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Abstract

A crucial question in skill learning research is how instruction affects the performance or the underlying representations.
Little is known about the effects of instructions on one critical aspect of skill learning, namely, picking-up statistical
regularities. More specifically, the present study tests how prelearning speed or accuracy instructions affect the acquisition
of non-adjacent second-order dependencies. We trained 2 groups of participants on an implicit probabilistic sequence
learning task: one group focused on being fast and the other on being accurate. As expected, we detected a strong instruction
effect: accuracy instruction resulted in a nearly errorless performance, and speed instruction caused short reaction times
(RTs). Despite the differences in the average RTs and accuracy scores, we found a similar level of statistical learning
performance in the training phase. After the training phase, we tested the 2 groups under the same instruction (focusing on
both speed and accuracy), and they showed comparable performance, suggesting a similar level of underlying statistical
representations. Our findings support that skill learning can result in robust representations, and they highlight that this
form of knowledge may appear with almost errorless performance. Moreover, multiple sessions with different instructions
enabled the separation of competence from performance.
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Introduction

Our social, motor, and cognitive skills help us adapt to and
function in various situations in our everyday life. Therefore,
fine-tuning the ability to learn new skills can be advantageous
for an individual. Previous studies investigating sports perfor-
mance (Beilock et al. 2004, 2008) and sequence learning (Hoyndorf
and Haider 2009; Barnhoorn et al. 2019) found that speed and
accuracy strategies differently affect skill learning. However, skill
learning is multifaceted, and it is still not clear what underlying
mechanisms benefit from speed and accuracy instructions and
what mechanisms do not. A core component of learning new
skills is picking up complex statistical regularities from the envi-
ronment (Janacsek et al. 2012; Conway 2020). To date, no study
has investigated the effects of prioritizing speed or accuracy on
the acquisition of such statistical dependencies. Here, we aim
to unveil how emphasizing speed or accuracy influences this
essential aspect of skill learning.

Hoyndorf and Haider (2009) investigated the sequencing
aspect of skill learning and found an accuracy strategy to
impair the expression of implicit knowledge compared to speed
instruction; however, evidence of learning was still detected
under accuracy instruction compared to a non-learning control
group. Yet, in this experiment, the accumulated sequence-
knowledge under speed/accuracy instructionswas not compared
to a phase where the importance of speed and accuracy
was equally emphasized. Such a comparison would reveal
whether implicit sequence knowledge is acquired at the same
level under different instructions. Recently, Barnhoorn et al.
(2019) found that speed instruction benefits the development
of representations about repeating sequences while forcing
participants to be more accurate leads to a faster selection
of responses via better stimulus-response associations. In
this study, the participants were aware of the repeating
sequences; thus, the learning was completely explicit. The
studies mentioned above suggest that speed instruction might
benefit sequence learningmore than accuracy instruction. These
studies used relatively simple, deterministic sequences (i.e.,
sequences with a simple repeating pattern). Therefore, data
are still lacking on whether instruction affects probabilistic
representations.

Human participants can rapidly extract statistical informa-
tion from the environment (Frost et al. 2015). But how fragile are
these representations? Previous studies have shown that acceler-
ated learning can be advantageous for habit formation (Hardwick
et al. 2019) and also affects the sequencing aspect of skill learning
(Hoyndorf and Haider 2009; Barnhoorn et al. 2019). However,
these studies could not distinguish whether the instructions
affect the representations or momentary performance. Instruct-
ing participants to be fast or accurate during the learning process,
and test their knowledge after the instructed phase would allow
us to decipher whether the statistical representations are them-
selves fragile or only the performance is affected. If instructions
do not affect statistical learning, it will underscore the robust
nature of picking up non-adjacent statistical regularities (Kóbor
et al. 2017).

Here,we aimed to testwhether speed or accuracy instructions
affect the acquisition of complex statistical regularities using
an implicit probabilistic sequence learning task. We go beyond
previous investigations by at least 2 aspects: First, by study-
ing complex probabilistic sequences with non-adjacent second-
order dependencies (Remillard 2008). This feature means that
to predict the nth element of the sequence, we need to know
the n-2th element instead of n-1th. This structure creates an

abstract sequence representation, and its acquisition will be
based on statistical regularities (Nemeth et al. 2013), which are
also fundamental in complex cognitive skills such as human
language (Christiansen and Chater 2015).

The second novel contribution of our study is that we
also test the implicit sequence knowledge of our participants
after the (instructed) training phase. Our learning task was
completed in 2 different phases. In the first phase, we instructed
the participants to focus either on accuracy or speed while
performing the task (different instruction phase, accuracy vs.
speed group). After the training phase, we tested both groups
of participants with the same instruction (i.e., focusing both on
accuracy and speed, same instruction phase). By doing so, we
aimed to differentiate between the effects of instructions on
training performance and acquired knowledge. Our questions
were 1) whether the speed/accuracy instruction affects the
learning of probabilistic statistical regularities, and if yes, 2)
do they affect the training performance (different instruction
phase) and the retrieval of knowledge (same instruction phase)
equally?

Materials and Methods

Participants

Sixty-six healthy young adults took part in the study. Five of them
were excluded from the experiment because they conceivably
misunderstood the instructions. Their performance was more
than 2 standard deviations above or below the mean of their
group in more than 50% of the epochs (units of analysis), which
was not observable during the practice session. Therefore, 61
participants remained in the final sample (40 females), which is
sufficient to detect group differences in statistical learning (see
power analysis in the “Justification for sample size” section of the
Supplementary Materials). Another 4 participants were excluded
from the analysis of the inclusion/exclusion task for not fol-
lowing instructions (see inclusion/exclusion part of the Results
section).

