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Abstract: Saccharomyces yeast probiotics (S. ‘boulardii’) have long been applied in the treatment
of several gastrointestinal conditions. Despite their widespread use, they are rare opportunistic
pathogens responsible for a high proportion of Saccharomyces mycosis cases. The potential virulence
attributes of S. ‘boulardii’ as well as its interactions with the human immune system have been studied,
however, no information is available on how these yeasts may change due to in-host evolution. To
fill this gap, we compared the general phenotypic characteristics, cell morphology, virulence factors,
epithelial and immunological interactions, and pathogenicity of four probiotic product samples, two
mycosis, and eight non-mycosis samples of S. ‘boulardii’. We assessed the characteristics related to
major steps of yeast infections. Mycosis and non-mycosis isolates both displayed novel characters
when compared to the product isolates, but in the case of most virulence factors and in pathogenicity,
differences were negligible or, surprisingly, the yeasts from products showed elevated levels. No
isolates inflicted considerable damage to the epithelial model or bore the hallmarks of immune
evasion. Our results show that strains in probiotic products possess characteristics that enable them
to act as pathogens upon permissive conditions, and their entry into the bloodstream is not due to
active mechanisms but depends on the host. Survival in the host is dependent on yeast phenotypic
characteristics which may change in many ways once they start evolving in the host. These facts call
attention to the shortcomings of virulence phenotyping in yeast research, and the need for a more
thorough assessment of probiotic use.
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1. Introduction

Throughout history, Saccharomyces cerevisiae has been an indispensable fungus in
agriculture and the food industry [1,2]. Besides the widespread and diverse applications of
this yeast in various industries, a subtype of the species, namely S. ‘boulardii’ is applied
commonly as a probiotic both for human use and even for livestock [3–7]. It is by far the
leading probiotic yeast in the world [8] and its probiotic properties have been demonstrated
in more than 80 randomized clinical trials for the strain S. ‘boulardii’ CNCM I-745 [6].
Nowadays this probiotic yeast is used for the treatment of Clostridium difficile-related
and antibiotic-associated diarrhea [7], and to improve the symptoms of irritable bowel
syndrome (IBS) [9,10]. Previous studies analyzing the whole genome sequences of S.
‘boulardii’ have found that isolates from different sources show little variation and most of
them have a diploid euploid genome [11,12].

Surprisingly, this widely used and thoroughly researched probiotic yeast is also an
opportunistic pathogen. Among all non-Candida yeasts, the genus Saccharomyces causes
the highest number of infections and in fact, the S. ‘boulardii’ probiotic yeast is responsible
for most of these [13]. Furthermore, this yeast is the most commonly pathogenic probiotic
microorganism even when bacterial species are also considered [13]. Infections with the
probiotic yeast, as in the case of all probiotics, occur mainly among immunocompromised
or severely ill/hospitalized patients, infants, and elderly people. In recent years a growing
number of such cases were reported in clinical case reports e.g., [14–17]. Currently no
precise data are available on the frequency of these infections, largely due to the earlier
lack of clinically applicable subtyping methods that can reliably connect a yeast infection
to the S. ‘boulardii’ probiotic products itself. Thus, we optimized a multiplex PCR protocol
to differentiate clinical S. ‘boulardii’ isolates from other yeasts [16] utilizing the presence
of characteristic microsatellite and retrotransposon polymorphisms in S. ‘boulardii’ that
distinguishes it from other S. cerevisiae [11,18–20]. We demonstrated that probiotic-derived
clinical yeasts are common among S. cerevisiae isolates collected from a single Hungarian
hospital over the course of three years (seven isolates, including two fungemia cases, were
probiotic-derived out of 15 S. cerevisiae infections [16]).

Based on the above-mentioned high proportion of S. ‘boulardii’ both among Saccha-
romyces mycosis cases and among probiotic infections (half of all described probiotic
infections up until 2018) [13], earlier studies have aimed to identify the pathomechanism
and the important virulence factors of the probiotic yeasts using various methods, often
comparing them to a limited number of other Saccharomyces isolates. In their review on
pathogenic Saccharomyces, Anoop et al. [21] stated that the methodical approach used
for assessing S. cerevisiae strains’ pathogenic potential should combine genetic in vitro
and in vivo analyses, defining comparison of results between virulent and non-virulent
strains. The authors suggest high thermotolerance [22–25], pseudo hyphal [23–25], and
invasive growth [23,25,26], as well as enzymatic expression (protease and phospholipase
activity) [24,25], adhesion to mammalian cells [23,27–29], activation of innate immunity (cy-
tokine production, phagocytosis) [28,29] and modulation of oxidative stress response [30]
as features to be tested.

Among the previous virulence studies to include probiotic yeasts, McCullogh et al. [31]
found an ‘intermediate virulence’ of probiotic yeast strains in mouse model, similar to
Yáñez et al. [28]. Both studies compared S. ‘boulardii’ to other, not closely related, partially
clinical isolates. Klingberg et al. [23] found no specific virulence factors (after testing pseu-
dohyphal growth, invasivity, adhesion and damage to the epithelium) that differentiated
clinical Saccharomyces from others, including three commercial S. ‘boulardii’ strains that all
showed no invasivity and pseudohyphal growth only on low-nitrogen medium. de Llanos
et al. [32] used various mouse models, testing, among others, a single S. ‘boulardii’ com-
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mercial isolate. Their work underlined a higher virulence in the case of baker’s yeasts and
S. ‘boulardii’, but not in other yeasts, when immunosuppressed mice were experimentally
infected. In general, the probiotic yeast showed intermediate virulence. In a later study,
a single probiotic strain, along with unrelated clinical ones, was found to be unable to
cross the epithelial barrier in vitro, using the Caco-2 epithelial model [27]. Llopis et al. [33]
compared a single isolate from an S. ‘boulardii’ probiotic with other, non-related probiotic
and food supplement Saccharomyces yeasts with two virulent non-boulardii clinical isolates.
They stated that the probiotic S. ‘boulardii’ strain was capable of growth at 42 ◦C and
exhibited moderate virulence factors in some of the assays (e.g., pseudohyphal growth,
phospholipase secretion) when compared with other yeast samples.

Despite the many clinical case reports, literature reviews, systematic reviews, or pri-
mary research papers on the probiotic yeasts’ phenotype compared with other S. cerevisiae,
comparisons of actual S. ‘boulardii’ yeast isolates from patients and from products are
extremely scarce and inconclusive. To our knowledge, only two such studies have been
published. Pfliegler et al. [34] compared the phenotypic characteristics of a single probiotic-
derived clinical isolate from Hungary with a batch of a locally available product and
found highly similar characteristics in these, in contrast to the more conspicuous in-host
changes manifesting in baker’s yeast derived clinical isolates. Additionally, Peter et al. [12]
listed 24 isolates (including commercial and clinical isolates) in the S. ‘boulardii’ subclade
and recorded growth under various conditions for altogether 1011 S. cerevisiae isolates.
However, they did not discuss phenotypic differences of commercial/clinical counterparts
within clades. It thus remains unknown whether the phenotypic characteristics and viru-
lence attributes of the probiotic yeast commercial isolates are representative of the whole
clade. In other words, we do not know whether S. ‘boulardii’ can evolve novel characteris-
tics under selection in the host environment, either during benign colonization or in the
cases of infection. The S. ‘boulardii’ subclade contains very closely related isolates, but it is
not entirely genetically uniform [12], and it was also shown that probiotic products, among
other commercial yeasts, may contain phenotypically diverse subclonal lineages [35]. This
standing genetic and phenotypic variation in the probiotic yeast may plausibly lead to
in-host selection and evolution (compare with [34]) that needs to be studied.

