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a b s t r a c t 

Admission to universities is organised in a centralised scheme in Hungary. In this paper we investigate 

two major specialities of this application: ties and common quotas. A tie occur when some students have 

the same score at a programme. If not enough seats are available for the last tied group of applicants 

at a programme then there are three reasonable policies used in practice: 1) all must be rejected, as in 

Hungary 2) all can be accepted, as in Chile 3) a lottery decides which students are accepted from this 

group, as in Ireland. Even though student-optimal stable matchings can be computed efficiently for each 

of the above three cases, we developed (mixed) integer programming (IP) formulations for solving these 

problems, and compared the solutions obtained by the three policies for a real instance of the Hungarian 

application from 2008. In the case of Hungary common quotas arise from the faculty quotas imposed 

on their programmes and from the national quotas set for state-financed students in each subject. The 

overlapping structure of common quotas makes the computational problem of finding a stable solution 

NP-hard, even for strict rankings. In the case of ties and common quotas we propose two reasonable 

stable solution concepts for the Hungarian and Chilean policies. We developed (mixed) IP formulations 

for solving these stable matching problems and tested their performance on the large scale real instance 

from 2008 and also for one from 2009 under two different assumptions. We demonstrate that the most 

general case is also solvable in practice by IP technique. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Gale and Shapley gave a standard model for college admissions 

 Gale & Shapley, 1962 ), and suggested stable matching for its so- 

ution. Intuitively, a matching is stable if an application to a col- 

ege is rejected because the college is already full with higher 

anked students. Gale and Shapley showed that a stable match- 

ng can always be found by the deferred-acceptance algorithm , 

hich runs in linear time in the number of applications, see e.g. 

anlove (2013) . Moreover, the student-oriented variant results in 
� Earlier results of this paper have been presented in two conference papers [5,6]. 
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 student-optimal stable matching, meaning that no student could 

et a better assignment in any other stable matching. The theory 

f stable matchings has intensively been studied since 1962 by 

athematicians/computer scientists (see e.g. Manlove, 2013 ) and 

conomists/game theorists (see e.g. Roth & Sotomayor, 1990 ). The 

ale-Shapley algorithm has also been used in practice all around 

he world ( Biró, 2017 ), first in 1952 in the US resident allocation

rogramme, called NRMP ( Roth, 1984 ), then also in school choice, 

.g. in Boston ( Abdulkadiro ̆glu, Pathak, & Roth, 2005a ) and New 

ork ( Abdulkadiro ̆glu, Pathak, Roth, & Sönmez, 2005b ). In Hungary, 

he national admission scheme for secondary schools follows the 

riginal Gale-Shapley model and algorithm ( Biró, 2014a ), and the 

igher education admission scheme also uses a heuristic solution 

ased on the Gale-Shapley algorithm ( Biró, 2014b ). 

The Hungarian higher education admission scheme have at 

east four important special features: presence of ties, lower and 

ommon quotas, and paired applications. The students submit 

reference list on the university programmes they apply to, and 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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similar. We also find that introduction of additional variables and 

2 The authors wrote “In principle, one could appeal to the integer programming 

method devised by Biró and McBride (2014) for this problem, that finds a stable 

outcome when it exists. However, such an approach was untenable in practice due 

to complexity, relative opaqueness, and the likelihood of an unreasonably large run 

time on our large problem.”
re ranked according to their scores, which are of integer values 

urrently in the range of [0,500] higher score meaning better per- 

ormance. The solution by the coordinating agency is announced 

n terms of cutoff scores to be understood as follows: every stu- 

ent is admitted to the best programme of her preference where 

he achieved the cutoff score. A tie can occur when two or more 

tudents have the very same score at a programme they apply for. 

ies are never broken in Hungary, either all or none of the students 

n the tie are admitted, depending on the cutoff score. Lower quo- 

as are minimum requirements for the number of admitted stu- 

ents for each programme, which are set by the universities to 

ake the education economical. Applications by the students also 

nclude the contract term of the study, i.e., whether their study is 

unded by the state or privately. For every programme there is a 

ommon upper bound for the number of admitted students under 

ny contract term, and there are also nationwide common quotas 

or the number of students getting state funds in each subject (e.g., 

hemistry). Finally, the students applying for teachers’ programmes 

hould apply for pairs of programmes (such as Math-Physics). The 

atter feature was re-introduced in the application in 2010, but it 

as not present in 2008 and 2009, the years our analysis bears 

n in this paper. Further details of the application can be found in 

iró (2014b) . 

Each of the three special features (lower and common quotas 

nd paired applications) makes the problem NP-hard ( Biró, Fleiner, 

rving, & Manlove, 2010 ), only the case of ties is resolvable effi- 

iently ( Biró & Kiselgof, 2015 ). In a recent paper ( Ágoston, Biró, 

 McBride, 2016 ) Ágoston et al. studied the usage of integer pro- 

ramming techniques for finding stable solutions with regard to 

ach of these four special features separately, and they solved the 

ase of lower quotas for the real instance of 2008. We refer to 

his instance as 2008-Educatio instance, which was provided for 

esearch purpose by the coordinating governmental agency called 

ducatio kht, and contained all the relevant upper and lower quo- 

as in an anonym dataset. In this follow-up work we develop and 

est new IP formulations for the case of ties and common quo- 

as separately and then also for the case when both features are 

resent. So, the ultimate goal of this work was to suggest a so- 

ution concept for the college admission problem where ties and 

ommon quotas are also present, and to provide integer program- 

ing formulations that are suitable to compute this solution for 

arge scale applications, such as the Hungarian university admis- 

ion scheme with over 10 0,0 0 0 students. 

The presence of ties and equal treatment policy (i.e., not break- 

ng the ties) is also a feature in the Chilean university admissions 

 Rios, Larroucau, Parra, & Cominetti, 2014 ). However, the policy 

sed there is more permissive than the Hungarian one, since if 

wo students with the same score are competing for the last seat 

t a programme then they are both accepted in Chile, but both re- 

ected in Hungary, whilst a random tie-breaking is used in Ireland 

 Chen, 2012 ) to decide which student will be admitted. These so- 

ution concepts have been studied theoretically in Biró & Kiselgof 

2015) under the name of H-stability and L-stability. The intuitive 

esult proved in that paper is that when student-optimal stable so- 

utions are compared for the same instance then the cutoff scores 

re at least as high in Ireland as in Chile, and at least as high in

ungary as in Ireland. So the students are always getting the worst 

ssignments in Hungary, a better assignment in Ireland, and the 

est one in Chile. In this paper we quantify these differences on 

he Hungarian university admission instances from 2008 and 2009, 

resented in Section 5 . 

Common quotas are also present in many other applications. A 

ecent paper ( Baswana, Chakrabarti, Chandran, Kanoria, & Patange, 

019 ) describes the admission to Engineering Colleges in India, 

here common quotas are used for different, possibly overlapping 

ypes, just as in the Hungarian case. This means that a stable solu- 
2 
ion may not exist and the problem is NP-hard ( Biró et al., 2010 ),

hus the authors have proposed a heuristic algorithm. Interestingly 

he authors were aware of the possibility of using IP solutions for 

his problem, as described in Ágoston et al. (2016) for the Hun- 

arian case 2 , but they decided not to use that approach because 

f the possibly long run time. In this paper we demonstrate the 

ase of common quotas is tractable for large instances, even if the 

uotas are overlapping and the problem is further complicated by 

he presence of ties, as in the Hungarian case. The Indian appli- 

ations have also been studied by Sönmez & Yenmez (2019a,b) , 

here the case of nested set systems have been proved to be solv- 

ble by a generalised deferred-acceptance algorithm, which corre- 

ponds to the finding of Biró et al. (2010) on the Hungarian college 

dmissions. Furthermore, the same kind of requirements are im- 

lemented in college admission schemes with affirmative action, 

uch as the Brazilian college admission system ( Aygün & Bo, 2013 ). 

Similar distributional requirements are present for the Israeli 

echinot gap-year programs ( Gonczarowski, Kovalio, Nisan, & 

omm, 2019 ), where the authors developed and implemented 

 new Gale-Shapley type heuristic solution for the application. 

goston, Biró, & Szántó (2018b) used integer programming tech- 

iques for allocating students to companies at CEMS universities 

nder complex distributional constraints with respect to the types 

f students. Distributional constraints are present in school choice 

rogrammes as well, where the decision makers want to con- 

rol the socio-ethnical distribution of the students ( Abdulkadiro ̆glu, 

005; Abdulkadiro ̆glu & Ehlers, 2007; Bo, 2016; Echenique & Yen- 

ez, 2015; Ehlers, Hafalir, Yenmez, & Yildirim, 2014 ). Another 

ell-documented case is the Japanese resident allocation, where 

he government wants to ensure that the doctors are evenly dis- 

ributed across the country. They imposed lower quotas on the 

umber of doctors allocated in each region ( Goto, Kojima, Kurata, 

amura, & Yokoo, 2017; Kamada & Kojima, 2014; 2017a; 2017b ). 