Participants were between 19 and 27 years of age (Mage =
21.18 years, SDage =2.13 years). All of them were students from
Budapest,Hungary (Myears of education =14.14 years, SDyears of education =
1.64 years). Participants had a normal or corrected-to-normal
vision, none of them reported a history of any neurological
and/or psychiatric disorders, and none of them was taking
any psychoactive medication at the time of the experiment.
Handedness was measured using the Edinburgh Handedness
Inventory (Oldfield 1971). The laterality quotient (LQ) of the
sample varied between −84.62 and 100 (−100 indicates complete
left-handedness, 100 indicates complete right-handedness,
MLQ =62.25, SDLQ =53.73). They performed in the normal range on
the counting span task (MCounting Span =3.66, SDCounting Span =0.81)
All participants gave written informed consent before enroll-
ment and received course credit for participating. They were
randomly assigned to the accuracy group (n=31) or speed group
(n=30).

No group differences were observed in terms of age, years
of education, handedness, and neuropsychological performance
(see Table 1). Males and females were equally represented in the
sample (accuracy group: 11 males, speed group: 10 males, χ

2 (1,
N=61) = 0.03, P=0.86). The study was approved by the Research
Ethics Committee of the Eötvös Loránd University, Budapest,
Hungary, and it was conducted in accordance with the Declara-
tion of Helsinki.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data


Effects of instructions on skill learning Vékony et al. 3

Table 1. Comparison of the 2 groups on age, years of education, handedness, and neuropsychological performance

Accuracy group M(SD) Speed group M(SD) t-test

Age (years) 21.29 (2.28) 21.07 (2.00) t(59) =−0.41, P=0.69, BF01 =4.82
Education (years) 14.31 (1.60) 13.97 (1.71) t(59) =−0.80, P=0.43, BF01 =3.87
Handedness (LQ) 54.88 (55.00) 69.86 (52.20) t(59) = 1.09, P=0.28, BF01 =3.02
Counting span score 3.69 (0.75) 3.64 (0.88) t(59) = 0.21, P=0.83, BF01 =5.08

Alternating Serial Reaction Time Task

In this study,we used the implicit version of the alternating serial
reaction time (ASRT) task (Howard and Howard 1997; Nemeth,
Janacsek, Londe, et al. 2010). In the ASRT task, 4 empty circles
were presented horizontally in front of a white background in
the middle of a computer screen. A target stimulus (drawing of
a dog’s head) was presented sequentially in one of the 4 empty
circles (Fig. 1A). The stimuli were 300 pixels each. The monitor
resolution was 1280× 1024 pixels, and the viewing distance from
themonitor was approximately 60 cm. A keyboard with 4 height-
ened keys (Z, C, B, and M on a QWERTY keyboard) was used as a
response device, each of the 4 keys corresponding to the circles
in a horizontal arrangement. Participants were asked to respond
with their middle and index fingers of both hands by pressing
the button corresponding to the target position. At the beginning
of each block of the ASRT task, the 4 empty circles appeared
horizontally on the screen for 200 ms, and then, the first target
stimulus occurred, and it remained on the screen until the first
correct response. The next stimulus appeared after a 120 ms
response-to-stimulus interval.

The serial order of the 4 possible positions (coded as 1, 2, 3,
and 4 in a horizontal arrangement, with 1 as the leftmost and 4
as the rightmost position) in which target stimuli could appear
was determined by an eight-element probabilistic sequence. In
this sequence, every second element appeared in the same order.
In contrast, the other elements’ positions were randomly chosen
out of the 4 possible locations (e.g., 2r4r3r1r, where r indicates
a truly random position). Therefore, some combinations of 3
consecutive trials (triplets) occurred with a higher probability
than others. For example, 2X4, 4X3, 3X1, and 1X2 (where “X”
indicates any possible middle element of the triplet) would often
occur because the third element (bold numbers) could be derived
from the sequence (or occasionally could be a randomelement as
well). In contrast, 1X3 or 4X2 would occur with lower probability
because the third element could only be random (Fig. 1B). There-
fore, the third element of a high-probability triplet is more pre-
dictable from the first event when compared to a low-probability
triplet.

Therewere 64 possible triplets in the task (4 stimuli combined
for 3 consecutive trials). Sixteen of them were high-probability
triplets, each of them occurring in approximately 4% of the trials,
5 times more often than the low-probability triplets. Overall,
high-probability triplets occur with approximately 62.5% prob-
ability during the task, while low-probability triplets only occur
with a probability of 37.5% (Fig. 1C).

As participants practice the ASRT task, their responses
become faster and more accurate to the high-probability triplets
compared to the low-probability triplets, revealing statistical
learning throughout the task (Howard and Howard 1997; Song
et al. 2007; Kóbor et al. 2017; Unoka et al. 2017). Each block
of the ASRT task contained 85 stimuli (5 random trials were
presented at the beginning of the block, then the eight-element
alternating sequence was repeated 10 times). Each participant
performed a randomly selected sequence from the 6 possible

original sequences: 2r1r3r4r, 2r1r4r3r, 2r3r4r1r, 2r3r1r4r, 2r4r3r1r,
and 2r4r1r3r.

Inclusion-Exclusion Task

We also administered an inclusion-exclusion task (Destrebecqz
and Cleeremans 2001; Destrebecqz et al. 2005; Jiménez et al.
2006; Fu et al. 2010), which is based on the “Process Dissociation
Procedure,” a widely used method to disentangle the explicit–
implicit processes inmemory tasks (Jacoby 1991). In the first part
of the task, we asked participants in what order the stimuli (both
pattern and random elements) appeared during the task and to
type the sequence using the same 4 response buttons they used
during the ASRT task (inclusion instruction). After that, they had
to generate new sequences that were different from the learned
sequence (exclusion condition). Both parts consisted of 4 runs,
and each run finished after 24 button presses, which is equal to
3 rounds of the eight-element alternating sequence (Kóbor et al.
2017; Horvath et al. 2018; Kiss et al. 2019).

We assessed performance by the occurrence of high-
probability triplets in the sequence of responses. Thus, in the
inclusion condition, successful performance is indicated by
producing high-probability triplets above chance level. It can
be achieved solely by implicit knowledge (however, explicit
knowledge can also boost performance, but it is not necessary
for the successful completion of the task).