Our aim in this study was to use our collection of probiotic yeasts and probiotic-
derived clinical yeast isolates (both pathogenic and likely commensal ones) to compare
their phenotypes, virulence factors, immunogenicity, and pathogenicity in an invertebrate
model, to identify traits that are selected for in S. ‘boulardii’ during survival and colonization
of the human host. To this end we assessed the traits of four subclone cultures of probiotics
from two manufacturers along with ten probiotic-derived clinical isolates, all collected in
Hungary.

2. Materials and Methods
2.1. Isolates and Patient Data

Isolated subclone lines were established from two batches of two different, locally
available S. ‘boulardii’ products, and ten clinical isolates from the university clinics of
Debrecen and Szeged (Hungary). For the latter, detailed patient and isolation data were
available. Patient data were handled in accordance with EU, state, and local regulations
with a clinical study ethics approval from the Regional and Institutional Research Ethics
Council of Debrecen (DE RKEB/IKEB 5194-2019). Stocks of the clinical and commercial
isolates were saved at −70 ◦C in YPD broth (VWR Chemicals, Solon, OH, USA, pH 5.8)
supplemented with 30% glycerol. These commercial and clinical isolates were subcultured
only once (multiple single-cell bottlenecks were avoided) to prevent accumulation of
potential geno- and phenotypic changes in the samples due to the phenomenon of clonal
heterogeneity that was recently demonstrated for yeast strains [35]. A list of the isolates
used in this study is presented in Table 1.
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Table 1. Collection and patient data for the isolates used in this study.

ID Isolate Type Formulation Component Place of
Acquisition

Date of
Acquisition

Country of
Manufacturing Reference

1 PY0001 probiotic
supplement active dry single component Debrecen,

Hungary March 2015 France [16,34]

2 PY0002 probiotic
supplement active dry single component Debrecen,

Hungary November 2017 France [16]

3 PY0003 probiotic
supplement active dry multicomponent Debrecen,

Hungary September 2017 Czechia [16]

4 PY0004 probiotic
supplement active dry multicomponent Debrecen,

Hungary November 2017 Czechia [16]

ID Isolate Type Age (yr) at
Sampling Sex

Prevailing Medical
Condition during

Isolation
Mycosis Case

Anatomical
Origin/Sample

Type
Date of Sampling Geographic

Origin Reference

5 DE6507
clinical isolate

(probiotic-
derived)

63 ♂ pneumonia yes haemoculture 18 February 2017 Debrecen,
University Clinic [16]

6 DE35762
clinical isolate

(probiotic-
derived)

66 ♀ respiratory failure yes haemoculture 5 November 2015 Debrecen,
University Clinic [16]

7 DE27020
clinical isolate

(probiotic-
derived)

40 ♀ sepsis (bacterial) no
bronchus

(sampling during
intubation)

23 August 2015 Debrecen,
University Clinic [16,34]

8 DE3912
clinical isolate

(probiotic-
derived)

85 ♂ pneumonia no
trachea (sampling

from tracheal
cannula)

31 January 2018 Debrecen,
University Clinic [16]
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Table 1. Cont.

9 DE42533
clinical isolate

(probiotic-
derived)

2 ♂
fluid homeostasis

disorder no throat 15 December 2017 Debrecen,
University Clinic [16]

10 DE42807
clinical isolate

(probiotic-
derived)

1 ♀ diarrhea no vagina 4 December 2017 Debrecen,
University Clinic [16]

11 DE45866
clinical isolate

(probiotic-
derived)

64 ♂ cerebral infarction no
bronchus

(sampling during
intubation)

29 December 2017 Debrecen,
University Clinic [16]

12 465/2018
clinical isolate

(probiotic-
derived)

41 ♀ amenorrhea no vagina 3 January 2018 Szeged,
University Clinic -

13 551/2018
clinical isolate

(probiotic-
derived)

81 ♂ paralytic ileus no feces 3 January 2018 Szeged,
University Clinic -

14 2251/2018
clinical isolate

(probiotic-
derived)

17 ♂ ulcerative colitis no feces 8 January 2018 Szeged,
University Clinic -
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2.2. Genotyping

Genomic DNA was isolated according to Hanna and Xiao [36] and stored standard-
ized to 100 ng/µL in 1 × TE buffer at −20 ◦C. The multiplex PCR method developed for
the identification of probiotic derived yeast infections was used to compare previously
described infectious S. ‘boulardii’, the three novel samples from the University Clinic of
Szeged, and the four probiotic product isolates used here. Conditions of the multiplex PCR,
gel electrophoresis, and comparison of band patterns followed the published protocol [16]
and the GoTaq G2 (Promega, Madison, WI, USA) polymerase enzyme was used. Briefly,
the method combines interdelta, microsatellite (YLR177w, YOR267c), and as a control, ITS
1–4 primer pairs in a single PCR reaction, yielding products of characteristic length for
the probiotic yeasts. We further subjected the three novel clinical samples to multi-locus
sequence typing (MLST) to corroborate multiplex results. We sequenced four nuclear
genes (CCA1, CYT1, HMX1, and NUP116), and the nuclear internal transcribed spacer
(ITS) region using Pwo polymerase (Sigma-Aldrich, St. Louis, MO, USA) with the primers
and conditions described in [16]. PCR products were cleaned with the Illustra GFX PCR
DNA and Gel Band Purification Kit (GE Healthcare, Chicago, IL, USA) and sequenced
bidirectionally using the primers used for amplification (Microsynth AG, Balgach, Switzer-
land). Amplified and sequenced products spanned the whole CYT1 and HMX1 gene, other
genes were partial. Reads were checked and edited using Chromas 2.6.5. (Technelysium,
Brisbane, Australia). Sequences were deposited in GenBank (MZ712202–MZ712213). For
comparison with sequences in our previous work [16], sequences were aligned (using
MUSCLE) and alignments were analyzed using MEGA X [37]. Alignments are deposited
in FigShare (doi:10.6084/m9.figshare.15145020).

2.3. Phenotyping

Colony morphology and invasivity. Colony phenotypes were observed after plating
10 µL of overnight cultures (on YPD, 25 ◦C) set to OD600 = 0.1 onto YPD (VWR, 2% glucose,
2% peptone, 1% yeast extract), SD (synthetic dextrose, 2% glucose, 0.17% yeast nitrogen
base without amino acids, without ammonium sulphate (Alpha Aesar—ThermoFischer,
Kandel, Germany), 0.5% ammonium sulfate), SLAD (synthetic low-ammonium (50 µM)
dextrose medium, as SD except for ammonium sulfate concentration), and SLG (synthetic
low-glucose (0.1%) medium, as SD except for glucose concentration) agar plates (2% agar
in all agar media in this study). Vented plastic plates with 90 mm diameter and 14 mm
height were used (VWR). Plates were incubated for 10 days at 37 ◦C (with agar surface
facing down) after which plates were visually scored for colony phenotypes. Subsequently,
colonies were washed under tap water, observed with transillumination (visual light) to
score invasivity into the agar media. Colony senescence was observed by inoculating the
samples as above onto GlyYP (glycerol 2%, yeast extract 1%, peptone 2%, agar 2%) + 0.1%
glucose plates, and visually observing the morphology of colonies after incubation at 37 ◦C
for 30 days.

Killer activity/sensitivity. Killer toxin production and sensitivity were evaluated using
a K1 and a K2 toxin producer (NCYC 232; NCYC 738, respectively) as well as a sensitive
wine yeast strain (NCYC 1006) [38] as control. Killer activity tests were performed by
dropping 20 µL OD600 = 0.1 suspensions of the killer controls and of the S. ‘boulardii’
isolates pre-cultured as above onto the surface of YPD agar plates supplemented with
0.003 g/L methylene blue, buffered to pH 4.5 with citrate-phosphate buffer. Plates were
incubated for 2 days at 25 ◦C, then suspensions of the pre-cultured sensitive test strain
(1.0 McFarland, 500 µL) were sprayed on the plates, followed by 2 days incubation at
25 ◦C. Killer sensitivity was tested by making such lawns of the S. ‘boulardii’ around killer
1 and killer 2 strain colonies. Killer positive activity was registered when a halo of growth
inhibition was produced, including the presence of a dark blue zone of dead cells around
the edge of the inhibition zone.