Assignments problems are extensively studied in the OR liter- 

ture (see e.g. Pentico, 2007 ). There are many examples of prac- 

ical matching problems, such as papers assignment to review- 

rs ( Garg, Kavitha, Kumar, Mehlhorn, & Mestre, 2010 ), course al- 

ocation ( Diebold & Bichler, 2017 ), marriage assignment ( Cao, Frag- 

iére, Gautier, Sapin, & Widmer, 2010 ) and kidney exchanges ( Biró, 

an de Klundert, & Manlove, 2019 ). However, the usage of integer 

rogramming techniques is relatively new for two-sided match- 

ng markets under preferences. This may well be caused by the 

ood performance of the Gale-Shapley type heuristics in prac- 

ice (see e.g. Roth & Peranson, 1999 ). With their short run times, 

hey apparently have been preferred over integer programming ap- 

roaches to solve the sometimes large instances. Besides a previ- 

us paper ( Ágoston et al., 2016 ) motivated by the Hungarian uni- 

ersity admissions, there were only a couple of studies in this di- 

ection for finding maximum size weakly stable matchings in resi- 

ent allocation problem with ties ( Delorme et al., 2019; Kwanashie 

 Manlove, 2014 ), for finding stable matching in the presence of 

ouples ( Biró, McBride, & Manlove, 2014 ), and under distributional 

onstraints ( Ágoston et al., 2018b ). 

The paper most closely related to our work is the recent study 

f Delorme et al. (2019) , where IP techniques have been devel- 

ped and tested to solve a two-sided stable matching problem in 

 real application, pairing children with adoptive families. Our IP 

ormulations for solving the classical college admissions problem 

in their terminology, the Hospitals/Residents problem) are very 
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w  

C  

o  
inary cutoff scores variables drastically improves the efficiency of 

he IP solution. Thereafter they focus on the NP-hard problem of 

nding a maximum size weakly stable matching in case of ties, 

hilst we investigate the Hungarian equal treatment policy when 

onsidering the ties and also the feature of common quotas, both 

resent in the Hungarian application. The presence of common 

uotas makes the problem NP-hard. We test our IP formulations on 

he 2008 and 2009 instances of Hungarian university admission. 

eal instances analysed 

Besides the 2008-Educatio instance, we have also had access 

o the Hungarian university admission data from another source, 

he KRTK Databank for the years 2001–2017. However the lat- 

er instances do not contain capacity constraints, and the identi- 

ers for the programmes also differ from the 2008-Educatio in- 

tance. Nevertheless, using the 2008-Education instance, we ex- 

ended our computational analyses for the 2009-KRTK instance un- 

er two reasonable assumptions after linking the 2008-Education 

nd 2008-KRTK instances and then the 2008-KRTK and 2009-KRTK 

nstances. 3 The linkage of the two 2008 instances involved match- 

ng of the students and programmes of the two instances. This 

as not straightforward due to some limitations of the instances 

e.g. the KRTK instance contained only the first six applications 

f each student) and the possibility that the two instances re- 

ect different snapshots of the applications. Nevertheless, approx- 

mately 98,5% of the programmes have been identified. Then we 

lso needed to match the programmes in the 20 08 and 20 09 KRTK 

nstances, which was also non-trivial due to the changes in the 

ist of programmes offered (sometimes only the name of the uni- 

ersity or the faculty has changed, but the programmes remained 

ssentially the same, which required manual checks). When the 

inkage between the programmes of the 2008-Educatio and 2009- 

RTK instances were ready, we added the capacity constraints for 

he 2009-KRTK instance in two reasonable ways: a) we used the 

ame constraints as in the 2008-Educatio instance, b) we used 

he number of admitted students in 2009 for all programmes and 

ommon quotas identified from the 2008-Educatio instance. We 

efer to these two cases as 2009-KRTK-previous and 2009-KRTK- 

dmitted, respectively. 

Regarding the main statistics of the instances, in the 2008- 

ducatio instance we have 81,427 applicants, 353,618 applications, 

298 programmes, 2275 faculty quotas, and 206 national common 

uotas. Whilst in the 2009-KRTK instance we have 105,739 appli- 

ants, 310,346 applications, 2992 programmes, 1828 faculty quotas, 

nd 197 national common quotas. 

ur contribution 

Our research is a follow-up of the work of Ágoston et al. (2016) ,

here the same application, the Hungarian university admission 

as studied with its four special features: ties, common quotas, 

ower quotas and paired applications. In Ágoston et al. (2016) the 

pecial features were considered one-by-one and their main result 

as a practically tractable IP solution for the NP-hard case of lower 

uotas, demonstrated on the 2008-Education instance. In this pa- 

er we continue the investigation and first we look more deeply 

nto the classical college admission problem, where we compare 

everal (mixed) IP formulations. The cutoff score formulation (al- 

eady described in Ágoston et al. (2016) ) turns out to be viable to

olve for the 2008-Educatio instance even without any preprocess- 

ng. For the still efficiently solvable case of ties we find that the 
3 This data matching challenge was conducted as part of a student project, the 

etails are available in a BSc thesis upon request. 

t

a

3 
ew binary cutoff formulation (that is similar to the IP suggested 

n Delorme et al. (2019) ) performs the best among the IP-s stud- 

ed. We then compare the solutions of the Hungarian, Irish and 

hilean policies for the case of ties. Confirming the theories de- 

cribed in Biró & Kiselgof (2015) , we find that indeed the student- 

ptimal cutoff scores are always the highest in Hungary, followed 

y the Irish cutoffs and the lowest in Chile, if considered for the 

ame instance. Finally, we define stability through cutoff scores 

or the case of ties and common quotas with respect to the Hun- 

arian and Chilean policies, and we propose IP formulations with 

inary cutoff score variables. We find that these IP formulations 

ork well for the 2008-Educatio instance. We compare the solu- 

ions with respect to the Hungarian, Irish and Chilean policies. We 

lso extended the computational analyses for the 2009-KRTK in- 

tance after linking the 2008-Education and 2008-KRTK instances 

s well as the 2008 and 2009 KRTK instances under two assump- 

ions: a) by using the 2008 quotas for 2009 everywhere, and b) 

etting the quotas equal to the number of students admitted. In 

rder to speed up the computations we introduced a preprocess- 

ng phase that fixes some variables in the IP model corresponding 

o students’ applications that are either surely accepted or surely 

ejected in the stable solutions. 

ayout of the paper 

In Section 2 , we start by investigating the basic Gale-Shapley 

ase and testing different IP formulations for a simplified instance 

f the 2008-Education instance. We find that the cutoff formula- 

ions perform better than the standard ones regarding their run 

ime. In Section 3 , we consider the special feature of ties under 

he Hungarian policy, where the quotas are strictly obeyed, so the 

ast group of students with the same score (that cannot fit in the 

uota) is rejected. Here we observe that the cutoff formulation 

ith binary variables outperforms the cutoff formulation with con- 

inuous variables. Then, in Section 4 , we describe IP formulations 

lso for the Chilean policy, where the last group of students is still 

ccepted (without whom there remains an empty seat, but with 

hom the quota may be violated). We compare the results ob- 

ained for the Hungarian, Irish and Chilean policies. Then we turn 

ur attention to common quotas, which are present in the Hun- 

arian application in a structure that make the problem NP-hard 

o solve ( Biró et al., 2010 ). We test different IP-s for solving the 

roblem under strict preferences in Section 5 . Finally, in Section 6 , 

e tackle the real case when both ties and common quotas are 

resent. We develop IP-s again for both the Hungarian and Chilean 

olicies and we compare the results for both the 2008-Educatio 

nd the 2009-KRTK instances. We conclude in Section 7 . 

. The Gale-Shapley model 

In this section we provide various IP formulations for the clas- 

ical Gale-Shapley college admission model and then we test these 

ormulations on the 2008-Educatio instance. 

.1. Definitions and preliminaries 

In the classical college admissions problem by Gale & Shapley 

1962) the students are assigned to colleges. 4 In the following we 

ill refer to the two sets as applicants A = { a 1 , . . . , a n } and colleges

 = { c 1 , . . . c m 

} . Throughout the manuscript, we use the convention

f i = 1 , . . . , n and j = 1 , . . . , m . Let u j denote the upper quota of
4 In the computer science literature this problem setting is typically called Hospi- 

al/Residents problem (HR), due to the National Resident Matching Program (NRMP) 

nd other related applications. 
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5 Note in Ágoston et al. (2016) 1 was used instead of ε, but we found that the 

latter choice makes the constraints tighter and the solution more efficient. 
ollege c j . Regarding the preferences, we assume that the appli- 

ants provide strict rankings over the colleges, where r i j denotes 

he rank of the application (a i , c j ) in applicant a i ’s preference list.

e suppose that the students are ranked according to their scores 

t the colleges, so college c j ranks applicant a i according to her 

core s i j at c j , where the greater the score the more preferred is 

he student by the college. Let E ⊆ A × C denote the set of appli- 

ations. A matching is a set of applications, where each student is 

dmitted to at most one college and each college has at most as 

any assignees as its quota. For a matching M let M(a i ) denote 

he college where a i is admitted to (or ∅ if a i is not allocated to

ny college) and let M(c j ) denote the set of applicants admitted to 

 j in M. Thus the feasibility of a matching M ⊂ E means that for ev- 

ry applicant a i , | M(a i ) | ≤ 1 and for every college c j , | M(c j ) | ≤ u j .

 matching M ⊂ E is stable if for any application (a i , c j ) outside M

ither a i prefers M(a i ) to c j or c j filled its seats with u j applicants

ho all have higher scores than a i has. The deferred-acceptance 

lgorithm of Gale and Shapley provides a student-optimal stable 

atching in linear time ( Gale & Shapley, 1962 ). 