On the contrary, successful performance in the exclusion con-
dition (i.e., generating a new sequence that is different from the
learned one) is indicated by the production of high-probability
triplets at or under chance level. This is only possible if the partic-
ipant has conscious (explicit) knowledge about the learned sta-
tistical regularities, and they can inhibit the production of high-
probability triplets consciously. The generation of the learned
statistical regularities above chance level, even in the exclusion
task, indicates that the participant relies on their implicit knowl-
edge, as it cannot be controlled consciously.

To test whether the participants gained consciously accessi-
ble triplet knowledge, first, we calculated the percentage of the
generated high-probability triplets in the inclusion and exclusion
conditions separately. Then, we tested whether the occurrence
of high-probability triplets differed from the probability of gen-
erating them by chance. The chance level was considered 25%
because, after 2 consecutive button presses, the chance for the
third button press to form a high-probability triplet with the
2 preceding button presses is 1/4 = 25%. We also compared the
percentages of the high-probability triplets across conditions
(inclusion and exclusion task) and groups (accuracy group and
speed group) (formore details about the inclusion-exclusion task,
see: Kóbor et al. 2017; Horvath et al. 2018; Kiss et al. 2019).

Questionnaire

We used a questionnaire to scrutinize whether the participants
preferred accuracy or speed in general and whether they were
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Figure 1. Task and design of the experiment. (A) Stimulus presentation in the ASRT task. A dog’s head appeared in one of the 4 positions. Stimuli appeared in either

a pattern (P) or a random (r) position, creating an 8-item long alternating sequence structure. (B) High- and low-probability triplets. Due to the alternating sequence

structure, some runs of consecutive stimuli (called triplets) occurred with a higher probability than others. Every trial was defined as the third element of a high- or a

low-probability triplet, based on the 2 preceding trials. High-probability triplets can be formed by 2 patterns and 1 random element, but also by 2 random and 1 pattern

element. (C) Proportion of high- and low-probability triplets. High-probability triplets occurred in 62.5% of all trials (of which 50% came from pattern elements, i.e., from

P-r-P structure, and 12.5% came from random elements, that is, from the r-P-r structure, by chance). Low-probability triplets occurred in the remaining 37.5% of all trials

(of which each individual low-probability triplet occurred with a 12.5% probability by chance, originating only from the r-P-r structure). (D) Design of the study. In the

different instruction phase, different instructions were given to the 2 groups. After 4 epochs (each containing 5 blocks) of the ASRT task, and a 10 min long rest period,

the instruction changed. In the fifth epoch (containing 5 blocks of stimuli), the same instruction was given to all of the participants (same instruction phase).

rather accurate or fast in their everyday life. The questionnaire
consisted of the following questions: “In an everyday situation,
what do you attend more: speed or accuracy (on a scale from 1
to 10, where 1 means that only the accuracy is important and
10 means that only the speed is important)?”, “In an everyday
situation, how important is for you to be accurate/fast on a
scale from 1 to 10?”, “According to your friends and family, how
fast/accurate are you when you need to solve a problem (on a
scale from 1 to 10)?”

Design

First, the participants completed 3 practice blocks of 85 random
trials each to familiarize themselves with the task. After that,
the participants completed 2 sessions of the ASRT task. In the
training session (referred to as different instruction phase), we
gave different instructions to the 2 groups. For the accuracy
group, the instruction was to try to be as accurate as possible
during the task. On the contrary, the instruction for the speed
group was to be as quick as possible. Twenty blocks were
presented to the participants in the different instruction phase

(for analysis, we organized the blocks into 4 epochs by merging
5 consecutive blocks). Participants could rest a bit after each
block. A 10 min rest period was inserted before the second ASRT
session. During this period, participants were not involved in
any demanding cognitive activity. The second session of ASRT
(referred to as the same instruction phase) contained 5 blocks
(one epoch). This time, both the accuracy and speed group
were instructed to respond to the target stimulus as quickly
and as accurately as possible (Fig. 1D). After the ASRT task, the
inclusion-exclusion task was administered.

Statistical Analysis

We defined each trial as the third element of a high- or low-
probability triplet. Trills (e.g., 1-2-1) and repetitions (e.g., 1-1-1)
were eliminated from the analysis because participants tended
to showpreexisting response tendencies to these types of triplets
(Howard et al. 2004; Unoka et al. 2017; Janacsek et al. 2018;
Takács et al. 2018). The first 5 button presses were random;
thus, only the eighth button press could be evaluated as the
last element of a valid triplet. Therefore, the first 7 trials were
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excluded from the analysis. Blocks were collapsed into 4 epochs
in the different instruction phase (Epoch 1–4), and one epoch
in the same instruction phase (Epoch 5) to facilitate data pro-
cessing and to reduce intraindividual variability. We calculated
the median reaction times (RTs) separately for high- and low-
probability triplets for each participant and each epoch. Only
correct responses were considered for the RT analysis (we also
performed the analyses with the incorrect trials included, see
“Analyses including the incorrect trials” in the Supplementary
Materials). To ensure that our results on the learning measures
were not due to the differences in the average RTs and accuracies,
we repeated the analyses with standardized scores (for details,
see “Standardized learning scores” section in the Supplementary
Materials).

We used mixed-design ANOVAs to compare the learning
performance between the 2 groups in the different and same
instruction phase. ANOVAs with the within-subject factor of
triplet (high- vs. low-probability triplets) and the between-
subjects factor of group (accuracy group vs. speed group) were
run (and also with the epoch factor for the analysis of the
different instruction phase). In all ANOVAs, the Greenhouse–
Geisser epsilon (ε) correction was used if necessary. Corrected
df values and corrected P values are reported (if applicable)
along with partial eta-squared (ηp

2) as the measure of effect
size. We used the least significant difference tests for pairwise
comparisons. Significant interactions involving the triplet factor
were further analyzed using follow-up ANOVAs on the difference
scores by the Triplet factor (high-probability triplets vs. low-
probability triplets).