Petite frequency. The frequency of petite mitochondrial mutants in various S. ‘boulardii’
was assessed by plating overnight cultures (on YPD, 25 ◦C) onto GlyYP + 0.1% glucose agar
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plates with cell densities of approx. 100/plate (after cell counting in a Thoma hemocytome-
ter). Vented plastic plates with 90 mm diameter and 14 mm height were used. Plates were
incubated for 10 days at 30 ◦C (with agar surface facing down) for potential petite mutants
on GlyYP. Presumed petites were transferred to YPD and after overnight culturing, were
inoculated onto GlyYP plates without glucose. The subclone samples unable to grow on
glucose-free agar were scored as petites.

Sporulation and MAT locus typing. Sporulation capability was tested by inoculating
overnight YPD agar cultures onto potassium acetate sporulation medium (0.05% glucose,
1% potassium acetate, 0.1% yeast extract, 2% agar). Sporulation was evaluated after 5 days
of incubation at 25 ◦C and at 37 ◦C, using phase contrast microscopy and 400× mag-
nification. The mating type locus (MAT) on chr. III was amplified using the primers
(5′-AGTCACATCAAGATCGTTTATG-3′), (5′-GCACGGAATATGGGACTACTTCG-3′), and
(5′-ACTCCACTTCAAGTAAGAGTTTG-3′) [39]. For each reaction, 0.25 unit GoTaq G2
polymerase, 20 ng of genomic DNA, 10 pmols of each primer, and 0.2 mM each dNTP in
12.5 µL end volume were used. Reactions were carried out in a C1000 Touch thermocycler.
Gel electrophoresis was conducted in 2% low electroendosmosis TBE agarose gel stained
with GelRed (Fremont, CA, USA), at 110 V for 30 min followed by visual inspection of gel
photographs taken using a UV transilluminator. Bands corresponding to either mating
types were identified and used to infer the mating type heterozygosity of the yeasts.

Growth at high temperature. Growth at 37–42 ◦C was evaluated according to [13] using
spot plate inoculation. Cells grown overnight at 30 ◦C in YPD were set to 0.5 McFarland
units in water and plated onto YPD in 5 µL drops in a 10× dilution series of approx. 50,000,
5000, 500, 50, and 5 cells. Plates were incubated at various temperatures for 3 days. Growth
was scored after visual inspection and comparison with growth at 37 ◦C (−: no growth,
+−: very weak, +: weak, ++: normal, +++ strong growth).

Susceptibility to antifungal agents. Minimal inhibitory concentration (MIC) values were
determined for three antifungal drugs, fluconazole (Molecula Limited, Newcastle Upon
Tyne, UK), amphotericin B (Duchefa Biochemie, Haarlem, The Netherlands), and caspo-
fungin (Molcan, Toronto, Canada). Isolates were grown in pH 7.0, bicarbonate-free RPMI
1640 (Roswell Park Memorial Institute medium, Sigma-Aldrich) and the serial dilution
method was used for the experiments in 96 well microtiter plates. Cell concentrations, the
use of reference strains, and determination of MIC values after 24 h followed the reference
method for broth microdilution antifungal susceptibility testing of yeasts [40].

Adhesion to plastic surfaces. To test adhesion to plastic surfaces, yeasts were pre-cultured
on YPD overnight, and from suspensions of measured cell densities, ~10,000 cells/mL
were inoculated to 3 mL YPD broth into flat bottom polystyrene 12 well plates pre-treated
for cell cultures (TPP, Trasadingen, Switzerland). Incubation was carried out for 5 days at
37 ◦C without shaking, after which cells were washed off 3 times by submerging plates
into tap water. Remaining cells were stained with 0.1% crystal violet solution in ddH2O
(300 µL) for 15 min at room temperature, after which crystal violet solution was removed,
cells were washed twice with tap water. The bottoms of the wells were broken from
the plates to be viewed under an Olympus BD40 microscope with 20–40×magnification
with transmitted light, with representative photographs taken. Morphology was recorded.
For each sample, three viewfields were observed on each of the triplicate wells, area of
viewfield was calculated, and number of adherent cell clusters for 1 mm2 was subsequently
calculated based on each individual viewfield. Raw data of measurements were uploaded
to FigShare (doi:10.6084/m9.figshare.15109488).

Extracellular protease activity, phospholipase activity, hemolysis. Strains were cultured
on yeast peptone dextrose medium (YPD; 1% yeast extract, 2% mycological peptone, 2%
glucose, 2% agar, pH 5.6) for 2 days. The strains were pre-cultured in liquid YPD medium
overnight at 30 ◦C, then were washed three times with phosphate buffered saline (PBS).
Strains were inoculated in 5 µL (5 × 104 cells; protease secretion and hemolysis) and
5 µL (2.5 × 106 cells; phospholipase secretion) of cell suspension in three replicates. We
followed hemolytic activity [41] on blood Sabouraud Dextrose Agar (SDA) (4% glucose,
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1% pepton, 7.5% sheep blood, 1.5% agar) at 37 ◦C in 5% CO2 for 3 days in Petri dishes
with good ventilation to avoid microbial alcohol mediated hemolysis [42]. Hemolytic
indices were determined in triplicates after 1 and 2 (α-hemolysis) and 2 and 3 (β-hemolysis)
days of incubation. Protease secretion was followed on bovine serum albumin medium
(BSA; 0.02% MgSO4 · 7 H2O, 0.25% K2HPO4, 0.5% NaCl, 0.1% yeast extract, 2% glucose,
0.25% bovine serum albumin (Sigma-Aldrich), 2% agar) at 37 ◦C for 2 days (measured
after 2 days as well). Phospholipase secretion was investigated on egg yolk medium
(EY; 4% glucose, 1% peptone, 1.5% agar, 5.85% NaCl, 0.0555% CaCl2, 10% v/v egg yolk
emulsion, the latter containing 2 volumes of physiological saline and 1 volume of egg
yolk) at 37 ◦C for 2 days [25]. Raw data of measurements were uploaded to FigShare
(doi:10.6084/m9.figshare.15145020).

Cell morphology measurements with high-throughput microscopy. To quantitatively mea-
sure the morphology of individual cells of the tested isolates, we applied a previously
established protocol [43,44] with modifications. Yeast strains were inoculated into standard
96 well plates (Greiner Bio-One, Kremsmünster, Austria) in YPD at 30 ◦C in four biological
replicates into random positions of separate plates to avoid systematic plate effects. Each
plate contained five control wells (BY4743 diploid laboratory strain) in random positions.
After reaching the saturation in cell density, each culture was diluted into 500 µL fresh
YPD medium in a 96 deep well plate including 0.5 mm glass beads in each well and
grown until mid-exponential phase. After that, the cells were fixed in phosphate buffer
(pH 6.5) containing 3.7% formaldehyde (Sigma-Aldrich). Fixed cells were washed with
PBS and P buffer (10 mM Na2HPO4 · 12 H2O, pH 7.2, 150 mM NaCl). Subsequently we
performed fluorescent immunostaining of the cell wall and the nucleus. Actin-staining
was omitted due to low reproducibility [45] (Farkas et al., submitted). Staining of the
cell wall was performed with 1 mg/mL Alexa-488-conA (Thermo Fisher) solution for
2 h at 4 ◦C. Nuclei were stained with 350 ng/mL DAPI (Thermo Fisher) in PBS buffer
supplemented with 0.1% Triton X-100 (Molar Chemicals, Halásztelek, Hungary) for 30 min
at room temperature. The stained cells were diluted and transferred into black clear bottom
96 well plates coated with 1 mg/mL concanavalin A solution (Santa-Cruz Biotechnology,
Dallas, TX, USA) and sedimented by centrifugation (1500 rpm for 4 min). Microscopy
screening was performed by an Operetta High-Content Imaging System (PerkinElmer
Inc., Waltham, MA, USA) using a 63× high numerical aperture objective (Farkas et al.,
submitted). During the imaging, 13 fields were captured from each well, with two channels
configured for ConA and DAPI, in 4 layers of z-stack. Raw.tiff images were processed using
a custom Matlab script (Farkas et al., submitted) to select the optimal z-stack layer for each
cell and to produce 696 × 520 pixels 8-bit.jpeg images (4 image per field of view), which
were then used as inputs for the CalMorph software [43]. Quality control of raw morpho-
logical data and statistical analysis of processed morphological data were performed as
described in (Farkas et al., submitted). Raw data of measurements and initial analysis
in the form of boxplots were uploaded to FigShare (doi:10.6084/m9.figshare.15109488,
10.6084/m9.figshare.15105633 respectively).