The notion of cutoff scores is important for both the classical 

ale-Shapley model and its generalisations with ties and common 

uotas. Let t j denote the cutoff score of college c j and let t denote 

 set of cutoff scores for all colleges. A student a i is admissible to a

ollege c j with cutoff score t j if s i j ≥ t j . We say that matching M is

mplied by cutoff scores t if every student is admitted to the most 

referred college in her list, where she is admissible (i.e., achieved 

he cutoff score). We say that a set of cutoff scores t corresponds 

o a matching M if t implies M. For a matching M an applicant 

 i has justified envy towards another applicant a k at college c j if 

(a k ) = c j , a i prefers c j to M(a i ) and a i is ranked higher than a k at

 j (i.e. s i j > s k j ). A matching with no justified envy is called envy-

ree (see Wu & Roth, 2018 and Yokoi, 2020 ). 

It is not hard to see that a matching is envy-free if and only 

f it is implied by some cutoff scores ( Ágoston & Biró, 2017 ). Note

hat an envy-free matching can be wasteful in the sense that it 

an leave many desired seats empty (in fact the empty matching 

s also envy-free). More precisely, when a student a i prefers c j to 

(a i ) and c j is not saturated (i.e. | M(c j ) | < u j ) then we say that

is wasteful . By definition it follows that a matching is stable if 

nd only if it is envy-free and non-wasteful (see also Azevedo & 

eshno, 2016 ). To achieve non-wastefulness we can require the cut- 

ff of any unsaturated college to be minimum (zero in our case). 

lternatively, we may require that no cutoff score be decreased 

ithout violating the quota of that college, while keeping the other 

utoff scores. Furthermore, we may also satisfy the latter condition 

y ensuring that we select the student-optimal envy-free match- 

ng, which is the same as the student-optimal stable matching ( Wu 

 Roth, 2018 ). To obtain this solution we only need to use an ap-

ropriate objective function. We will use the above described con- 

ections when developing our IPs. 

.2. IP formulations 

Here we will describe three different formulations. 

he Baïou-Balinski formulation 

First we describe the basic IP formulation for the Gale-Shapley 

odel, proposed in Baïou & Balinski (20 0 0) . All of our formula-

ions are based on the binary variables corresponding to applica- 

ions, where x i j = 1 denotes that the application (a i , c j ) is accepted

n the solution (and x i j = 0 denotes that it is not). The feasibility

f a matching can be ensured with the following two sets of con- 

traints, which are part of all our IPs. ∑ 

j:(a i ,c j ) ∈ E 
x i j ≤ 1 for each a i ∈ A (1) 
4 
∑ 

 :(a i ,c j ) ∈ E 
x i j ≤ u j for each c j ∈ C (2) 

Note that (1) implies that no applicant can be assigned to more 

han one college, whereas (2) implies that the upper quotas of the 

olleges are respected. 

To enforce the stability of a feasible matching we can use the 

ollowing constraint. 
 ∑ 

k : r ik ≤r i j 

x ik 

) 

· u j + 

∑ 

h :(a h ,c j ) ∈ E,s h j >s i j 

x h j ≥ u j for each (a i , c j ) ∈ E (3) 

Note that for each (a i , c j ) ∈ E, if a i is matched to c j or to a more

referred college then the first term ensures the satisfaction of the 

nequality. Otherwise, when the first term is zero, then the second 

erm is greater than or equal to the right hand side if and only if

he places at c j are filled with applicants with higher scores. 

Among the stable solutions we can choose the applicant- 

ptimal one by minimising the following objective function. 

in 

∑ 

(a i ,c j ) ∈ E 
r i j · x i j (4) 

We abbreviate this formulation based on constraints (1), (2) and 

3) , and objective function (4) as SO-BB (referring to student opti- 

al Baïou-Balinski model). This IP results in the student-optimal 

table matching. 

he cutoff score formulation 

For each college c j we define a nonnegative real variable t j de- 

oting its cutoff score. 

 j ≤
(
1 − x i j 

)
· ( ̄s + 1) + s i j for each (a i , c j ) ∈ E (5) 

nd 

 i j + ε ≤ t j + 

( ∑ 

k : r ik ≤r i j 

x ik 

) 

· ( ̄s + 1) for each (a i , c j ) ∈ E (6)

here s̄ is an upper bound for the scores (currently 500 in Hun- 

ary) and ε is a small positive number. 5 Here (5) implies that if a 

tudent a i is admitted to college c j then her score ( s i j ) has reached

he cutoff score. The second Eq. (6) ensures the envy-freeness, 

amely that if a i is not admitted to c j or to any better according to

er preference then it must be the case that she has not reached 

he cutoff at c j . Thus these two sets of conditions create the con- 

ection between the cutoff scores and the matching, ensuring that 

he matching implied by the cutoff scores is envy-free. 

To require stability of the matching we need to rule out the 

ossibility of blocking with an empty seat (i.e. wastefulness). This 

an be achieved by forcing the cutoff score of unsaturated colleges 

o be minimum (i.e. zero in our case) by the following constraints, 

here f j is a binary variable indicating whether c j rejects any stu- 

ent in the solution. 

f j · u j ≤
∑ 

(a i ,c j ) ∈ E: c j ∈ C 
x i j ∀ c j ∈ C (7) 

nd 

 j ≤ f j ( ̄s + 1) ∀ c j ∈ C (8) 

Our second IP is then constructed from feasibility constraints 

1), (2) , cutoff score constraints (5), (6) , non-wastefulness con- 

traints (7), (8) , and the objective function (4) enforcing student- 

ptimality. We abbreviate this IP as SO-NW-CUT, referring to 

tudent-optimal non-wasteful cutoff scores . 
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As an alternative, we can drop the non-wastefulness constraints 

nd enforce stability directly by obtaining the student-optimal 

nvy-free matching by using either of the following objective func- 

ions. 

in 

∑ 

c j ∈ C 
t j (9) 

r 

ax 
∑ 

(a i ,c j ) ∈ E 
(K − r i j ) · x i j (10) 

ith a large enough constant K. When combined with the feasi- 

ility constraints (1), (2) , and cutoff score constraints (5), (6) , we 

bbreviate the IP using objective function (9) as MIN-CUT, refer- 

ing to minimum cutoff scores . Likewise, when combined with the 

easibility constraints (1), (2) , and cutoff score constraints (5), (6) , 

e abbreviate the IP using objective function (10) as MSMR-CUT, 

eferring to maximum size minimum rank cutoff scores . Note that 

s explained earlier both MIN-CUT and MSMR-CUT will output the 

tudent-optimal stable matching. 

he binary cutoff score formulation 

We can make the cutoff formulations discrete by replacing the 

ontinuous cutoff variables by binary variables, as follows. For a 

ollege c j , let S j denote the set of scores the students have there,

.e. S j = { s i j : (a i , c j ) ∈ E} . Suppose also that the elements of S j are

orted in an increasing order, so S j = { s 1 
j 
, s 2 

j 
, . . . , s m 

j 
} , where s k 

j 
<

 

k +1 
j 

. For each college c j , let us now introduce | S j | binary cutoff

ariables: t 1 
j 
, t 2 

j 
, . . . , t m 

j 
with the following constraints. 

 i j ≤ t k j for each (a i , c j ) ∈ E, s i j = s k j (11) 

nd 

 

k 
j ≤ t k +1 

j 
for each k = 1 . (| S j | − 1) (12) 

Here, t k 
j 

= 0 means that the cutoff score at c j is greater than 

 

k 
j 
. Furthermore, (12) ensures the monotonicity of the binary cutoff

ariables and (11) requires that an application can only be accepted 

f the cutoff score is reached, corresponding to the continuous con- 

traint (5) . Regarding the second continuous constraint (6) we add 

he following simpler equations. 

 ≤
∑ 

h : r ih ≤r i j 

x ih + (1 − t k j ) for each (a i , c j ) ∈ E, s i j = s k j (13)

Therefore, constraints (11), (12) and (13) replace (5) and (6) , and 

ogether with the feasibility constraints (1), (2) they make the link 

etween the binary cutoff scores and the envy-free matchings. 

To achieve stability, we can use the same techniques as in the 

ontinuous case, with slightly modified conditions and objective 

unctions. 

As the first IP, instead of using Eqs. (7) and (8) , we can enforce

he cutoff score being zero for each unfilled college c j with the 

ollowing constraint. 

1 − t 1 j ) · u j ≤
∑ 

(a i ,c j ) ∈ E: c j ∈ C 
x i j ∀ c j ∈ C (14) 

The corresponding binary IP is then constructed from feasibility 

onstraints (1), (2) , cutoff score constraints (11), (12) and (13) , non- 

astefulness constraints (14) , and the objective function (4) that 

nforces student-optimality. We abbreviate this IP as SO-NW-BIN- 

UT, referring to student-optimal non-wasteful binary cutoff scores . 