To further support the results of our comparisons, we ran
Bayesian t-tests with a standard Cauchy prior distribution (r=1)
(Rouder et al. 2009). Here, we report BF01 values: greater values
support the null hypothesis over the alternative hypothesis. BF01

values between 1 and 3 indicate anecdotal evidence for H0,
while values between 3 and 10 indicate substantial evidence for
H0. Values between 1 and 0.33 indicate anecdotal evidence for
H1, values between 0.33 and 0.1 indicate substantial evidence
for H1. BF01 values around one do not support either H0 or H1

(Wagenmakers et al. 2011).
To obtain a robust indication of which factors determine

performance, we also performed Bayesian repeated-measures
ANOVAs on the learning scores (the difference between the 2
levels of triplet factor, i.e., learning scores) (Zavecz et al. 2020).
We decided to run the ANOVAs on the learning scores because
our primary interest was to quantify the contribution of each
interaction to statistical learning rather than to general RTs.Here,
we present Bayesian Model Averaging and report the inverted BF
inclusion values (1/BFinclusion). These values indicate the amount
of evidence for the exclusion of the given factor from our model.
Thus, values below 1 support the inclusion and values above
1 the exclusion of the given factor. Full model comparisons
are included in the Supplementary Materials (see “Model com-
parisons of statistical learning” section in the Supplementary
Materials). Cauchy prior distribution was used for the ANOVA
with a fixed-effects scale factor of r=0.5, and a random-effects
scale factor of r=1 (JASP Team 2020).

To test whether participants developed conscious knowledge
about the learned statistical regularities, we compared the
percentage of the generated high-probability triplets in the
inclusion-exclusion task to chance level (25%) separately for the
2 groups with one-sample t-tests. We compared the percentage
of high-probability triplets with a mixed-design ANOVA to reveal
whether the level of explicitness differs between groups and
conditions.

Additionally, we correlated the average RTs and accuracy
scores with the rates of the different items of the questionnaire
to check whether the subjective preferences of the participant
are related to the ability to follow the instructions.

Results

Did the Two Groups Perform Equally Before Learning?

To ensure the lack of substantial preexisting differences between
groups in terms of speed or accuracy, we compared the median
RTs (only for correct responses) and the accuracy of the 2
groups in the practice session (random stimuli). We did not
find differences between groups either in RTs, t(59) = 0.48,
P=0.64, BF01 =4.67, or in accuracy measures, t(59) = 1.08, P=0.28,
BF01 =3.04. Therefore, we assumed that there were no pre-
existing differences between groups regarding their speed or
accuracy.

General Speed Changes and Statistical Learning in RT
Measures in the Different Instruction Phase

We investigated how 1) general RTs changed, and 2) whether
statistical learning differed between groups during the differ-
ent instruction phase. RTs were analyzed with a mixed-design
ANOVA with the within-subject factors of triplet (high- vs. low-
probability triplets) and epoch (Epoch 1–4), and the between-
subjects factor of group (accuracy group vs. speed group). Please
note thatmain effects and interaction excluding the triplet factor
could reveal changes in the average speed/accuracy during the
task, independent of the acquisition of statistical regularities,
and the main effects and interaction including the triplet factor
could unveil differences in statistical learning.

We also compared the learning process with standardized
learning scores (see Materials and Methods section). To this
end, a mixed-design ANOVA was performed on the standardized
RT learning scores with epoch (Epoch 1–4) as a within-subject
factor and group (accuracy group vs. speed group) as a between-
subjects factor.

Did the Instruction Affect General RTs in the Different

Instruction Phase?

Themain effect of groupwas significant, F(1, 59) = 51.86,P<0.001,
ηp

2 =0.47, indicating faster overall RTs in the speed group, and
the Bayesian comparison of means also favored the difference,
BF01 <0.001; thus, the instruction did modify the average speed
of the participants. A main effect of epoch was found, F(1.97,
116.33) = 7.46, P=0.001, ηp

2 =0.11, indicating a change in aver-
age RTs during the task: significantly faster RTs were observed
between Epoch 2 and Epoch 3 (P=0.008) as well as between Epoch
3 and Epoch 4 (P=0.049). The epoch × group interaction was non-
significant, F(1.97, 116.33) = 2.30, P=0.10, ηp

2 =0.04 (Fig. 2).

Did Statistical Learning Measured by RTs Differ Between Groups in

the Different Instruction Phase?

The main effect of triplet was significant, F(1, 59) = 49.41,
P<0.001, ηp

2 =0.46: faster RTs were found for high-probability
triplets compared to low-probability triplets (BF01 <0.001),
revealing significant implicit statistical learning. Importantly,
the triplet × group interaction was non-significant, F(1, 59) = 0.48,
P=0.49, ηp

2 =0.01: the degree of learning did not differ between
the 2 groups over the course of the learning. The Bayesian

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
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Figure 2. Effects of instruction on (A) average RTs and (B) accuracies. The horizontal axis indicates the 5 epochs of the task and the vertical axis the RTs in

milliseconds/accuracies in percentage. The error bars represent the standard error of the mean (SEM). Average RTs were significantly shorter and accuracies lower

for the speed group from the first epoch, indicating that the participants followed the instructions. After the change of the instructions (Epoch 5)—although the

average scores of the 2 groups approached each other—the difference persisted for accuracies; however, the difference disappeared for the average RTs. ∗ = P < 0.05,

n.s. = P > 0.05.

comparison of mean differences also supported the lack of
difference, BF01 =4.17 (Fig. 3). The triplet × epoch interaction
was significant, F(3, 177) = 5.66, P=0.001, ηp

2 =0.09: In the first
epoch, independently from groups, no difference was detected
between high- and low-probability triplets (P=0.54), and learning
(faster RTs for high- than for low-probability triplets) emerged
from the second epoch (each P<0.007). Follow-up analysis
on the difference between high- and low-probability triplets
(learning scores) revealed an increase in learning scores between
Epoch 1 and Epoch 2 (P<0.001), but not between Epoch 2
and Epoch 3 (P=0.90) or Epoch 3 and Epoch 4 (P=0.17). The
interaction between the triplet, epoch, and group factors was
non-significant, F(3, 177) = 0.90, P=0.43, ηp

2 =0.02, revealing no
difference in the time course of statistical learning between
groups. The analysis with the standardized learning scores in
the RT measures revealed similar results (see Supplementary
Materials for details).