Pseudohyphal growth and flocculation. Pseudohyphal growth was assessed after 10 days
of growth at 37 ◦C by sampling colonies used for colony morphology and invasivity
tests (described above). Samples of the colonies were viewed at 400× magnification
with transmitted light. General morphology of pseudohyphae, if present, was recorded.
Additionally, samples of the yeasts were pre-cultured overnight at 37 ◦C in YPD broth
without shaking to observe potential flocculation in the medium. Furthermore, during
epithelial transmigration experiments, as described below, yeast morphology was also
recorded in the DMEM medium + 10% fetal bovine serum (FBS, non-USA origin, sterile-
filtered, suitable for cell culture, Sigma-Aldrich) medium.

High-throughput multicellularity measurement. The Amnis FlowSight Imaging Flow
Cytometer (Luminex, Austin, TX, USA) was used to investigate the presence of multicellu-
lar clumps and pseudohyphae among the isolates. This imaging flow cytometer has the
advantage of recording a brightfield image of every event during standard flow cytometry.
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As a low and high aggregate forming control, the laboratory strains BY4743 and L5366
(respectively) were used. For this test, isolates were inoculated into YPD medium and
grown until saturation in cell density at 25 ◦C with 140 rpm. The saturated cultures were
diluted in PBS buffer to reach a cell density of 106–107 cells, and then the cell suspensions
were immediately subjected to flow cytometry after vigorous shaking. The area (size of
an event in square microns) and the aspect ratio (ratio of the minor axis divided by the
major axis of an event) of the brightfield channel were estimated by the Amnis IDEAS
software. Gating was applied based on the area parameter to exclude extrinsic noise (e.g.,
cellular debris). During each acquisition, a minimum of 5000 events were recorded. Area
and aspect ratio values were exported and analyzed in R programming environment. As
single round-shaped cells have both an aspect ratio around 1 and a low area value, we
tested whether the isolates have a marked change in the above parameters, indicating
more pronounced formation of pseudohyphae (or cell aggregates). As flocculation (clumps
forming from cells not necessarily originating from the same cell) was absent in the isolates,
events with larger areas and markedly changed aspect ratios were regarded as pseudohy-
phae (cell groups linked physically by incomplete separation after cell division). Analysis
of multicellularity was performed on four independent samples and all measurements
were pooled together. Area vs. aspect ratio plots and raw data were uploaded to FigShare
(doi:10.6084/m9.figshare.15105633, 10.6084/m9.figshare.15109488, respectively).

2.4. Immune Tests

Isolation and differentiation of human primary cells. Peripheral blood mononuclear cells
(PBMCs) were isolated by Ficoll–Paque (GE Healthcare, Uppsala, Sweden) density gradient
centrifugation of heparinized leukocyte-enriched buffy coats of healthy donors drawn at
the Regional Blood Center of Hungarian National Blood Transfusion Service (Debrecen,
Hungary), with the written approval of the Director of the National Blood Transfusion
Service and the Regional and Institutional Ethics Committee of the University of Debre-
cen, Faculty of Medicine (Debrecen, Hungary). Monocytes were purified from PBMCs
by positive selection using anti-CD14-conjugated microbeads (Miltenyi Biotec, Bergish
Gladbach, Germany), according to the manufacturer’s instructions. For dendritic cell (DC)
differentiation, freshly isolated monocytes were seeded in 24 well cell culture plates at a
density of 1 × 106 cells/mL in RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 10% heat-inactivated FBS (Life Technologies Corporation, Carlsbad,
CA, USA), 2 mM L-glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin (all from
Sigma-Aldrich), 80 ng/mL granulocyte-macrophage colony stimulating factor (GM-CSF;
Gentaur Molecular Products, London, UK) and 50 ng/mL interleukin-4 (IL-4; PeproTech,
Brussels, Belgium) for 5 days. On day 2, the same amounts of GM-CSF and IL-4 were added
to the cell cultures. The monocyte-derived DCs (moDC) were used for experiments on day
5 when more than 90% of the cells displayed immature DC phenotype (DC-SIGN/CD209+,
CD14−). Allogenic CD3+ pan-T cells of the donors were isolated from PBMC using
anti-CD3 microbeads (Miltenyi Biotec), according to the manufacturer’s instructions, and
were used for moDC–T cell co-culture experiments as described below. All cells were
incubated at 37 ◦C in 5% CO2 humidified atmosphere. Raw data of measurements for all
immunological assays were uploaded to FigShare (doi:10.6084/m9.figshare.15145020).

Phagocytosis assay. Yeast cells were propagated overnight in YPD (30 ◦C, 140 rpm)
before experiments. After three washing steps with PBS, yeast cells were resuspended in
PBS and 1 × 108 cell/mL were stained with 1 mg/mL FITC (fluorescein isothiocyanate,
Sigma-Aldrich). The suspension was incubated in the dark for 30 min, at 37 ◦C, in the
presence of 5% CO2. After incubation, excess FITC was washed from the yeast cells in two
washing steps with PBS, then moDCs and yeast cells were co-cultured in 1:5 ratio (5 × 105

iDCs + 2.5 × 106 yeast cells) in complete RPMI 1640 medium. After 1 h incubation either
at 37 ◦C or at 4 ◦C (as negative control), phagocytosis of DCs was terminated by washing
the cells with cold buffer and samples were fixed with 100 µL 4% paraformaldehyde (PFA,
Sigma-Aldrich) immediately. Phagocytosis was measured using a BD FACS Calibur Flow
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Cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) and data analysis was performed
using FlowJo Software (Treestar, Ashland, OR, USA). The events from onboard processing
were eliminated and the proportion of moDCs with phagocytosed yeast cells was recorded.

Phenotypic and functional analysis of yeast-exposed moDCs. MoDCs were co-incubated
with unstained yeast cells at a ratio of 1:3 (5 × 105 moDC + 1.5 × 106 yeast cells) for 24 h
at 37 ◦C to determine the changes in their cell surface protein expression (CD40, CD80,
CD83, CD86, HLA-DQ) and cytokine and chemokine secretion profile (IL-6, IL-8, IL-12,
IL-1β, TNFα). Cell surface protein expression of yeast-exposed moDCs was analyzed by
multicolor flow cytometry using anti-CD40-FITC, anti-CD80-FITC, anti-CD86-PE, anti-
HLA-DQ-PE, anti-CD83-PeCy5 fluorescently labeled monoclonal antibodies, and isotype
matched control antibodies (all from BioLegend, San Diego, CA, USA). Fluorescence inten-
sities were measured by BD FACS Calibur Flow Cytometer (Becton Dickinson) and analysis
of data was performed by the FlowJo software. Concentrations of inflammatory cytokines
and chemokine produced by moDCs after yeast exposure were measured by enzyme-linked
immunosorbent assay (ELISA) from the supernatant of the cell cultures. All BD OptEIA
human ELISA assay kits specific for the measured cytokines or chemokines were obtained
from BD Biosciences (San Diego, CA, USA) and ELISA kits were used according to the
manufacturer’s instructions. Absorbance measurements were obtained with a Synergy HT
microplate reader (Bio-Tek Instruments, Winooski, VT, USA) at 450 nm. Results where the
measured fluorescence in cytokine/chemokine production was negligible were excluded
from comparisons. Excluded donors are marked red in the raw measurements dataset.