Alternatively, we can drop again the non-wastefulness con- 

traints and enforce stability directly by obtaining the student- 

ptimal envy-free matching by using either the following objective 

unction 

ax 
∑ 

c j ∈ C,k =1 . | S j | 
t k j (15) 
5 
r objective function (10) . Combined with feasibility constraints 

1), (2) , and binary cutoff score constraints (11), (12) and (13) we 

btain two IPs, the MIN-BIN-CUT and MSMR-BIN-CUT, referring 

o minimum binary cutoff scores and maximum size minimum rank 

inary cutoff scores , both resulting in the student-optimal stable 

atching. 

nvy-free formulation 

It is also possible to enforce envy-freeness without using cutoff

cores, as explained in Ágoston & Biró (2017) , by using the follow- 

ng constraints. ∑ 

 : r ik ≤r i j 

x ik ≥ x h j ∀ (a i , c j ) , (a h , c j ) ∈ E, s i j ≥ s h j (16)

The above constraint means that if a student a h is allocated to 

ollege c j then every student a i , who has a score at c j at least as

igh as a h has, must also be allocated to c j or to a better college of

er preference. Combined with the feasibility constraints (1), (2) , 

nd objective function (10) the solution obtained is the student- 

ptimal stable matching. We abbreviate this formulation as MSMR- 

F, referring to maximum size minimum rank envy-free . 

ummary of formulations 

We summarise the constraints needed for all of the (mixed) IP 

ormulations that we tested for the basic Gale-Shapley college ad- 

ission model in Table 1 . 

.3. Computational results 

We took the 2008-Educatio instance after breaking the ties ran- 

omly, by considering only the faculty quotas and keeping only the 

ighest ranked application of each student for every programme 

i.e. the application for either the state funded or the privately 

unded seat). For the implementation we used AMPL with Gurobi. 

As we can see in Table 2 , the most efficient formulations used 

utoff scores. Even though SO-NW-CUT needed twice as many vari- 

bles as SO-BB, its runtime was smaller by a magnitude. Note that 

ery similar findings were reported in Delorme et al. (2019) . Com- 

aring the continuous and binary cutoff score formulations, SO- 

W-CUT and SO-NW-BIN-CUT, we can observe that the continuous 

ersion performed slightly better for this basic model. The simple 

SMR-EF formulation did not terminate, so we excluded this for- 

ulation from further consideration for the more general models. 

. Models with ties 

In many nationwide college admission programmes the stu- 

ents are ranked based on their scores, and ties may appear. In 

ungary, for instance, the students can obtain integer points be- 

ween 0 and 500 (the maximum was 144 until 2007), so ties do 

ccur. When ties are present then one way to resolve this issue is 

o break ties by lotteries, as done in Ireland (so a lucky student 

ith 480 point may be admitted to law school, whilst an unlucky 

tudent with the same score may be rejected). However, lotteries 

re often seen unfair, so in some countries, such as Hungary ( Biró

 Kiselgof, 2015 ) and Chile ( Rios et al., 2014 ) equal treatment poli-

ies are used, meaning that students with the same score are ei- 

her all accepted or all rejected. This policy gives way to two rea- 

onable variants when deciding about the last group of students 

ithout whom the quota is unfilled and with whom the quota is 

iolated. In the restrictive policy, used in Hungary, the quotas are 

ever violated, so this last group of students is always rejected, 

hilst in Chile they use a permissive policy and they always admit 

his last group of students. For instance, if there are three students, 

 , a and a , applying to a programme of quota 2 with scores 450,
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Table 1 

The summary of (mixed) integer programming formulations for the classical Gale-Shapley model. 

IP formulations (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

SO-BB 
√ √ √ √ 

SO-NW-CUT 
√ √ √ √ √ √ √ 

MIN-CUT 
√ √ √ √ √ 

MSMR-CUT 
√ √ √ √ √ 

SO-NW-BIN-CUT 
√ √ √ √ √ √ √ 

MIN-BIN-CUT 
√ √ √ √ √ √ 

MSMR-BIN-CUT 
√ √ √ √ √ √ 

MSMR-EF 
√ √ √ √ 

Table 2 

The performance of (mixed) integer programming formulations for the classical Gale-Shapley 

model. 

IP formulations #variables #constraints #non-0 elem. size(Kb) run time(s) 

SO-BB 287,035 381,115 73,989,595 1,319,663 1139 

SO-NW-CUT 291,935 673,050 2,463,808 69,464 81 

MIN-CUT 289,485 668,150 2,169,423 64,254 5062 

MSMR-CUT 289,485 668,150 2,169,423 69,846 2318 

SO-NW-BIN-CUT 574,070 955,185 3,028,078 75,810 107 

MIN-BIN-CUT 574,070 952,735 2,738,593 65,657 871 

MSMR-BIN-CUT 574,070 952,735 2,738,593 66,467 4325 

MSMR-EF n.a. n.a. n.a. 8,667,403 n.a. 
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 43, and 4 43, respectively then in Hungary only a 1 is admitted, 

hilst in Chile all three of them. In Ireland, a 1 is admitted and 

hey use a lottery to decide whether a 2 or a 3 will get the last seat.

.1. Definitions and preliminaries 

Stable matchings for the case of ties were defined through the 

utoff scores in Biró & Kiselgof (2015) . Using cutoff scores in case 

f ties makes the solution envy-free , meaning that no student a i 
ay be rejected from college c j if this college admitted another 

tudent with a score less than or equal to the score of student a i .

his allocation concept is also called equal treatment policy, since 

he admission of a student to a programme implies the admis- 

ion offer to all other students with the same score. 6 Here again, 

e have the same equivalence between envy-free matchings and 

atching induced by cutoff scores ( Ágoston & Biró, 2017 ), that we 

rove here for being self-contained. 

roposition 1. A matching is envy-free for a college admission prob- 

em with ties if and only if it is induced by cutoff scores. 

roof. Given an envy-free matching M let us set the cutoff score 

f each college to be the score of the weakest admitted student. 

hese cutoff scores will induce M. In the other direction, any 

atching induced by cutoff scores is obviously envy-free. �

In this paper we focus on the restrictive policy used in Hun- 

ary, where the stability of the matching can be defined by adding 

 non-wastefulness condition to envy-freeness. Namely, a matching 

nduced by cutoff scores is stable if no college can decrease its cut- 

ff score without violating its quota, assuming that the other cutoff

cores remain the same. We note that the stability of a matching 

an equivalently be defined by the lack of a set of blocking appli- 

ations involving one college and a set of applicants such that this 

et of applications would be accepted by all parties when com- 
6 Note that it is also possible to define envy-freeness and stability in a weaker 

orm, where the rejection of a student is allowed when another student with the 

ame score is accepted. These so-called weakly stable or weakly envy-free matchings 

re used in the Scottish resident scheme ( Irving & Manlove, 2008 ), and in a project 

llocation application at CEMS universities ( Ágoston et al., 2018b ), respectively. 

c

s

b

i

a

f

6 
ared to the applications of the matching considered. See more 

bout this connection in Fleiner & Jankó (2014) . 7 

More formally, for a college c j and a set of applications X ⊂ E

o this college we define by Ch j (X ) ⊆ X the set of applications se- 

ected by c j . For the case of strict rankings the choice function is 

imple, if | X| ≤ u j then Ch j (X ) = X , and if | X| > u j when c j selects

he top u j applicants according to their scores. For ties we consider 

wo choice functions, Ch H 
j 

and Ch C 
j 

corresponding to the Hungarian 

estrictive and the Chilean permissive policies. First we note that 

or | X| ≤ u j we have Ch H 
j 
(X ) = Ch C 

j 
(X ) = X , the question is what

appens for | X| > u j . For cutoff score t j let X ≥t j denote the sub- 

et of applications in X where the students have score t j or higher 

t c j . In the Hungarian policy Ch H 
j 
(X ) = X ≥t j such that | X ≥t j | ≤ u j 

nd | X ≥t j −1 | > u j , thus the number of students selected is never

ore than the quota, but the cutoff is minimal, i.e., decreasing 

he cutoff would imply the violation of the quota. In the Chilean 

olicy Ch C 
j 
(X ) = X ≥t j such that | X ≥t j | ≥ u j and | X ≥t j +1 | < u j , thus

he number of students selected is at least as much as the quota, 

ut the cutoff is maximal, i.e., increasing the cutoff would imply to 

ave empty seats. 

