressed mood [80].
TNFα levels correlated positively with QUIN plasma levels in women with PPD [155].
Haroon and co-workers found a correlation among peripheral and central KP metabolites
and inflammation in depression in a study involving 72 unmedicated depressed patients.
Accordingly, plasma TNFα was robustly associated with plasma KYN and KYN/Trp ratio
levels, which was in turn significantly correlated with CSF KYN, KYNA, and QUIN [165].
Additionally high TNFα-kynurenine/tryptophan subjects showed enhanced depression
severity, anhedonia, and treatment nonresponse [165]. In the study involving frailty pa-
tients, they also found that the KYN/Trp ratio and KYN levels were strongly correlated with
TNFα and TNFαR1 levels too, while Trp and KYNA alone were also strongly correlated
with TNFαR1 levels [156].

O’Connor and co-workers demonstrated that in the BCG mice model, TNFα, IDO,
and HAO mRNA significantly increased in the brain [166]. The same group also showed
that IFNγ and TNFα synergistically induce IDO in primary microglia cells and they
are both necessary for the induction of IDO and depressive-like behavior in mice after
BCG infection [167]. There is also further evidence that TNFα together with IFNγ can
transcriptionally activate IDO [136,168,169].

The enhancement of LPS induced IDO and KMO expression was also associated
with increased TNFα expression in the rat hippocampus and cortex and in cultured glial
cells [162]. In murine microglia upon LPS stimulation, mRNA expression of TNF-α was
dose-dependently increased together with IDO1 and KMO mRNA, and KMO deletion
eliminated the LPS-induced TNFα elevation [145]. The two forms of the high mobility
group box-1 (HMGB1) protein (fr-HMGB1 and ds-HMGB1) mentioned regarding IL-1β cy-
tokine, are also known to upregulate TNFα besides inducing depressive-like behavior [150].
Additionally, alongside IL-β, TNFα was also upregulated in mice hippocampal tissues in
parallel with IDO, KMO, and KYNU, which were activated by both forms of HMGB1 [151].

Table 2. Summarizing the data regarding upregulated pro-inflammatory cytokines associated with altered KP enzymes
or metabolites.

Cytokine KP Enzyme or Metabolite Studied Sample Comment Ref.

IFNγ

IDO mRNA ↑ mouse hippocampus galectin-9 synergism [138]

mouse hippocampus dexamethasone, corticosterone
and aldosterone synergism [139]

rat cortex CMS model [141]
KAT II mRNA ↓ rat cortex CMS model [141]

KYN, 3-HK, KYNA ↑ mouse plasma CSD model [140]

IL-1

IDO mRNA ↑ primary macrophage [142]

IDO activity ↑ THP1 monocytic leukemia cell
line IFNγ pretreatment [142]

IDO, KMO mRNA ↑ CX3CR1 K.O. mouse microglia [143]
KMO mRNA ↑ mouse microglia BCG model [144]

IDO, KMO mRNA ↑ murine microglia LPS-induction [145]

KMO mRNA ↑ mouse brain nerve injury-induced
depression [146]

IDO, KMO, KYNU mRNA,
KYN ↑

human hippocampal
progenitor cells [148]

IDO1 mRNA ↑ rat hippocampus
coexisting chronic temporal

lobe epilepsy and depressive
behavior

[149]

IDO, KMO and KYNU
activity ↑ mouse hippocampus HMGB1 induced depressive

like behavior model [151]
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Table 2. Cont.

Cytokine KP Enzyme or Metabolite Studied Sample Comment Ref.

IL-6

Trp ↓ human serum in patients with depression [152]

KYN ↑ female human serum in early puerperium associated
with anxiety and depression [153]

QUIN/KYNA ratio ↑ human plasma in patients with unipolar
treatment-resistant depression [154]

KYN and QUIN ↑ human plasma
did not mediate the correlation

between cytokines and
depressed mood

[80]

QUIN ↑ female human plasma women with PPD [155]

KYN/Trp ratio, KYN ↑ plasma from frailty patients may explain high prevalence
depression in frailty patients [156]

QUIN ↑ KYNA ↓ human CSF in suicide attempters [159]
IDO1, KMO mRNA ↑ murine microglia following LPS-stimulation [145]