T cell activation assay. To examine the T cell activating capacity of yeast-exposed
moDCs, an enzyme-linked immunospot (ELISPOT) assay was performed. Following yeast
treatments, moDCs were washed twice with cell culture medium and then co-cultured with
allogeneic CD3+ pan-T cells in RPMI 1640 medium (Sigma-Aldrich) supplemented with
10% heat-inactivated FBS (Life Technologies Corporation), 2 mM L-glutamine, 100 U/mL
penicillin, 100 mg/mL streptomycin (all from Sigma-Aldrich) in the presence of 1 mg/mL
anti-human CD3 mAb (BD Biosciences) at a ratio of 1:10 (1 × 105 moDC + 1 × 106 T cell)
in 48 well tissue culture plates. After 4 days, the cells were washed twice with PBS
and the ratio of IFN-γ and IL-17 producing T cells was measured using human IFN-γ
and IL-17 ELISPOT kits (eBioscience, Vienna, Austria) according to the manufacturer’s
instructions. After completing the assays, the ELISPOT plates were dried, and spots
were read on an ImmunoScan analyzer using ImmunoSpot 4.0 software (Cellular Tech-
nology Ltd., Bonn, Germany). Results where T-cell controls were high, activation was
not found, or where replicate spot numbers were too variable were excluded from com-
parisons. Excluded donors are marked red in the raw measurements dataset in FigShare
(doi:10.6084/m9.figshare.15145020, where ELISPOT images are also available).

2.5. Human Epithelium Model Interactions

Adhesion of yeast cells on human gastrointestinal epithelium model. Caco-2 (colon
adenocarcinoma) cell line was obtained from the European Collection of Cell Cultures
(ECACC, No. 86010202). These cells were routinely cultured (passages 20–30) in high
glucose (4.5 g/L) Dulbecco’s Modified Eagle’s Media (DMEM) supplemented with 3.7 g/L
NaHCO3, 10% heat-inactivated fetal bovine serum (FBS, non-USA origin, sterile-filtered,
suitable for cell culture, Sigma Aldrich), 1% (v/v) non-essential amino acids solution (Lonza,
Basel, Switzerland), 100 IU/mL penicillin and 100 µg/mL streptomycin mix (Lonza) at
37 ◦C in a humidified incubator in atmosphere of 5% CO2 (shortened in the following as
cell culture medium). The glutamine was supplemented by GlutaMax™ (Thermo Fisher).
For adhesion assays, 1 × 105 Caco-2 cells were seeded in cell culture medium on glass
coverslips (pre-treated with rat tail derived collagen I. beforehand by overnight incubation
at 4 ◦C; Gibco—Thermo Fisher, Waltham, MA, USA), in 24 well culture plates with the
same medium and incubated for 2–3 days [46] until the coverslips were overgrown with
a continuous layer. The cells were infected with 105 yeast cells (suspended in serum free
cell culture medium) in triplicates, followed by 1 h incubation at 37 ◦C under 5% CO2



J. Fungi 2021, 7, 746 11 of 29

atmosphere, then unadhered cells were washed away with 1 mL PBS three times. The cells
on coverslips were then fixed with 4% paraformaldehyde and were stained with calcofluor
white. Stained coverslips were viewed using an Olympus BD-40 microscope equipped
with 40× phase contrast and with a 40× fluorescence objective with transmitted light and
phase contrast and with fluorescent excitation (respectively) to view adherent yeast cells.
For each sample, three viewfields were observed on each of the triplicate slides, area of
viewfield was calculated, and adherent cell number for 1 mm2 was subsequently calculated
based on each individual viewfield. As a positive control, the SC5314 Candida albicans
type strain was used which is known to be adherent to Caco-2 epithelium models using
this experimental setup. Raw data of measurements for all epithelial model assays were
uploaded to FigShare (doi:10.6084/m9.figshare.15145020).

Damage assay on Caco-2 human epithelium model. 104 cells/well Caco-2 epithelial
cells were seeded into 96 well microplates and incubated for 7 days prior to infection in
culture medium described above [47]. Three groups were formed on each plate. 18 wells
were seeded only with Caco-2 cells, 18 wells were seeded with Caco-2 and infected with
yeast cells and 18 were inoculated only with yeast cells. For infection, 1 × 105 S. cerevisiae
cells/mL were co-incubated with the epithelial cells for 24 h in cell culture medium
without FBS at 37 ◦C and humidified 5% CO2 atmosphere. The cell culture medium was
refreshed at the moment of the infection for the non-infected group of wells, too. After
the 24 h of incubation, all cells were treated with 1 mg/mL amphotericin B for 1 h. The
antifungal agent was removed, cells were washed and 0.1 mL of 0.5 mg/mL solution of
2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT salt dissolved in
PBS) was added to each well. Microplates were incubated for 3 h at 37 ◦C, then the dye
was removed and 0.1 mL of a solution of isopropanol: 1 M hydrochloride acid (25:1) was
added to each well to dissolve the cells. The absorbance of the wells was measured at
570 nm and 690 nm. All the measurements were carried out with a Multiskan Go (Thermo
Fisher) microplate reader. For all data sets, the A570–A690 subtraction was completed
and the mean of yeast wells was further subtracted from the values of the wells with
infected Caco-2 cells. Cell viability in wells of infected Caco-2 cells with this correction was
expressed as the percentage of the mean absorbance values of the uninfected Caco-2 cells,
which were incubated with cell culture medium for 24 h. As a pathogenic positive control
we used the type strain of C. albicans SC5314.

Epithelial transmigration assay with Caco-2 human epithelium model. In order to
assess whether probiotic yeasts can cross the epithelial barrier in vitro, we used Transwell
(Corning, NY, USA) cell culture insert following Pérez-Torrado et al. [27]. To obtain
polarized monolayers, 6 × 104 Caco-2 cells of the same passage number were seeded into
Transwell cell culture inserts (Corning Incorporated, Corning, NY, USA) with 8 µm pore
size, 1× 105 pores per cm2 density and 0.33 cm2 area, polycarbonate membrane, and placed
in 24 well plates. In all cases, the volume of the apical compartment was set to 200 µL and
the basolateral was set to 1250 µL. Caco-2 monolayers were used for experiments after
14–21 days of initial seeding, when the transepithelial electrical resistance (TEER) reached
>450 Ω cm2. Before the infection, strains grown overnight at 30 ◦C in YPD were washed
with PBS and resuspended in the cell culture medium in 1× 106 cells/mL concentration and
were put into the apical compartment and incubated at 37 ◦C in a humidified atmosphere
of 5% CO2. As a positive control capable of invasion through the epithelium model [27],
the C. albicans SC5314 strain was used. Furthermore, we confirmed that yeasts cells are able
to cross the Transwell insert if it is not seeded with Caco-2 cells. The medium in the apical
and basolateral compartments were changed daily without disturbing the developing
yeast layer. The total amount of medium from the lower compartment was centrifuged at
10,000× g and diluted in ddH2O, after which samples were observed in a haemocytometer
and plated onto YPD plates, incubated at 30 ◦C for 3 days and colonies were counted,
colony forming unit (CFU) numbers were then calculated. For every strain, three parallel
wells were carried out. The experiment was conducted until 144 h was reached after
inoculation, when the Caco-2 monolayers were starting to deteriorate. The presence of
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a biofilm in the upper compartment was checked visually during each daily addition of
fresh medium (whether yeasts were easily suspended) using a binocular microscope and
20× magnification, transmitted light, and a 2 µL sample from the upper compartment
was viewed under 400×magnification with transmitted visible light each day to examine
pseudohyphal morphology.