Bayesian Model Averaging in the Different Instruction

Phase in RT Measures

We conducted a Bayesian repeated-measures ANOVA to quantify
the contribution of the different factors to statistical learning
(to the difference between the 2 levels of the Triplet factor, that
is, low-probability triplets minus high-probability triplets). The
ANOVA was performed on the learning scores as the dependent
variable, with the within-subject factor of epoch (Epoch 1–4)
and the between-subject factor of group (accuracy group vs.
speed group). Please note that, because this ANOVA is conducted
on learning scores, here the epoch factor corresponds to the
triplet × epoch interaction, the group factor to the triplet ×

group interaction, and the epoch × group interaction to the
three-way interaction of the frequentist ANOVA. The Bayesian
ANOVA supported the inclusion of the epoch factor, and the
exclusion of the group factor and the epoch × group interaction
(Table 2). This result suggests that although the learning scores
changed throughout the task, this change was independent of
the instructions, and the overall statistical knowledge was not
different between the 2 groups (see detailed model comparisons
in Supplementary Table 7).

Table 2. Analysis of effects for the RT learning scores

Effects P(incl) P(incl|data) BFexclusion

Epoch 0.60 0.98 0.04
Group 0.60 0.19 6.49
Epoch×Group 0.20 0.02 11.13

Notes: The column “Effects” lists the main effects and interactions. The P(incl)
columndenotes the prior, and the P(incl|data) the posterior inclusion probability.
The BFexclusion column indicates the change from prior to posterior odds.

General Accuracy Changes and Statistical Learning in
Accuracy Measures in the Different Instruction Phase

Next, we repeated the above analyses on accuracy measures to
see how 1) general accuracy changed, and 2) whether statistical
learning differed between groups during the different instruction
phase. We ran a mixed-design ANOVA with the within-subject
factors of triplet (high- vs. low-probability triplets) and epoch
(Epoch 1–4), and the between-subject factor of group (accuracy
group vs. speed group). Please note again that the main effects
and interaction excluding the triplet factor could reveal infor-
mation about the average speed/accuracy during the task, inde-
pendent of statistical learning, and main effects and interaction
including the triplet factor could unveil potential differences in
terms of statistical learning.

Did the Instruction Affect General Accuracies in the Different

Instruction Phase?

The main effect of group was significant, F(1, 59) = 117.40,
P<0.001, ηp

2 =0.67, signaling higher average accuracy in the
accuracy group; thus, the instructions did influence the accuracy
of the participants. The Bayesian comparison of means also
supported the difference (BF01 <0.001). The ANOVA revealed
a main effect of epoch, F(1.81, 107=8.19, P=0.001, ηp

2 =0.13,
revealing a significant decrease in accuracies between Epoch 1
and Epoch 2 (P=0.02) and between Epoch 2 and Epoch 3 (P=0.002).
The epoch × group interaction was significant, F(1.84, 107) = 7.08,
P=0.002, ηp

2 =0.11, indicating that accuracy decreased over the

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
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Figure 3. Learning in RT measures in the (A) accuracy group and (B) speed group. The horizontal axis shows the 5 epochs of the task and the vertical axis the RTs.

The solid line represents the RTs for the high-probability triplets, while the dashed line indicates the RTs for the low-probability triplets. The error bars represent the

SEM. Please note that the gap between the 2 lines indicates the learning of statistical regularities. The RTs for high-probability triplets were smaller for both groups and

phases. The difference between the 2 trial types remained after the change of the instructions. A similar level of learning was measured in both groups and phases.
∗P< 0.05.

epochs in the speed group (each P<0.005, except between Epoch
3 and Epoch 4, P=0.36), and it remained similarly high in all
epochs in the accuracy group (each P>0.74) (Fig. 2).

Did Statistical Learning Measured by Accuracies Differ Between

Groups in the Different Instruction Phase?

The main effect of triplet was significant, F(1, 59) = 93.88,
P<0.001, ηp

2 =0.61: participants responded more accurately to
high-probability triplets compared to low-probability triplets,
revealing prominent implicit statistical learning also in accuracy
measures. The Bayesian comparison also supported the differ-
ence, BF01 <0.001. Contrary to the RT results, the ANOVA revealed
a significant interaction between the triplet and group factors,
F(1, 59) = 45.25, P<0.001, ηp

2 =0.43. The speed group responded
more accurately to high-probability triplets compared to the
low-probability triplets; the accuracy group exhibited similarly
accurate responses to the 2 types of triplets (BF01 <0.001) (Fig. 4).
The triplet × epoch interaction was significant, F(3, 177) = 3.69,
P=0.01, ηp

2 =0.06; thus, the degree of statistical learning changed
over the course of learning. Follow-up analysis of the difference
between high- and low-probability triplets (learning scores)
revealed a decrease in statistical knowledge between Epoch 3
and Epoch 4 (P=0.01), but not between Epoch 1 and Epoch 2
(P=0.19) or Epoch 2 and Epoch 3 (P=0.13). The triplet × epoch
× group interaction was also significant, F(2.95, 174.28) = 2.99,
P=0.03, ηp

2 =0.05, suggesting different dynamics of implicit
statistical learning for the 2 groups. The follow-up analysis
on the difference between high- and low-probability triplets
(learning scores) revealed that in the accuracy group, no change
was observed between consecutive epochs (each P>0.74). On the
contrary, in the speed group, an increase was observed between
Epoch 2 and Epoch 3 (P=0.04) and a decrease between Epoch
3 and Epoch 4 (P=0.001). The analysis with the standardized
learning scores in accuracy measures revealed similar results
(see Supplementary Materials for details).

Bayesian Model Averaging in the Different Instruction Phase in

Accuracy Measures

We ran a Bayesian repeated-measures ANOVA on the accuracy
learning scores with the same factors as for the RT analysis.

Table 3. Analysis of effects for the accuracy learning scores

Effects P(incl) P(incl|data) BFexclusion

Epoch 0.60 0.80 0.38
Group 0.60 1.00 9.50e−7
Epoch×Group 0.20 0.47 0.29

Notes: The column “Effects” indicates the main effects and interactions. The
P(incl) column denotes the prior, and the P(incl|data) the posterior inclusion
probability. The BFexclusion column indicates the change from prior from
posterior odds.