IDO1 protein ↑ rat hippocampus through JAK/STAT pathway [160]

IDO1 mRNA ↑ rat hippocampus
coexisting chronic temporal

lobe epilepsy and depressive
behavior

[149]

IDO1 protein ↑ rat hippocampus ovariectomy-induced
depression model [161]

IDO, KMO mRNA ↑ rat hpc., ctx., and cultured glia
cells [162]

IL-8
KYN/Trp quotient ↑ human plasma IFNα-induced depressive

symptoms [163]

female human serum in early puerperium associated
with anxiety and depression [153]

TNFα

IDO ↑ human serum in MDD patients [164]
KYN, 3-HK, KYNA ↑ mouse plasma CSD mouse model [140]

KYN and QUIN ↑ human plasma
did not mediate the correlation

between cytokines and
depressed mood

[80]

QUIN ↑ female human plasma women with PPD [155]

KYN, KYN/Trp ratio ↑ plasma
associated with enhanced

depression, anhedonia, and
treatment nonresponse

[165]

KYN, KYNA, QUIN ↑ CSF in unmedicated depressed
patients [165]

KYN/Trp ratio, KYN ↑ plasma from frailty patients may explain high prevalence
depression in frailty patients [156]

IDO, HAAO mRNA ↑ mouse brain BCG model [166]
IDO activity ↑ mouse microglia cells BCG model [167]

IDO, KMO mRNA ↑ rat hpc., ctx., and cultured glia
cells [162]

IDO1, KMO mRNA ↑ murine microglia following LPS-stimulation [145]
IDO, KMO and KYNU

activity ↑ mouse hippocampus HMGB1 induced depressive
like behavior model [151]

↑: increase; ↓: decrease; BCG: Bacille Calmette Guérin mice model of depression; CMS: chronic mild stress model; ctx.: cortex; CSD: chronic
social defeat model; HMGB1: high mobility group box-1 protein; hpc.: hippocampus; MDD: major depressive disorder; PPD: peripartum
onset depression.

5. Summary and Conclusions

This paper summarized pre-clinical and clinical evidence on pro-inflammatory cy-
tokines which are upregulated by natural and synthetic cannabinoids, thus might be
contributing to the inflammatory component of depression induced by such compounds.
Additionally, the manuscript further reviewed those cytokines which are parallelly up-
regulated with certain enzymes and metabolites of the KP, possibly leading to the over-
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activation of the KP. This over-activation may significantly contribute to the downregulated
serotoninergic system attributed to depression.

Cannabis use has been increasing rapidly over the past few years, due to its legaliza-
tion in a growing number of US states and other countries. SC consumption has also gained
significant popularity over the years, however, in contrast to natural cannabinoids, for many
SCs, the receptor preference, affinity, metabolic mechanisms, and pharmacodynamics are
unknown [45,46]. Additionally, the discrepancies in the pro- and anti-inflammatory ef-
fects of THC and CBD are known and it is explained by the difference in the applied
concentrations and model systems (naïve vs. inflammatory-induced) and by the complex
pharmacological profile in case of CBD. The investigation on the molecular mechanisms
by which cannabinoids could lead to increased inflammatory effects could potentially
unravel important targets for controlling neuroinflammation associated with drug abuse
and dependence and its emotional consequences. Both natural and synthetic cannabinoids
significantly contribute to the development of depression based on multiple pre-clinical and
clinical studies. The data reviewed here may reveal a possible link between the ECS and
the KP and help to overview the connection between cannabinoids, inflammation, and KP
in relation to the pathophysiology of depression. Although, there is no direct evidence so
far that exogenous cannabinoids induce depression via inflammation-stimulated KP in
one experimental system, the data gathered in this review clearly demonstrate its strong
possibility. Nevertheless, reviewing such data may raise interest to study the inflammatory
component of depression by pharmacological and/or genetic manipulation of either the
ECS or the KP. Selective exogenous cannabinoids [170,171] and enzyme inhibitors of the KP
as well as CBR and KP enzyme knock-out animals are available and widely used to study
the function of the ECS and KP [172–179]. Applying these tools may reveal the response of
each system to one another when manipulated in inflammatory-induced depression.
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