2.6. Galleria Mellonella Larva Infection Model

The Galleria mellonella larva pathogenicity model was used to assess the pathogenicity
of the strains and isolates in vivo. Larvae were obtained in two batches (Chameleonfarm,
Budapest, Hungary) and used within 5 days. We used 2 × 20 last-instar specimens for
infection experiments for each strain or isolate, with 20–20 larvae from two different
batches. Altogether 2 × 20 specimens were used as negative controls inoculated with PBS.
20 uninfected controls were also used. As a pathogenic positive control we used the type
strain of C. albicans SC5314. Injection followed [48] with 106 cells (harvested after overnight
incubation, washed three times in PBS) in PBS. Larvae were starved for 24 h at 30 ◦C before
experiments to avoid temperature shock-driven immune activation before inoculation [9].
Each batch of larvae was used in one single run of inoculation experiments. Survival of the
larvae was followed for 96 h after inoculation with incubation at 37 ◦C. From dead larvae,
yeasts were recovered by homogenizing the larvae in 1 mL PBS and plating 10 µL onto
YPD medium supplemented with 100 µg/mL ampicillin. These plates were incubated for
3 days at 30 ◦C. Colonies formed were visually observed, cells in colonies were viewed
under 400× magnification with transmitted visible light to search for potential samples
differing from S. cerevisiae/S. ‘boulardii’ morphology.

2.7. Statistics and Data Visualization

To compare phenotypic results across groups of yeast isolates (commercial, mycosis,
non-mycosis), VassarStats [49] was used to perform one-way ANOVA followed by Tukey
honestly significant difference (HSD) tests or pairwise t-tests where only two groups were
compared (yeast groups in the case of immunological experiments). For immunological ex-
periments, not only isolate groups, but donors were also compared. Kruskal–Wallis test [50]
was applied to high-throughput single-cell data to compare isolate groups, with Bonferroni
correction (as no comparisons showed significant differences, post-hoc pairwise multiple
comparison tests were not applied). For all continuous measurements, isolate groups were
compared using the above-mentioned methods, while isolates were compared to each other
using principal component analysis (PCA) with or without pre-defined groups and by
generating heatmaps and phenotypic clustering using ClustVis [51]. Phenotypic clustering
and PCA were used to assign isolates to categories in global comparisons of individual
isolates. Analysis of raw data obtained by high-throughput single-cell phenotyping and
multicellularity measurement were performed in R programming environment [50]. In the
case of single-cell measurements, the first six principal components were further analyzed
by assessing differences among isolates for the traits with the highest PC loadings. Mea-
surement values were illustrated in GraphPad Prism 9 (GraphPad Software, Inc., San Diego,
CA, USA), and to supplement these, in Excel (Microsoft Co., Redmond, WA, USA). For
Galleria infections, Kaplan–Meier statistics and survival curve illustrations were performed
using StatsKingdom [52].

3. Results
3.1. S. ‘boulardii’ Isolates

Among the 14 S. ‘boulardii’ isolates used in this study, 11 were previously characterized
with multiple genotyping methods and were shown to be genetically uniform (Table 1,
Supplementary File S1). The three new additional isolates from the Szeged clinics also
showed identical patterns with our multiplex PCR method and, furthermore, showed
identical profiles in multi-locus sequence typing (Supplementary File S1), confirming their
origins as derived from probiotic yeasts. Based on the origin and the pathogenic potential
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of the isolates we grouped the isolates into three groups: commercial (PY0001, PY0002,
PY0003, PY0004), mycosis causing (DE6507, DE35762), and non-mycosis clinical isolates
(DE27020, DE3912, DE42533, DE42807, DE45866, 465/2018, 551/2018, 2251/2018).

3.2. Phenotypic Differences among Commercial, Non-Mycosis, and Mycosis Isolates of S.
‘boulardii’

To investigate phenotypic differences among the probiotic isolates, we first investi-
gated colony morphology. All isolates showed identical smooth and white colonies after
10 days of incubation. However, colony senescence assays revealed altered phenotypes
that were variable (Supplementary File S2) and highly complex mainly in the case of the
mycosis isolates. Colonies of the yeast isolates were found to be non-invasive on agar
regardless of medium type or temperature. The formation of mitochondrial petite mutants
was generally low, ranging from 0 to 1.22% of colonies, without significant differences
among isolate groups (Supplementary File S2). None of the isolates sporulated either
at 25 ◦C or at 37 ◦C, but MAT locus typing confirm that all of them were homothallic
(Supplementary File S1). All samples were furthermore non-killer and sensitive to killer
toxins (type 1 and 2), and flocculation was absent. Growth of the isolates assessed by the
spot-plate method was identical for all samples at 37 ◦C and at 39 ◦C, while at 42 ◦C, the
commercial PY0001 and PY0002 isolates showed more intense growth than other samples,
whereas the isolate 2251/2018 was unable to grow (Supplementary File S2).

3.3. Virulence Factors and Pathogenicity of Commercial, Non-Mycosis, and Mycosis Isolates of
S. ‘boulardii’

To investigate virulence factor production of the isolates, we performed a series of
assays established in clinical mycology research. We measured extracellular aspartate
protease, lipase, and hemolytic activities (Figure 1). Phenotypic clustering separated the
samples into two main groups, one having generally lower protease or β-hemolysis and
higher phospholipase production, and one group with the opposite trends (Figure 1a).
However, by examining these virulence factors separately, we found statistically significant
differences between the groups. Tukey HSD test revealed significant difference between
the commercial and the non-mycosis clinical isolates (p < 0.05) showing lower Prz (protease
zone) values, thus higher protease production in the case of isolates that did not cause
fungemia in the patients (Figure 1a). In case of the lipase production the mean of the
measured Pz-values (phospholipase zone) was significantly higher (p < 0.01) in the case of
the non-mycosis isolates, meaning that this group had the lowest lipase-producing ability
(Figure 1b). The groups did not show significant difference in α-hemolysis, but the mycosis
causing strains showed significantly higher (p < 0.01) β-hemolytic activity compared with
the commercial and the non-mycosis clinical isolates (Figure 1c, Table 2, Supplementary
File S2).
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Table 2. Statistical comparison of isolate groups for measurable phenotypes and for Galleria experimental infections. Statistical results for single-cell phenotyping are shown in
Supplementary File S3.

Biofilm
Formation on

Plastic Surface
Secreted Enzymatic Virulence Factors Hemolytic Index, 37 ◦C Galleria Larva Survival

YPD
Liquid, 37 ◦C, 3 d

Phospholipase
Secretion,

Pz Value, 37 ◦C

Aspartate Protease
Secretion,

Prz Value, 37 ◦C
α-Hemolysis, 1 d α-Hemolysis, 2 d β-Hemolysis, 2 d β-Hemolysis, 3 d

p Value Log-Rank Test

ANOVA p Value 0.53792 <0.0001 0.00577 0.03899 0.36651 0.91412 0.00182

Commercial vs.
Mycosis (Tukey HSD) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) C > M (p < 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) C < M (p < 0.01) Commercial vs.