Biró & Kiselgof (2015) proved two main theorems about stable 

atchings for college admissions with ties. In their first theorem 

hey showed that a student-optimal and a student-pessimal sta- 

le matching exist for both the restrictive policy (Hungary) and 

he permissive policy (Chile), where the cutoff scores are mini- 

al / maximal, thus the matchings are the best / worst for all 

tudents, respectively. Furthermore, they also proved the intuitive 

esults that if we compare the student-optimal cutoff scores (or 

he student-pessimal ones) with respect to the three reasonable 

olicies, namely the Hungarian (restrictive), the Irish (lottery), and 

he Chilean (permissive), then the Hungarian cutoff scores are al- 

ays as high for each college as the Chilean cutoff scores and the 

rish cutoff scores are in between. When considering the student- 
7 There are many interesting properties that apply differently for the three poli- 

ies, as demonstrated in Fleiner & Jankó (2014) and Biró & Kiselgof (2015) . For in- 

tance, the corresponding choice functions are substitutable for all the three policies, 

ut the irrelevance of rejected contracts property is violated for the Hungarian pol- 

cy, and the law of aggregate demand property is violated for both the Hungarian 

nd Chilean policies. That is why neither of the latter two policies is strategyproof 

or the students, even though student-optimal solutions do exist. 
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ptimal stable matching, it turns out to be also the student- 

ptimal envy-free matching, as the following proposition describes 

n Ágoston & Biró (2017) . 

roposition 2. For the college admission problem with ties the 

tudent-optimal stable matching is also student-optimal among the 

nvy-free matchings with respect to the Hungarian (or Chilean) equal 

reatment policy. 

roof. Assume by way of contradiction that there is an envy-free 

atching M, where one student gets a better assignment than in 

he student-optimal stable matching M 

s . Without loss of generality 

e may also assume that M is not Pareto-dominated by another 

nvy-free matching M 

′ with the same property (i.e., where every 

tudent would get at least as good an assignment and somebody 

ould get a strictly better assignment). By Proposition 1 we know 

hat M is induced by some cutoff score t . Note that M cannot be 

table, since that would contradict to the student-optimality of M 

s . 

herefore there is at least one college where the cutoff score can 

e decreased so that new students will be admitted there, but its 

uota is not violated. Let the new cutoff score be t ′ and let the 

ew matching implied be M 

′ . But then M 

′ is also envy-free and 

areto-dominates M, a contradiction. �

.2. IP formulations 

First we describe which of the (M)IP formulations for the clas- 

ical model work unchanged for the case of ties, and then we give 

ome alternative formulations. 

revious IP-s that work for ties 

For the restrictive (Hungarian) equal treatment policy we have 

o keep the original feasibility constraints (1), (2) . Constraints 

16) ensure envy-freeness immediately, and we can also achieve 

nvy-freeness by using the same constraints with cutoff scores ( (5), 

6) ), or with binary cutoff scores ( (11), (12) and (13) ). 

To secure stability, we can enforce the selection of the stu- 

ent optimal envy-free matching by using an appropriate objective 

unction, as implied by Proposition 2 . Essentially all the student- 

ptimal IP formulations for envy-free matchings that were previ- 

usly described for the Gale-Shapley model will lead to this solu- 

ion, namely MIN-CUT, MSMR-CUT, MIN-BIN-CUT, MSMR-BIN-CUT 

nd MSMR-EF (however, we leave out the latter from the simula- 

ions due to its bad performance for the basic model). 

lternative formulations 

When we want to avoid the inclusion of objective functions, we 

ay also enforce stability directly by adding new variables d i j and 

onstraints, as described in Ágoston et al. (2016) . Here d i j is a bi-

ary variable showing whether a i would be admitted to c j if the 

utoff score decreased at c j by one. 

 ik ≤ (1 − x i j ) for each (a i , c j ) ∈ E, (a i , c k ) ∈ E, r ik ≥ r i j (17)

Condition (17) implies that d i j can only be one if student a i 
refers c j to her current assignment. 

 j − 1 ≤
(
1 − d i j 

)
· ( ̄s + 1) + s i j for each (a i , c j ) ∈ E (18)

here (18) is a modification of (5) , implying that d i j can only be

ne if a i reaches the cutoff score, when decreased by one. 

Now, with these new variables we can also formulate the non- 

astefulness condition, where f j will again indicate whether c j is 

ssentially full, meaning that its cutoff score cannot be decreased 

ithout violating its quota. Besides keeping (8) , we modify (7) into 

he following condition. 

f j · (u j + 1) ≤
∑ 

(a i ,c j ) ∈ E: c j ∈ C 
(x i j + d i j ) ∀ c j ∈ C (19) 
7 
To summarise, together with the basic feasibility conditions (1), 

2) , and cutoff score constraints (5), (6) , satisfaction of Eqs. (17) , 

18), (8), (19) result in a stable matching with respect to the Hun- 

arian equal treatment policy. To find the student-optimal stable 

atching in this context, we may again use objective function (10) . 

e denote this formulation by SO-H-NW-CUT. 

inary cutoffs 

Finally, we can again use binary variables for the cutoffs. Keep- 

ng the feasibility constraints (1), (2) , cutoff score constraints (11), 

12) and (13) , we modify the non-wastefulness constraints (14) as 

ollows. 

1 − t 1 j ) · (u j + 1) ≤
∑ 

(a i ,c j ) ∈ E: c j ∈ C 
x i j + d i j ∀ c j ∈ C (20)

We keep (17) and modify (18) to the following constraints. 

 i j ≤ t k +1 
i 

− t k i for each (a i , c j ) ∈ E, s i j = s k j (21) 

These constraints mean that if d i j = 1 then the score of the ap-

licant is just below of the cutoff score. Using objective function 

10) , with feasibility constraints (1), (2) , cutoff score constraints 

11), (12) and (13) , non-wastefulness constraints (17), (20) and (21) , 

e get the formulation denoted by SO-H-NW-BIN-CUT. 

.3. Simulations 

We considered the 2008-Education instance with ties by taking 

nto account only the faculty quotas and keeping only the highest 

anked application of each student for every programme (i.e. the 

pplication for either a state funded or privately funded seat). The 

esults are summarised in Table 3 . We can observe that the best 

inary IP formulation has outperformed the best continuous for- 

ulation. 

. Policy comparison for ties 

First we set up an IP formulation for the Chilean policy, and 

hen we compare the solutions obtained by the Hungarian, Irish 

nd Chilean policies in the 2008-Educatio instance. 

.1. IP for the Chilean policy 

Recall that here we admit the last group of students, with 

hom the quota is violated, but without whom some seats re- 

ain unfilled. Alternatively, we may require that after decreasing 

he cutoff score at any college the number of admitted students 

ould be strictly less than its quota. To achieve this in the most 

ffective way, we use a similar formulation as SO-H-NW-CUT for 

he Hungarian policy. 

he cutoff score formulation 

Here d i j is a binary variable showing that a i is admitted to c j , 

ut would be rejected if the cutoff score increased at c j by one. 

 i j ≤ x i j for each (a i , c j ) ∈ E (22) 

Conditions (22) imply that d i j can only be one if student a i is 

dmitted to c j in the actual matching. 

d i j − 1 

)
· ( ̄s + 1) + s i j ≤ t j for each (a i , c j ) ∈ E (23) 

here (23) implies that d i j will only be one if a i is rejected if the 

utoff increases by one. 

Now, with these variables we can also formulate the non- 

astefulness condition, where f j will again indicates whether c j 
s essentially full, meaning that there would be empty seats if 
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Table 3 

The performances of (mixed) integer programming formulations for the case of ties. 

IP formulations #variables #constraints #non-0 elem. size(Mb) run time(s) 

MIN-CUT 289,485 668,150 2,169,423 59,694 5247 

MSMR-CUT 289,485 668,150 2,169,423 65,286 1460 

MIN-BIN-CUT 428,513 807,178 2,447,479 53,548 982 

MSMR-BIN-CUT 428,513 807,178 2,447,479 57,106 1362 

SO-H-NW-CUT 578,970 1,694,333 4,793,409 114,882 1310 

SO-H-NW-BIN-CUT 861,105 1,813,840 5,352,772 118,828 165 

Table 4 

The comparison of student-optimal (A-opt) and student-pessimal (C-opt) stable matchings for the case 

of ties under the Hungarian, Irish and Chilean policies. 

size of matching average rank average cutoffs # rejections 

policies A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. 

Hungarian 86,195 86,195 1.2979 1.2979 58.3931 58.3931 37,698 37,698 

Irish 86,410 86,410 1.2916 1.2916 58.2090 58.2106 36,802 36,804 

Chilean 86,614 86,614 1.2844 1.2844 57.2000 57.5200 35,901 35,901 
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he cutoff score increased by one. Besides keeping (7) and (8) , we 

odify (2) into the following sets of constraints. ∑ 

a i ,c j ) ∈ E: c j ∈ C 
(x i j − d i j ) ≤ u j − 1 ∀ c j ∈ C (24) 

In summary, together with the basic applicant-feasibility con- 

itions (1) and cutoff score constraints (5), (6) , satisfaction of Eqs. 

7) , (8), (22), (23), (24) result in a stable matching with respect 

o the Chilean equal treatment policy. To find the student-optimal 

table matching in this context, we may again use objective func- 

ion (10) . Denote this formulation by SO-C-NW-CUT. 

inary cutoffs 

As follows we also describe the alternative IP formulation with 

inary cutoff variables, abbreviated as SO-C-NW-BIN-CUT. 

We keep feasibility conditions (1) and (24) , as in the SO-C-NW- 

UT model, and we also impose (22) . Furthermore, we have cutoff

core constraints (11), (12) and (13) , just like in SO-NW-BIN-CUT 

nd SO-H-NW-BIN-CUT. However, (23) will be now replaced with 

he following set of conditions. 

 i j ≤ t k i − t k −1 
i 

for each (a i , c j ) ∈ E, s i j = s k j (25) 

These conditions ensure that d i j can only be one if s i j is equal 

o the current cutoff score. 

.2. Computational results 

We conducted the simulation on the 2008-Educatio instance, 

here we compared the results for the Hungarian, Irish and 

hilean policies, as summarised in Table 4 . For the student- 

essimal solutions, we minimised the objective function of (10) . 

he results indeed follow the theorems of Biró & Kiselgof 

2015) regarding the cutoff scores for the three different policies. 

he improvements from the Hungarian to the Irish and from the 

rish to the Chilean matchings are significant for the students. An- 

ther interesting fact of the simulation is that for the Hungar- 

an and Chilean policies we observed no difference between the 

tudent-optimal and student pessimal solutions, so the stable so- 

utions are unique for both cases. Regarding the Irish policy the 

ifference between the student-optimal and student-pessimal so- 

utions is minor. These findings are in line with previous results 

n large markets, such as the case of NRMP described in Roth & 

eranson (1999) . 