The Bayesian ANOVA indicates that, averaged across all models,
the models including the group factor, the epoch factor,
and the interaction are more likely. However, the latter 2
improve the model to a much smaller extent compared to
the Group factor. This result underscores that the instructions
affected statistical learning in accuracy measures, and the
dynamic of the learning trajectory is different between the
2 groups (see detailed model comparisons in Supplementary
Table 8) (Table 3).

Did the Acquired Knowledge Differ Between Groups in the
Same Instruction Phase?

First, we calculated the median RTs separately for the high-
and low-probability triplets in the same instruction phase. We
analyzed RTs of Epoch 5 with a mixed-design ANOVA with the
within-subject factor of triplet (high-probability triplets vs. low-
probability triplets) and the between-subjects factor of group
(accuracy group vs. speed group).

A significant main effect of triplet was found, F(1, 59) = 50.50,
P<0.001, ηp

2 =0.46, indicating the emergence of statistical
knowledge, as RTs for high-probability triplets were smaller than
RTs for low-probability triplets (BF01 <0.001). The main effect of
group did not reach significance, F(1, 59) = 2.03, P=0.16, ηp

2 =0.03,
indicating that after the change of the instructions, the average
RT difference between the 2 groups disappeared; however, the
Bayesian comparison revealed only anecdotal evidence for the
lack of difference, BF01 =2.08 (Fig. 2). Importantly, the triplet ×

group interaction did not reach significance, F(1, 59) = 0.27,

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
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Figure 4. Learning in accuracy measures in the (A) accuracy group and (B) speed group. The horizontal axis shows the 5 epochs of the task and the vertical axis the RTs.

The solid line represents the RTs for the high-probability triplets, while the dashed line indicates the RTs for the low-probability triplets. The error bars represent the

SEM. Please note that the learning of statistical regularities is measured by the gap between the 2 lines. The accuracies for high-probability triplets were smaller in the

speed group, but not in the accuracy group. However, learning was measurable in both groups after the change of the instructions. ∗ = P< 0.05, n. s. = P> 0.05.

P=0.60, ηp
2 =0.01. It indicates that, irrespective of the instruction

during training, the 2 groups showed the same level of statistical
knowledge in the same instruction phase (Fig. 5). Moreover,
the Bayesian comparison of statistical learning (the difference
between high- and low-probability triplets) between groups also
favored the lack of difference, BF01 =4.58. The analysis with the
standardized learning scores in the RTmeasures revealed similar
results (see Supplementary Materials for details).

Next, we repeated the above analysis on the accuracy scores.
The triplet × group ANOVA revealed a significant main effect of
triplet, F(1, 59) = 39.96, P<0.001, ηp

2 =0.40, indicating statistical
knowledge in accuracy as well: more accurate responses for
high-probability triplets compared to the low-probability triplets
(BF01 <0.001). The main effect of group was also significant, F(1,
59) = 5.08, P=0.03, ηp

2 =0.08, indicating that the overall difference
in accuracy persisted after the change of the instructions;
however, according to the Bayesian t-test, the difference was
only anecdotal (BF01 =0.55). Importantly, the triplet × group
interaction did not reach significance, F(1, 59) = 0.85, P=0.36,
ηp

2 =0.01, indicating a similar level of statistical knowledge after
the change of the instructions (Fig. 5). The Bayesian comparison
of statistical learning between groups also supported the lack
of difference, BF01 =3.53. The analysis with the standardized
learning scores in accuracy measures revealed comparable
results (see Supplementary Materials for details).

Did the Participants Develop Conscious Knowledge
about the Statistical Regularities, and was it Different
Between Groups?

The inclusion-exclusion task was administered to reveal
whether the acquired statistical knowledge remained implicit or
became explicitly accessible for the participants. We compared
the percentage of the generated high-probability triplets to the
chance level separately for the 2 groups (see Materials and
Methods section for details).

In the accuracy group, 2 participants were excluded from
this analysis because they did not follow the instructions.
Participants in the accuracy group generated 32.33% (0.15%
SEM) high-probability triplets in the Inclusion condition, which

is significantly higher than chance level, t(28) = 4.82, P<0.001,
BF01 =0.002. In the exclusion condition, they generated 29.81%
(0.12% SEM) high-probability triplets,which is significantly above
chance level, t(28) = 4.04, P<0.001, BF01 =0.01, indicating that they
could not consciously inhibit the emergence of this knowledge.
These results show that in the accuracy group, knowledge about
the statistical regularities remained implicit.

In the speed group, 2 participantswere excluded because they
did not follow the instructions. Participants in the speed group
generated 30.34% (0.15% SEM) high-probability triplets in the
inclusion condition,which is significantly above the chance level,
t(27) = 3.58, P=0.001, BF01 =0.04. They also generated more high-
probability triplets than expected by chance in the exclusion con-
dition, 29.25% (0.21% SEM), t(27) = 2.07, P=0.048, BF01 =0.99; thus,
knowledge about the statistical regularities remained implicit in
the speed group.

Furthermore, we compared the differences between groups
and tasks with a 2 (condition: inclusion vs. exclusion)× 2 (group:
accuracy group vs. speed group) ANOVA. The main effect of
condition was not significant, F(1, 55) = 1.66, P=0.20, ηp

2 =0.03,
indicating that participants did not perform better in either
condition, which was confirmed by a Bayesian t-test, BF01 =4.21.
Thus, the triplet knowledge of the participants remained
implicit. The group main effect did not reach significance,
F(1, 55) = 0.53, P=0.47, ηp

2 =0.01, indicating that the 2 groups
performed equally on the 2 tasks, confirmed also by the Bayesian
t-test, BF01 =3.96. The interaction of the condition and group
factors was not significant, F(1, 55) = 0.26, P=0.61, ηp

2 =0.01,
revealing that the lack of difference between groups was not
influenced by the type of task (BF01 =4.47). To sum up, the 2
groups performed similarly on the task.