Mycosis 0.30283

Commercial vs.
Non-mycosis
(Tukey HSD)

n.s. (p ≥ 0.05) C < NM (p < 0.01) C > NM (p < 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) Commercial vs.
Non-mycosis <0.0001

Mycosis vs.
Non-mycosis
(Tukey HSD)

n.s. (p ≥ 0.05) M < NM (p < 0.01) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) n.s. (p ≥ 0.05) M > NM (p < 0.01) Mycosis vs.
Non-mycosis <0.0001
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3.4. Cell Morphology and Pseudohypha Formation, Adhesion

Phenotypic clustering of high throughput morphological data identified three groups
of the isolates (Figure 2a) that mostly corresponded to the differences observed in traits
most important for PC1 (responsible for 35.8% of total variance) in the principal component
analysis (Figure 2b–d). The main traits contributing to PC1 were in relation to cell and
bud size and roundness, those contributing to PC2 (responsible for 13.8% of total variance)
were mostly related to nucleus dimensions (Figure 2b–d, Supplementary File S3). A single
non-mycosis isolate, 2251/2018 was notably different from the rest of the yeast samples,
with smaller, round cells but relatively large nucleus (Figure 2, Supplementary File S3). The
non-mycosis isolates DE3912 and 551/2018 were characterized by larger, more elongated
cells, the rest of the samples (all commercial, all mycosis, and the remaining non-mycosis
yeasts) had values that placed them between these two morphological groups. None
of the measured 149 traits showed significant differences when the yeast groups accord-
ing to isolation source (commercial, mycosis and non-mycosis isolates) were compared
(Supplementary File S3).

Pseudohyphal growth was observed to be medium-dependent (Supplementary File S2),
and high-throughput analysis of pseudohyphae/aggregates identified a group with ele-
vated (all commercial and mycosis isolates, and the non-mycosis 551/2018 isolate), one
with medium (other non-mycosis isolates), and one with low pseudohypha formation. The
latter group contained a single isolate, the above mentioned 2251/2018 (Supplementary
File S3).

Adhesion to plastic surfaces was negligible in the case of all studied yeast, without
significant differences among groups (Supplementary File S2).

3.5. Antifungal Susceptibility

Antifungal susceptibility testing showed higher caspofungin MIC values for the
commercial yeasts when compared with the non-mycosis isolates. MIC values grouped the
isolates into two clusters (Supplementary File S2). Values for Amphotericin B ranged from
0.125 to 0.25 µg/mL (the higher value was true for all but one isolate, namely PY0003).
Values for fluconazole ranged from 2 to 8 µg/mL (half of the isolates showing 8 µg/mL),
while caspofungin values were either 0.25 or 0.5.

3.6. Epithelial Interactions (Adhesion, Damage, Transmigration)

To investigate the adhesion and damage causing ability of the isolates to the intestinal
epithelium, and the ability to cross through the epithelial barrier, the Caco-2 epithelium
model was used. None of the yeast isolates adhered to the epithelial model and none
of them caused damaged to it to an extent of more than 17% as measured with MTT
assay (Figure 3a,b, Supplementary File S4). Transmission through the epithelium was
not observable in the S. ‘boulardii’ isolates, except from the non-mycosis isolates DE3912
and 551/2018, which could pass through the epithelium layer after four and six days,
respectively (Figure 3c, Supplementary File S4). Biofilm formation was not observable even
after six days of incubation during this experiment. The observable morphology in DMEM
was mostly yeast and short pseudohyphae. In contrast to S. ‘boulardii’, C. albicans, used as a
positive control, showed adhesion, damage, and rapid transmigration with hyphal growth
in this model, as shown in Figure 3.



J. Fungi 2021, 7, 746 17 of 29
J. Fungi 2021, 7, 746 16 of 29 
 

 
 

Figure 2. Evaluation of high-throughput single-cell phenotyping data. (a) Phenotypic clustering of measured traits, with
unit variance scaling applied to rows. Rows are clustered using correlation distance and average linkage. Columns are
clustered using Euclidean distance and average linkage. Trait groups according to cell cycle are explained in the form of
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schematic figures on top. Traits that were chosen to represent the first six principal components (PCs) are marked with
arrows colored according to PC as in panel b. (b) Percentage of total variance explained by each PC, the six main PCs are
colored as in panel a. (c) Results of principal component analysis, the six most important PCs are shown in pairwise plots.
Isolates are colored according to isolate group. (d) PC loading plots in pairwise manner for the six most important PCs,
with two representative traits highlighted (as in panel a). (e) Traits representing the six most important PCs (two traits for
each PC, as in panels a and d). The means of measurements (bars) and individual measurements (dots) are shown for each
isolate. Isolates are colored according to isolate group (commercial, mycosis, non-mycosis). Each trait is explained in the
form of schematic figures where the measured feature is highlighted in red [C11-1: mother cell area. D185: total length of
segment connecting the respective point on the outline of the mother cell intersected by the line connecting the mother cell
nucleus center with the midpoint of the neck and the segment connecting the midpoint of the neck to the analogous point
in the bud. D14-1: mother cell nucleus area. D179: nuclear minimum radius in mother. D141: distance between nuclear
brightest point in mother and mother hip. D125: distance between nuclear gravity center in mother and mother hip. D113:
distance between nuclear gravity center in bud and middle point of neck divided by long axis length in bud. D114: distance
between nuclear gravity center and middle point of neck divided by distance between middle point of neck and mother hip.
C107: long axis length in bud. C12-2: bud outline length. D182: ratio of mother nuclear long axis and nuclear minimum
radius. D17-1: elliptical approximation of mother nucleus].
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Figure 3. Interactions with epithelial model: adherence, damage, and transmigration. Inset pictures depict short explana-
tions of the yeast-epithelium interactions (yeast cell sizes are exaggerated for better viewability). Individual data points are
shown, colors represent yeast groups. Horizontal lines represent mean. (a) Adherence assay. Adherent yeast cells observed
on Caco-2 epithelial model per mm2. (b) Damage assay. Caco-2 epithelial model relative viability (in %) after co-incubation
with yeasts, based on MTT-assay. (c) Transwell assay. CFU/mL values in lower compartment of the Transwell plates are
shown after co-incubating yeasts in the upper compartment with Caco-2 epithelial model on Transwell inserts for 144 h.

3.7. Immunological Interactions

Donor-dependent significant differences were not observed in the phagocytic activity
of moDCs (Figure 4a), and, similarly, the commercial and mycosis groups did not differ
significantly when phagocytic activity was compared (Table 3, Supplementary File S5).
After co-incubation with yeast cells, we measured the amount of change of different cell
surface molecules of DCs: costimulatory proteins (CD40, CD80, and CD86), the CD83
maturation marker, and the HLA-DQ antigen-presenting protein (Figure 4b). Fold changes
in fluorescence (fold changes in percentage of positive DCs in the case of CD83) were
compared to investigate the donor dependence effect, and we also compared the two
groups of commercial and mycosis causing isolates. Except for HLA-DQ we found that the
DCs from the different donors reacted variously when they were co-incubated with the
yeast isolates, indicating that changes in the amount of cell surface molecules were highly
dependent on the donor (Table 3, Figure 4b, Supplementary File S6). In addition, we did
not find significant fold change differences between the commercial and mycosis causing
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isolates in any of the DC surface markers. Similarly, we determined the concentration
changes of proinflammatory cytokines (IL-6, IL-12, IL-1β, TNFα) and IL-8 chemokine in the
supernatant of the cells (Figure 4c). We found that the results were significantly different
between the DCs obtained from individual donors, while significant differences were
not found when comparing the commercial and mycosis groups (Table 3, Supplementary
File S6). Tests of T-cell activation and polarization revealed not merely donor-dependent
differences, but also significantly (two-sample t-test, p < 0.05) higher induction of IL-17
production by the mycosis isolates when compared with commercial ones (Figure 4d).
Overall, phenotypic clustering of isolates based on all immunological interactions (applied
to donor means, Figure 4e) clearly differentiated the C. albicans control from S. ‘boulardii’
and formed two clusters within the latter. The cluster with generally higher immune
activation contained two commercial and the two mycosis isolates (Figure 4e).
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markers. Fold changes in fluorescence are depicted for moDC markers, except for CD83, where fold change in the percentage
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Table 3. Statistical comparison of isolate groups and donors for DC and T-cell activation, along with DC phagocytosis.