. Models with common quotas 

Here we consider the case of common quotas for strict rankings 

rst. 
8 
.1. Definitions and preliminaries 

In the Hungarian university admission scheme the students can 

pply for so-called studies , where the study programme and the as- 

ociated financial contract are both specified. The contract can be 

ither state-funded, where the students can study free of charge 

but under some strict conditions over the length of the study and 

heir future employment in Hungary), or it can be a privately fi- 

anced contract, where the students pay a tuition. For each pro- 

ramme, there is a common faculty quota for the number of ad- 

itted students irrespective of their contract terms, and there is 

lso a nationwide quota for the number of students in each subject 

rea that can be admitted to any programme with state-fund. For 

nstance, the government may decide that they cover the studies 

f 30 0 0 computer science students in Hungary, whilst BME (Bu- 

apest University of Technology and Economics) can have a faculty 

uota of 500 for CS students, implying for both state funded and 

rivately funded contracts together. 

The rejection of a student a i to a state-funded study c j is con- 

idered fair, if either the faculty quota is filled with higher ranked 

tudents applying for the programme of c j , or the nationwide 

uota for the subject of c j is filled with higher ranked students. Re- 

arding the applications to privately-funded studies, only the bind- 

ng faculty quotas can result in rejections. 

This feature of the Hungarian application scheme motivated the 

tudy of the college admission problem with common quotas, de- 

ned and studied first in Biró et al. (2010) . In this model, for each 

et of colleges C p ⊆ C, there may be an upper quota u p for the

umber of applications accepted by colleges belonging to C p . Let C c 

enote the sets of colleges that have common upper quotas (which 

lso includes every individual college, since they also have upper 

uotas). A matching is feasible if no common upper quota is vi- 

lated. A feasible matching is stable if for each rejected applica- 

ion by applicant a i to college c j there exists at least one common 

uota for a set of colleges C p , such that c j ∈ C p and C p is filled with

pplicants ranked higher than a i . In this definition we must also 

ssume that a set of colleges C j with common quota has a mas- 

er ranking over the students applying to any college in that set. 

herefore, considering the scores of the applicants, if two colleges 

 j and c h both belong to a common set C p then the score of an

pplicant must be the same at both c j and c h , so essentially the 

tudents have scores for the sets of colleges with common quotas. 

For a set of colleges C p we can also define the choice func- 

ion over a set of applications X ⊂ E, that we denote by Ch p for

trict rankings, and Ch H p and Ch C p for ties under the Hungarian and 

hilean policies, respectively. We suppose that X contains only the 
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est application of each student (if not then we remove all but 

he most preferred one by the student). Again, we define X ≥t p 

s the set of applications with score at least t p , where t p is the

utoff score for common quota C p . Just as for single colleges, the 

hoice function selects here the best feasible set of applications 

rom X , where feasibility is defined according to the Hungarian 

nd the Chilean policies in an analogous way as for single col- 

eges. Thus if | X| > u p then for the Hungarian policy Ch H p (X ) = X ≥t p 

uch that | X ≥t p | ≤ u p and | X ≥t j −1 | > u p , and in the Chilean policy

h C p (X ) = X ≥t p such that | X ≥t p | ≥ u p and | X ≥t p +1 | < u p . 

An alternative definition of stability can be given by introducing 

utoff scores for sets of colleges with common quotas. The corre- 

pondence between the envy-free matchings and cutoff scores are 

imilar as in the basic model, every student is admitted to the best 

ollege according to her preference, where she achieved the cutoff

core for every set of colleges with common quota including this 

ollege. Non-wastefulness can also be described in a similar way 

s before, no set of colleges with common quota can decrease its 

utoff score without violating its common quota. 

Biró et al. (2010) showed that a stable matching may not exist 

n this model 8 , and the problem to decide the existence is NP-hard, 

ven in the special case of the Hungarian university admission sys- 

em introduced in 2007. However, they also showed that if the set 

ystem is nested (also called laminar or hierarchic in the literature), 

hat is if for every pair of sets C p , C q ⊆ C either C p ⊆ C q or C q ⊆ C p ,

hen a stable matching always exists and can be computed effi- 

iently. This was the case until 2007 in the Hungarian university 

dmission. 

Ágoston et al. (2016) gave an IP formulation for the problem, 

ut they were not able to solve the problem on the 2008-Educatio 

nstance. Below, we will give a slightly modified IP formulation 

ith binary cutoff scores, and demonstrate its applicability for the 

008-Educatio and 2009-KRTK instances, and in addition we fur- 

her generalise the IP formulations for the case when both ties and 

ommon quotas are present. 

.2. IP formulations 

First we recall the IP formulation suggested in Ágoston et al. 

2016) and then extend it to binary variables. For all formulations 

n order to take into account the common upper quotas we need 

he following set of feasibility constraints 

∑ 

a i ,c j ) ∈ E;c j ∈ C p 
x i j ≤ u p ∀ C p ⊆ C (26) 

utoff formulation for common quotas 

Introduce a continuous cutoff variable t p for each common 

uota C p . As before, we ensure that an applicant a i is admissible 

o a college c j belonging to C p if she achieved the cutoff score t p 
or every set of colleges C p college c j belongs to. That is, conditions 

5) change as follows. 

 p ≤
(
1 − x i j 

)
· ( ̄s + 1) + s i j for each (a i , c j ) ∈ E, c j ∈ C p (27)
8 For clarity we give their example here. Assume there are applicants, a 1 , a 2 and 

 3 , and four colleges c 1 , c 2 , c 3 and c 4 , where c 1 and c 2 have a common quota of 1 

nd c 2 , c 3 have a common quota of 1, whilst c 4 has a simple upper quota of 1. For 

olleges c 1 , c 2 and c 3 , the ranking order is a 1 , a 2 , a 3 , while for c 4 it is the opposite. 

inally, a 1 has the preference list c 4 , c 1 , a 2 only applies to c 2 , and a 3 has prefer- 

nce list c 3 , c 4 . One can easily check that none of the possible matchings is stable, 

s { (a 1 , c 1 ) , (a 3 , c 3 ) } is blocked by (a 1 , c 4 ) , { (a 1 , c 4 ) , (a 3 , c 3 ) } is blocked by (a 2 , c 2 ) , 

 (a 1 , c 4 ) , (a 2 , c 2 ) } is blocked by (a 3 , c 4 ) , { (a 2 , c 2 ) , (a 3 , c 4 ) } is blocked by (a 1 , c 1 ) , and 

 (a 1 , c 1 ) , (a 3 , c 4 ) } is blocked by (a 3 , c 3 ) . 

1

(

m  

s  

h

9 
To ensure envy-freeness the following sets of constraints are in- 

roduced. 

 i j + ε ≤ t p + 

( ∑ 

k : r ik ≤r i j 

x ik + (1 − b p 
j 
) 

) 

· ( ̄s + 1) ∀ (a i , c j ) ∈ E, c j ∈ C

(28) 

here b 
p 
j 

is a binary variable for each pair of college c j and com-

on quota C p such that c j ∈ C p . Finally, we require that ∑ 

p: c j ∈ C p 
b p 

j 
≥ 1 , ∀ c j ∈ C. (29) 

The latter two sets of conditions imply that, if the application 

a i , c j ) is rejected, then there must be at least one common quota

or set C p such that c j ∈ C p and the cutoff score at C p is higher than

he score of a i there. 

For stability, besides envy-freeness we also need to provide 

on-wastefulness. This can be reached by enforcing the cutoff

cores for sets of colleges to be zero if the quota is not fully filled.

his can be implemented with the following sets of constraints, 

here f p is a binary variable for every set of colleges C p with com-

on quota. 

f p · u p ≤
∑ 

(a i ,c j ) ∈ E: c j ∈ C p 
x i j ∀ C p ∈ C c (30) 

nd 

 p ≤ f p ( ̄s + 1) ∀ C p ∈ C c (31) 

To summarise, besides the feasibility conditions (1) and (26) , 

he stability is achieved by conditions (27), (28), (29), (30) and 

31) . Together with objective function (10) we abbreviate this IP 

s COM-SO-CUT. 

inary cutoffs for common quotas 

Instead of the continuous variables t p for the cutoff of C p now 

e introduce binary variables. The corresponding constraints (11), 

12) and (13) will be generalised for the case of common quotas as 

ollows. 

For a set of colleges C p , let S p denote the set of scores the

tudents have, i.e. S p = { s i j : (a i , c j ) ∈ E, c j ∈ C p } . Suppose also that

he elements of S p are sorted in an increasing order, so S p = 

 s 1 p , s 
2 
p , . . . , s 

m 

p } , where s k p < s k +1 
p . For each set of colleges C p with a

ommon quota, introduce | S p | binary cutoff variables: t 1 p , t 
2 
p , . . . , t 

m 

p 

ith the following constraints. 

 i j ≤ t k p for each (a i , c j ) ∈ E, c j ∈ C p , s i j = s k p (32)

nd 

 

k 
p ≤ t k +1 

p for each k = 1 . (| S p | − 1) , C p ∈ C c (33)

Here again, t k p = 0 means that the cutoff score at C p is greater 

han s k p . Furthermore, (33) ensures the monotonicity of the binary 

utoff variables and (32) ensures that an application (a i , c j ) can 

nly be accepted if the cutoff score is met for each set of colleges 

 p college c j belongs to. Finally, envy-freeness is achieved with the 

ollowing conditions. 