Did the Preexisting Preferences of the Participants Affect
Their Performance on the Task?

We used a questionnaire to check whether the subjective pref-
erences on being fast or accurate in real life were related to the
ability to follow instructions (see Materials and Methods section
for the questions). We correlated the questionnaire scores with
the average RTs and accuracy of the participants separately

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa041#supplementary-data
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Figure 5. Comparison of the high- and low-probability triplets (A and B), and the learning scores in the same instruction phase. The vertical axis indicates the RTs

(A), accuracy (B), or the learning scores (the difference between high- and low-probability triplets, C and D). The horizontal axis represents the 2 groups. The error bars

denote the SEM. Although statistical knowledge was detected in both groups, no significant difference was found in the learning scores, and the lack of difference was

confirmed by Bayesian analysis. ∗ = P < 0.05, n.s. = P > 0.05.

for the 2 groups. We did not find any significant correlations
between the average scores and subjective ratings either in the
accuracy group or in the speed group (each P>0.09). This result
indicates that the preference for accuracy or speed, and whether
the participants are rather fast or accurate in real life did not play
a role in the ability to follow the instructions.

Discussion

Here, we aimed to unveil whether speed/accuracy instructions
can influence an essential component of skill learning, namely
the acquisition of probabilistic statistical regularities. To this
end, we instructed 2 groups of participants to be either fast or
accurate during the training on an implicit probabilistic sequence
learning task (different instruction phase). In the testing phase,
we assessed the acquired knowledge of probabilistic regularities,

and this time, all participants were instructed to be both fast
and accurate (same instruction phase). As predicted, the instruc-
tions greatly affected the average speed and accuracy of the
participants: the speed instructions resulted in faster RTs and a
higher number of errors, while the accuracy instructions caused
slower average RTs and an almost errorless performance.Despite
these differences during training, the statistical learning scores
based on RTs were similar between groups. However, statistical
learning was not detectable with accuracy instructions. Thus,
measured by RTs, the instructions did not affect the acquisition
of implicit probabilistic regularities during training.Moreover, no
difference between the groups was found in the testing phase.
This lack of difference suggests that instructions did not affect
either the performance during training or the acquired statistical
knowledge. Similar results were obtained when we controlled
for the differences in average speed between groups. Moreover,
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Bayesian statistical methods also supported the lack of differ-
ence between groups in terms of acquired knowledge.

Our main result is that, irrespective of the strategy used
during the training, we detected a similar level of acquired sta-
tistical knowledge. This finding has several implications. From
a narrower, learning perspective, it suggests that our ability to
extract the relevant pieces of statistical information from the
environment is so robust that instructions cannot influence it.
This conclusion is in accordancewith the findings that statistical
knowledge persists and remains resistant to interference even
after 1 year (Kóbor et al. 2017), is intact in dual-task conditions
(Vékony et al. 2019) or in certain disorders characterized by
cognitive dysfunctions, such as obstructive sleep apnea (Nemeth
et al. 2012; Csabi et al. 2014), sleep-disordered breathing (Csábi
et al. 2013, 2016), autism (Nemeth, Janacsek, Balogh, et al. 2010),
borderline personality disorder (Unoka et al. 2017) or alcohol
dependency (Virag et al. 2015). Deterministic learning tasks test
patterns that occur with a 100% probability over time, while
the alteration of the random and pattern elements in the ASRT
task creates a noisy, uncertain environment, which is similar
to the natural environments of learning in everyday life (Fiser
et al. 2010). Our results showed that using complex probabilis-
tic regularities, a similar level of statistical knowledge emerges
throughout learning, even when learning occurs under different
circumstances and with different strategies.

Another compelling result of our study is that participants
in the accuracy instruction condition acquired stable statistical
knowledge despite the minimization of motor (response) errors
during training. The extent of this statistical knowledge was
comparablewith the knowledge acquiredwith the speed instruc-
tion. This result is especially interesting in light of the theory
claiming that the brain is a Bayesian inference machine (Friston
2010) because our results contradict to the findings that commit-
ting errors facilitates learning (Bubic et al. 2010). Our brain learns
associations between events through continuous adjustments of
the estimated probability distribution, that is, the prior. After
a prediction error, the prior should be updated in accordance
with new information about the probabilistic structure (Friston
2010). Based on these theories, we would expect a low number
of errors to impair the learning process; however, this was not
the case in our study. This finding raises the possibility that
the motor aspect of prediction errors is not crucial in all cir-
cumstances for updating the priors during probabilistic sequence
learning. This claim is also supported by other studies reporting
statistical and sequence learning without overt errors (Fiser and
Aslin 2001; Aslin 2017). However, it is also possible that a similar
amount of prediction errors might be detected with other meth-
ods, for example, by investigating eye movements (Wills et al.
2007; Le Pelley et al. 2011). The exploration of the role of errors
in implicit statistical learning deserves future investigation using
eye-tracking and electrophysiological methods.

Measured by RTs, a similar level of statistical learning was
found under the speed and accuracy instruction conditions in
the training phase. This finding is in contrast with the results of
Hoyndorf and Haider (2009), as they reported impaired implicit
learning performance with an accuracy strategy. In their study,
participants performed a regular and a random task set during
a number reduction task. They found that only the participants
focusing on speed had increased speed for the regular task set.
The authors claimed that the increased monitoring due to the
accuracy instruction might have impeded the performance, sim-
ilarly to the results of skill acquisition studies (Beilock et al. 2004,
2008). However, in the same study, Hoyndorf and Haider (2009)
found a preference for the regular task set also in the accuracy

group, which they interpreted as the focus on accuracy affects
only the expression of implicitly acquired knowledge rather than
learning processes per se. This conclusion is in accordance with
our results, as we found a similar level of statistical knowl-
edge when we equally emphasized the importance of speed and
accuracy after the initial learning. The difference in the training
phase might be due to the more complex, probabilistic sequence
representations used in our study. They may be more resis-
tant to instructions than deterministic patterns. Similarly, Barn-
hoorn et al. (2019), who have also found the speed instruction
to benefit the development of sequence representations, used
simple repeating sequences. Moreover, this study investigated
explicit sequence learning processes,while our participantswere
unaware of their accumulated statistical knowledge. A possible
explanation for the difference between the effect of implicit and
explicit learning conditions could be that the increased speed
covers up the explicitness of the task. As a consequence, the task
becomes more implicit, the top-down control reduces, and the
learning becomes better. In our study, the learning was entirely
implicit; therefore, the speeding up could not improve the level
of implicitness. Thus, the learning was similar under speed
and accuracy instructions. Future investigations are needed to
determine the extent towhich the implicit or probabilistic nature
of the task affects the lack of speed benefit during training.