 ≤
∑ 

h : r ih ≤r i j 

x ih + 

∑ 

p: c j ∈ C p ,s i j = s k p 

(1 − t k p ) for each (a i , c j ) ∈ E, c j ∈ C p 

(34) 

The latter set of constraints imply that if a i is rejected from c j 
i.e., when the first term of the right hand side is zero), then there 

ust be at least one set of colleges C p such that t k p is zero, where

 i j = s k p , meaning that a i has not reached the cutoff score at C p , so

er rejection is fair. 
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For stability, we also have to ensure non-wastefulness, which 

an be achieved with constraints similar to (14) used in SO-NW- 

IN-CUT, as follows. 

1 − t 1 p ) · u p ≤
∑ 

(a i ,c j ) ∈ E: c j ∈ C p 
x i j ∀ C p ∈ C c (35) 

To summarise, the binary formulation is composed of feasibility 

onditions (1) and (26) and stability conditions (32), (33), (34) and 

35) with (10) as objective function. For simplicity, denote this 

P formulation by COM-Irish, since the further characteristics, de- 

oted by SO-NW-BIN-CUT, will be shared in all of the IP models 

hat we will consider for the case of ties and common quotas in 

he next section. 

This problem variant represents the situation where the ties in 

he rankings are broken by lottery (as done in Ireland). However, 

n Hungary and Chile the ties are not broken, which motivates the 

ext, most general setting, where both ties and common quotas 

re present. 

. Models with ties and common quotas 

We learned in our simulations for the case of common quotas 

ith no ties that the best performing IPs are the ones with binary 

utoff scores (the IP with continuous variables did not terminate 

n a reasonable time), therefore, we will only use the latter IP for- 

ulation in this section. 

When ties and common quotas are both present in the appli- 

ation then it is unclear what would be the most suitable stabil- 

ty definitions. First of all, we have to differentiate between the 

ore restrictive approach used in Hungary and the more permis- 

ive method used in Chile, in case of ties with no common quotas. 

e will also try to ensure that in case of no ties both concepts are

quivalent with the model described in the previous section. 

.1. Definitions and preliminaries 

We will define the desired solution with cutoff scores, as this 

rovides envy-freeness automatically. The cutoffs are defined for 

he common quotas, and an application to college c j may be ac- 

epted if the cutoff score is met for every set of colleges C p with 

ommon quota college c j belongs to. The question is how to define 

on-wastefulness. By generalising the concepts for the case of ties 

with no common quotas) define a solution to be non-wasteful for 

he Hungarian policy if no cutoff score can be decreased without 

iolating the corresponding common quota. Regarding the Chilean 

olicy, it is required that common quotas are violated only by the 

ast group of students with the same score. This is equivalent to 

he assumption that after increasing any cutoff score of a set of 

olleges C p with common quota, the number of students admitted 

o C p would be strictly less than its common quota. We can see 

hat both the Hungarian and the Chilean definition are equivalent 

o the previous stable matching definition for common quotas if no 

ies occur. 

Since we have seen that the binary cutoff formulations outper- 

ormed the continuous formulations, it is enough to consider bi- 

ary formulations for the Hungarian and Chilean policies here. 

.2. Binary IP formulations for the Hungarian policy 

Just as in the previous section, we have binary cutoff variables 

 t 1 p , t 
2 
p , . . . , t 

m 

p } for each set of colleges C p . The feasibility of the so-

ution is satisfied due to conditions (26) . Also, we can establish the 

orrespondence between the cutoff scores and the matching by the 

ame conditions as before, i.e. with (32), (33) and (34) . 

To achieve non-wastefulness new binary variables are needed, 

 

p 
i 

for each applicant a i and set of colleges C p ∈ C c , that have value 
10 
ne if a i is not yet admitted to a college in C p , but after decreasing

he cutoff at C p by one step (i.e. to the subsequent score group), 

 i would be admitted to a college in C p . For the precise formula-

ions, for each application by a i to c j , where c j ∈ C p , we also need

o introduce a binary variable e 
p 
i j 

, which can have value one, if a i 

s neither admitted to c j nor to a preferred place, but she would 

e admitted to c j if the cutoff at C p decreased by one. 

Non-wastefulness in this model means that no cutoff score can 

e decreased without violating a common quota. Instead of (17) , 

e have the following constraints. 

 

p 

ik 
≤ (1 − x i j ) for each (a i , c j ) ∈ E, (a i , c k ) ∈ E, c k ∈ C p , r ik ≥ r i

(36) 

This implies that e 
p 

ik 
can only be one if a i is not admitted to c k 

r to a more preferred college. We replace (21) with 

 

p 
i j 

≤ t k +1 
p − t k p for each (a i , c j ) ∈ E, c j ∈ C p , s i j = s k p (37)

nd add 

 

p 
i j 

≤ t k q for each (a i , c j ) ∈ E, c j ∈ C q , p � = q, s i j = s k q (38)

These two sets of constraints imply that e 
p 
i j 

can only be one if a i 

s not admitted to c j , but she would be admitted to c j if the cutoff

t C p decreased by one, since she also meets the cutoffs of every 

ther set of colleges C q that include c j . Finally, we link e 
p 
i j 

with d 
p 
i 

s follows. 

 

p 
i 

≤
∑ 

j: c j ∈ C p 
e p 

i j 
for each (a i , c j ) ∈ E, c j ∈ C p ∈ C c (39)

The latter conditions make sure that d 
p 
i 

can only be one if there 

xists some college c j , where a i would be admitted if the cutoff of 

 p decreased by one. Finally, just as in (20) , we require the follow- 

ng constraints by setting x 
p 
i 

= 

∑ 

(a i ,c j ) ∈ E: c j ∈ C p x i j . 

1 − t 1 p ) · (u p + 1) ≤
∑ 

a i ∈ A 
x p 

i 
+ d p 

i 
for each C p ∈ C c (40) 

These constraints are in line with our definition of non- 

astefulness, by ensuring that no cutoff score of a set of colleges 

 p can be decreased, since otherwise the common quota of C p 
ould be violated. 

To summarise, the IP formulation for the Hungarian variant for 

he most general case of ties and common quotas, denoted by 

OM-Hungarian, consists of feasibility conditions (1) and (26) and 

tability conditions (32), (33), (34), (36), (37), (38), (39) and 

40) with (10) as objective function. 

.3. Binary IP formulations for the Chilean policy 

The IP formulation for the Chilean policy is similar to the Hun- 

arian policy but somewhat simpler. Now we do not need all vari- 

bles e 
p 
i j 

, only those of type d 
p 

i . This is so because d 
p 

i can be one

f a i is admitted to a college in C p and she just met the cutoff, so

he would be rejected if the cutoff of C p decreased. The common 

uotas may be violated, but only with the last score group admit- 

ed. Without them some seats would remain empty in the colleges 

elonging to the common quota. 

To summarise, there are binary cutoff variables { t 1 p , t 
2 
p , . . . , t 

m 

p }
or each set of colleges C p , and for each applicant a i and common

uota C p there is a binary variable d 
p 

i if a i is applying to any col- 

ege in C p . The correspondence between the cutoff scores and the 

atching is established by conditions (32), (33) and (34) . The fea- 

ibility of the solution is ensured with a condition similar to (24) , 

s follows ∑ 

 :(a i ,c j ) ∈ E,c j ∈ C p 
(x p 

i 
− d 

p 

i ) ≤ u p − 1 for each C p ∈ C c (41) 
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Table 5 

The performance of the binary cutoff formulations for the case of ties and common quotas under 

the Hungarian, Irish and Chilean policies. 

IP formulations #variables #constraints #non-0 elem. size(Kb) run time(s) 

COM-Hungarian 1,566,052 3,311,220 11,423,605 191,222,474 158,949.17 

COM-Irish 804,576 1,490,331 5,360,107 121,110,852 22,320.28 

COM-Chilean 1,114,913 2,389,382 8,331,816 192,978,328 52,962.27 

Table 6 

The comparison of student-optimal (A-opt) and student-pessimal (C-opt) stable 

matchings for the case of ties and common quotas under the Hungarian, Irish 

and Chilean policies for the 2008-Educatio instance. 

size of matching average rank # rejections 

policies A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. 

Hungarian 81,581 81,427 1.6496 1.6534 81,369 82,043 

Irish 81,825 81,825 1.6413 1.6414 80,237 80,239 

Chilean 82,082 82,082 1.6337 1.6337 79,176 79,176 
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10 To give an intuition for the latter result, we give a simple example, where the 

same phenomenon can be observed. Let us have three students, s 1 , s 2 and s 3 with 

scores 1010 and 9 respectively, and two colleges A and B with individual quota 1 for 

each, and also with a common quota of 1 for both A and B . Suppose that s 1 and s 2 
are applying to A and s 3 is applying to B . For the Irish policy, we run a lottery, and 

whichever student between s 1 and s 2 is luckier gets admitted to A and both of the 

other students are both rejected. This is the unique stable solution. For the Chilean 
These conditions allow the common quotas to be violated, but 

nly for the last score group admitted. Without them the number 

f students admitted is strictly less than the common quota. For d 
p 
i 

e have a condition similar to (22) : 

 

p 

i ≤ x p 
i 

for each a i ∈ A, C p ∈ C c s.t. ∃ c j : (a i , c j ) ∈ E, c j ∈ C p 

(42) 

Conditions (42) imply that d 
p 

i can only be one if student a i 
s admitted to a college c j belonging to common quota C p in the 

atching. Finally, similarly to (25) , we need to add the following 

onstraints 

 

p 

i ≤ t k p − t k −1 
p for each (a i , c j ) ∈ E, c j ∈ C p , s i j = s k p (43)

These conditions imply that d 
p 

i can only be one if the score of 

 i is equal to the current cutoff score at C p . 

To summarise, the IP formulation for the Chilean variant for the 

ost general case of ties and common quotas, denoted by COM- 

hilean, is composed of feasibility conditions (1) and (26) and sta- 

ility conditions (32), (33), (34), (41), (42) and (43) with (10) as 

bjective function. 

.4. Computational results for the 2008-Educatio instance 

We compared the three above described IP formulations first 

or the 2008-Educatio instance, where the ties and common quotas 

ere included in the data in their actual form. The performance of 

he three formulations are summarised in Table 5 . Although the 

olver needed about a whole day to terminate 9 , the IP was solved 

or the Hungarian case as well. 

The final student-optimal and student-pessimal solutions are 

hown in Table 6 , where the former solutions used (10) as objec- 

ive function and the latter used the same with minimisation (in- 

tead of maximisation). Similarly to the case of ties, it can be ob- 

erved that there were significant differences between the results 

cross the three policies, the Hungarian providing the highest cut- 

ff scores (and the worst assignments for the students), followed 

y the Irish policy, and the Chilean turned out to be the most 

avourable for the students, as expected. Also, we can see that the 

ifferences between the student-optimal and student-pessimal so- 
9 We used a normal PC with the following parameters: Intel Core i3-8100 CPU, 

,6 Gzh, 8 GB memory, Windows 10 Enterprise operation system, Gurobi 8.1.0 

olver. 

c

p

t

fi

a

r

11 
utions are minor (if any) for the Irish and Chilean policies, but a 

ittle more significant for the Hungarian policy. 10 

.5. Improvement by preprocessing 

When solving the 2009-KRTK instances we experienced even 

onger computation times than for the 2008-Educatio instance, so 

e looked for possibilities for fixing some of the variables. The 

ew preprocessing algorithm was based on the following Lemmas. 

n the first one we gave a natural condition for the certain accept- 

ble of a first application. 

emma 3. Suppose that (a i , c j ) is the first application of student a i .

or the Hungarian policy, if this application is selected with respect to 

ach relevant common quota from all the applications, i.e., if (a i , c j ) ∈
h H p (E) for each common quota C p , where c j ∈ C p , then (a i , c j ) is a

art of all stable solutions with respect to this policy. Likewise, for the 

hilean policy, if (a i , c j ) ∈ Ch C p (E) for each common quota C p , where

 j ∈ C p , then (a i , c j ) is contained in all stable solutions with respect

o this policy. 

roof. Consider the Hungarian policy first, with choice function 

h H p for each common quota C p , where c j ∈ C p . According to our

ssumption we have (a i , c j ) ∈ Ch H p (E) for every C p , where c j ∈ C p .

uppose on the contrary that a stable solution would not include 

a i , c j ) . It must then be the case that cutoff score t p is greater than

 i j for some common quota C p , where c j ∈ C p . However, this con-

radicts the minimality of the cutoff scores of a stable solution 

ince t p can be decreased to s i j because even for E , | E ≥s i j | ≤ u p 
ccording to our assumption. The proof for the Chilean policy is 

nalogous. �

In the next lemma we give a condition for rejecting an applica- 

ion. 

emma 4. Let F j denote the set of first applications submitted to col- 

ege c j . For an application (a i , c j ) , let X = F j ∪ { (a i , c j ) } . If (a i , c j ) / ∈
h H p (X ) for some C p , where c j ∈ C p , then (a i , c j ) cannot be included

n any stable solution with respect to the Hungarian policy. Likewise, 

f (a i , c j ) / ∈ Ch C p (X ) for some C p , where c j ∈ C p , then (a i , c j ) cannot be

ncluded in any stable solution with respect to the Chilean policy. 

roof. Considering the Hungarian policy first, suppose for a con- 

radiction that (a i , c j ) / ∈ Ch H p (X ) for some C p , where c j ∈ C p , but

a i , c j ) is part of a stable solution. This implies that t p ′ is less than

r equal to s i j for every C p ′ , where c j ∈ C p ′ . This means that all the
ase, the unique stable solution is when both s 1 and s 2 are admitted to A , and sup- 

orted by the cutoff scores of 10 for both A and { A, B } . However, when considering 

he Hungarian policy, we have two significantly different stable matchings. In the 

rst, student-optimal one, s 3 is admitted to B and the stable cutoff scores are 11,0, 

nd 0 for A , B and { A, B } . Meanwhile in the student-pessimal solution everybody is 

ejected, and the cutoff scores are 0,0 and 11 for A , B and { A, B } , respectively. 
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Table 7 

The comparison of student-optimal (A-opt) and student-pessimal (C-opt) stable 

matchings for the case of ties and common quotas under the Hungarian, Irish and 

Chilean policies for the 2009-KRTK-previous instance. 

size of matching average rank # rejections 

policies A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. 

Hungarian 78,851 78,778 1.6591 1.6605 120,141 120,360 

Irish 79,279 79,279 1.6519 1.6519 118,878 118,878 

Chilean 79,764 79,755 1.6412 1.6415 117,117 117,162 

Table 8 

The comparison of student-optimal (A-opt) and student-pessimal (C-opt) stable 

matchings for the case of ties and common quotas under the Hungarian, Irish and 

Chilean policies for the 2009-KRTK-admitted instance. 

size of matching average rank # rejections 

policies A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. 

Hungarian 73,579 73,560 1.6910 1.6917 131,964 132,013 

Irish 74,272 74,272 1.6818 1.6818 130,224 130,224 

Chilean 74,823 74,823 1.6715 1.6715 128,405 128,405 
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B  
rst applications at c j with score t p or greater should also be in- 

luded in the matching. However, this is in contradiction with the 

ssumption that (a i , c j ) / ∈ Ch H p (X ) . The same argument applies for

he Chilean policy. �

The preprocessing algorithm can use the above two lemmas it- 

ratively. When some of the first applications are set to be re- 

ected based on Lemma 4 then we can consider the second ap- 

lications of these rejected students as their first applications and 

pply Lemma 3 again, and so forth. 

For the 2008-Educatio instance by doing one round of the 

bove preprocessing algorithm we could already fix 23,138 appli- 

ations to be accepted (and thus the same number of students 

ssigned), and 14,991 applications to be rejected. As a result the 

un time of the longest running Hungarian version improved from 

58,949 seconds to 10,740. This improvement also enabled us to 

ompute the results for the 2009-KRTK instances to be presented 

ext. 

.6. Simulation results for the 2009-KRTK instances 

As we described in the Introduction, we created two in- 

tances using different assumptions on the constraints, “2009- 

RTK-previous” uses the quotas of the 2008-Educatio instance, and 

2009-KRTK-admitted” uses the number of admitted students for 

he quotas. In the one round preprocessing phase we could fix 

4,828 applications as accepted and 25,336 applications as re- 

ected for the “2009-KRTK-previous” instance, whereas we could 

x 18,902 applications as accepted and 40,404 applications as re- 

ected for the “2009-KRTK-admitted” instance. The main statistics 

f the computed solutions can be seen in Tables 7 and 8 , respec-

ively. 

. Conclusion 

Following up Ágoston et al. (2016) , we developed new (mixed) 

P formulations for the classical Gale-Shapley college admissions 

odel, for the case of ties and for the case of common quotas. 

e also considered the most challenging case when both ties and 

ommon quotas are present. We found that the most efficient for- 

ulations with binary cutoff scores can terminate in a reasonable 

ime for a real instance from 2008. Furthermore we also compared 

he three possible policies allowing ties, used in Hungary, Ireland 

nd Chile. 

One can consider to further improve our formulations and IP 

olution technique, perhaps also with more careful preprocessing 
12 
ailored for the application. Another important line of research 

ould be to provide more insight into the qualities of the mod- 

ls, what can be the reason of the different performances, whether 

ome models are tighter than others, and can give better bounds 

n the branching. 

For future work, one can also try to include lower quotas as the 

hird special feature that is present in the application. This special 

eature makes the problem NP-hard, but it has turned out to be 

ractable in practice with careful preprocessing and IP techniques 

y Ágoston et al. (2016) . Although it will be even more complicated 

o define the concepts of fairness, stability and non-wastefulness 

or this real scenario. The ultimate goal of our research project 

s going to be resolving this case as well designing an alternative 

possibly better) solution technique to the currently used heuristic 

pproach. 

In addition, we also propose the usage of our formulations for 

ther two-sided matching problems with distributional constraints. 

e believe that the flexibility of the robust IP technique can create 

 new perspective in solving complex matching problems under 

references with special objectives and constraints even for large 

arkets, as demonstrated in this paper. 
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