Although we found a similar level of the acquired statistical
knowledge in accuracy measures, a difference was revealed in
the training performance: only the speed instruction resulted in
measurable statistical learning. Accuracy is a measure that can
reach a maximum of 100%; that is, the task can be performed
without errors. Our results suggest that the accuracy instruction
caused a ceiling effect. Participants completed the task nearly
without error,which did not allowus tomeasure statistical learn-
ing in accuracy measures (i.e., to find a significant difference
between responses to high- vs. low-probability triplets).However,
learning did occur, evidenced by the results of the testing phase.
These findings call for amore careful approachwhenwe evaluate
the learning phase in terms of accuracy measures: focusing on
being accurate can distort the learning scores of interest somuch
that, in some instances, we cannot reveal the knowledge that
exists.

From a broader cognitive neuroscience perspective, it is
essential to highlight the relationship between learning and
performance in our study. Most studies in the field of cognitive
neuroscience measure learning in a single context, and draw
conclusions about brain-behavior relationships based on either
“long-term learning” (the relatively permanent changes in
knowledge, i.e., competence) or “momentary performance” (the
temporary fluctuation in behavior) (e.g., Thomas et al. 2004;
Turk-Browne et al. 2010; Rose, Haider, Salari, and Buchel 2011;
Heideman, van Ede, and Nobre 2018). However, it was shown
that these 2 factors could be separated from each other. For
example, learning and performance can differ due to fatigue,
different types of practice, latent learning, or overlearning of
the practiced skill (Soderstrom and Bjork 2015). Our study
also revealed that skill learning competence could differ from
the momentary performance due to different instructions,
at least when accuracy is used as an indicator. This result
draws attention to the problem of using only one session to
evaluate learning. For example, if the fatigue or boredom of
the participants are different when they concentrate on being
fast or accurate, then it can influence the conclusions we draw
from our results. However, when the learning score (difference
score) is based on RTs, this contingency appears smaller, at
leastwhen investigating implicit probabilistic sequence learning.
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Future studies should reveal to what extent this phenomenon is
generalizable to other types of learning, such as to more explicit
or non-statistical learning tasks. Non-learning tasks should also
be tested, as general speed-up and changes in accuracy can
be seen over the course of various cognitive tasks requiring
fast decision-making. Based on our results, we recommend
taking into consideration the possible differences between
the measured competence and performance when designing
learning studies.

We manipulated the general speed and accuracy of the par-
ticipants by giving explicit instructions to focus either on speed
or accuracy, as previous non-learning cognitive tasks also did
(e.g., Osman et al. 2000; Christensen et al. 2001; Ullsperger et al.
2004; Aasen and Brunner, 2016). However, it might be question-
able if our results genuinely reflect the effect of instructions
on learning. One can argue that the instructions in our study
were not strong enough to manipulate the learning strategy
and the learning processes because previous studies used more
pronounced instructions and feedback to modify the strategy
of the participants (Hoyndorf and Haider 2009; Barnhoorn et al.
2019). This possibility seems unlikely because, based on our
results, the average speed and accuracy were affected by the
instructions. Group differences also emerged in “general skill
learning” as 1) participants who focused on their speed showed
increasingly faster responses, and 2) participants who focused
on their accuracy sustained a high level of accuracy during
the learning phase compared to the other group. In contrast to
these findings, the acquisition of statistical regularities was not
affected by the instructions. To sum up, we found evidence that
speed and accuracy affect general skill learning and statistical
learning differently.

One could also argue that verbal instructions given at the
beginning of the task might not be sufficient to regulate sub-
jects’ average speed and accuracy because, as time goes on,
participants tend to wane in favor of their response tendencies
(Heitz 2014). In other words, they will behave according to their
preferences for being accurate or fast on a task. In our case, this
change in behavior seems unlikely. First,we found no differences
in the average RTs and accuracy scores between groups when
the participants practiced the task on random sequences (before
we gave distinct instructions to the groups), and second, partic-
ipants did not become less accurate or slower throughout the
task. Therefore, the observed effects should be the result of the
instructions. Additionally, we measured the participants’ indi-
vidual preferences on response tendencies using a questionnaire
(whether they preferred to be accurate or fast). No correlations
were observed between these individual preferences and the
average speed and accuracy during the task in either group.
These aspects indicate that our results indeed reflect the effect
of instructions, and participants did not follow their individually
preferred response tendencies during the task.

Conclusion

Our study investigated the effects of speed and accuracy instruc-
tions on an essential component of skill learning, namely, the
acquisition of probabilistic regularities. Our main finding is that
our ability to pick up statistical regularities in a noisy, uncertain
environment is so robust that instructions do not influence it.
This result indicates that implicit probabilistic sequence learning
is independent of the manipulation of the speed/accuracy trade-
off. Another finding of our study is that learning can occur with
an almost 100% accuracy level as well. This result suggests that
statistical learning is at least partly independent of accuracy

level, and statistical knowledge about the environmental regu-
larities can be acquired even if no response (motor) errors occur.
Our results also raise the possibility that competence and perfor-
mance can differ in some instances. Accuracy instructions can
mask the accumulating statistical knowledge during learning
when measured by accuracy, although knowledge does emerge
in these cases as well. Future studies investigating whether
this robustness is related to the implicit feature of the task or
whether different types of learning are affected equally seem
warranted.
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Supplementary material can be found at Cerebral Cortex Commu-

nications online.
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