Trait Phagocytosis
CD40
(Costi

mulatory)

CD80
(Costi

mulatory)

CD86
(Costi

mulatory)

CD83
(Maturation

Marker)

HLA- DQ
(Antigen-

Presenting)

IL-6
(Proinflam

matory)

IL-8
(Chemokine)

TNFα
(Proinflam

matory)

IL-12
(Proinflam

matory)

IL-1β
(Proinflam

matory)

IL-17
(Proinflam

matory)

IFN-γ
(Proinflam
matory)

Donor-
dependence

ANOV
A/T-test
p-value

0.10721 <0.00010 <0.0001 <0.0001 <0.0001 0.54060 <0.0001 <0.0001 <0.0001 0.07714
(T-test) <0.0001 <0.0001 0.00026

(T-test)

Tukey
HSD/T-test

none

D1 < D3
(p < 0.01)

D1 < D3
(p < 0.01)

D1 < D2
(p < 0.01) D1 > D2

none

D1 > D3 D1 > D2
(p < 0.05)

D1 > D3
(p < 0.01)

none
(T-test)

D1 > D2
(p < 0.01)

D1 < D2
(p < 0.01)

D3 > D4
(T-test)

D2 < D3
(p < 0.01)

D1 < D4
(p < 0.01)

D1 < D3
(p < 0.01)

D1 < D3
(p < 0.0)

D2 > D3
(p < 0.0)

D1 > D3
(p < 0.01)

D1 > D4
(p < 0.01)

D1 > D4
(p < 0.01)

D1 > D4
(p < 0.01)

D3 > D4
(p < 0.01)

D2 < D3
(p < 0.01)

D1 < D4
(p < 0.01) D1 > D4 D3 < D 4 D1 > D4

(p < 0.01)
D2 > D3
(p < 0.01)

D2 > D4
(p < 0.01)

D2 > D4
(p < 0.01)

D2 < D4
(p < 0.01)

D2 < D3
(p < 0.01) D2 < D3 D2 > D3

(p < 0.01)
D2 > D4
(p < 0.01)

D3 > D4
(p < 0.01)

D2 < D4
(p < 0.01)

D2 > D4
(p < 0.0)

D3 < D4
(p < 0.01)

D3 > D4
(p < 0.01) D3 > D4

Commercial
vs.

Mycosis
T-test 0.64298 0.87434 1.0000 0.98422 0.70758 0.56780 0.88993 0.65003 0.54811 0.31408 0.89588 0.03792

(C < M) 0.11320
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3.8. Galleria Infections

Using the G. mellonella larva model, we compared the pathogenicity of all 14 isolates
and the three isolate groups (commercial, non-mycosis, and mycosis) in this study, along
with PBS and pathogenic C. albicans controls. The non-mycosis isolate group was altogether
significantly less pathogenic than the mycosis or commercial group (Figure 5, Table 2)
and within-group comparisons uncovered significant differences only in two cases, both
involving the non-mycosis isolate 2251/2018 that was characterized by very high larval
survival (Supplementary File S8).
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4. Discussion

The existence of probiotic yeast derived infections prompted us to study virulence fac-
tors and host–microbe interactions following the methodology suggested by Anoop et al. [21].
Specifically, we measured classic virulence factors (phospholipase secretion, aspartate pro-
tease secretion, and hemolytic activity), thermotolerance, immune activation, adhesion to
and interactions with the intestinal epithelium. We investigated additional phenotypic
factors as well and used Galleria melonella larvae as animal model to investigate pathogenic-
ity. Our experiments aimed to find potential phenotypic adaptations of S. ‘boulardii’ in the
human host that could be linked to increased survival, virulence, and overall, a pathogenic
lifestyle. The phenotypic characteristics of this yeast and its interactions with cultured
human epithelial or immune cells, pathogenic bacteria and yeasts, and with laboratory
animals have been extensively studied. Its occasional pathogenicity in humans has been
described by dozens of reports. But to our best knowledge, no studies have been conducted
with the aim to characterize not just the strain or product itself, but also to compare it
with isolates that potentially have evolved inside the human host (apart from our earlier
study characterizing a single isolate [34]). Previous works have shown that the phenotypic
characteristics of fungi do not merely determine their ability to colonize and invade a host
but are also subjected to intense selection in the often hostile environment of the host’s
various anatomical niches e.g., [53,54]. In particular, very few studies have been conducted
on S. cerevisiae isolates [34,55,56], while most other works focused on other genera.

In our study, both the commercial and the clinical isolates originated from a single
geographic region, east Hungary. All samples were void of extensive subculturing to
prevent accumulation of mutations and genome structure variations during lab propaga-
tion. Furthermore, as clonal heterogeneity even in single batches of commercial yeasts
may be prevalent [35], we used two different subclone isolates of each of the probiotic
yeast products available in the country. Detailed patient and isolation data enabled us to
compare non-mycosis and mycosis clinical samples as well.
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Although the 14 isolates showed variability in phenotypic features (Supplementary
File S2 and S3), in most cases, the commercial, the non-mycosis, and mycosis samples
showed no difference in virulence factors (Figure 1, Table 2), adhesion to plastic, or in
pseudohypha formation that are thought to be important in the steps of infection. Ther-
motolerance was highest for two commercial isolates. Notably, a single isolate (from the
non-mycosis group), 2251/2018 was found to be distinct from the rest of the studied yeasts,
showing altered cell morphology (smaller. more round cells with larger nucleus), low
pseudohypha formation, and lower thermotolerance. Interestingly this isolate showed
the lowest pathogenicity in the larva model, being significantly less pathogenic than nine
other isolates. These observations point to decreased pathogenicity when compared to
other human isolates, but notably also when compared to product isolates. This might
indicate maladaptive traits or traits evolving towards a commensal lifestyle, but due to a
lack of prolonged tracking of the gut microbiomes of the patients in this study, this question
cannot be decided (compare with [34]).

Aspartate protease and lipase production as well as hemolytic activity are well known
extracellular virulence factors in case of the opportunistic pathogen Candida species [57],
yet, in our study, mycosis isolates did not show higher activities in most factors, only in
β-hemolysis after 3 days. In the case of α-hemolysis measured after 1 day, the commer-
cial isolates showed higher activity. Commercial isolates produced more phospholipase
than the non-mycosis isolates, and the latter were more active in extracellular protease
production (Table 2).

Antimycotic resistance assays showed high uniformity among the samples regarding
amphotericin B and caspofungin susceptibility. For the former substance, the CLSI MIC
Breakpoints for Candida species’ resistance are above 1 µg/mL, a value four times higher
than the highest measured for our isolates. Caspofungin breakpoints for Candida species
are highly variable, preventing us from comparing them with those of the Saccharomyces
determined here. In the case of fluconazole, for most Candida species, resistant isolates
have MIC values≥8 µg/mL. This was reached by seven Saccharomyces isolates in our study,
including both haemoculture samples.

In earlier studies with the Caco-2 epithelial model, it was shown that neither com-
mercial nor clinical S. cerevisiae isolates could cross the epithelial barrier in vitro in 48 h,
including an S. ‘boulardii’ probiotic sample [23,27]. An additional report found low levels
of traversal across the human endothelial barrier under similar in vitro conditions but did
not use S. ‘boulardii’ samples [58]. It must be noted that Klingberg et al. [23] proposed a link
between the measured increase of trans-epithelial electric resistance (TEER) of polarized
Caco-2 monolayers following exposure to S. cerevisiae strains during transmigration ex-
periments and the strengthening of the epithelial barrier function, a potentially significant
probiotic trait. However, our observations during the same type of experiments point to the
fact that this is simply due to the accumulating but non-adherent yeast cell mass covering
the epithelial model, which is easily disturbed during medium change and therefore cannot
be linked to any effects (whether pathogenic or beneficial) on an in vivo gut epithelium.
The isolates tested in our study showed negligible pathogenic interactions with the epithe-
lium overall (Figure 3). However, interestingly, the only two isolates (DE3912, 551/2018 of
the non-mycosis group) capable of crossing the epithelium in 5–6 days were the ones that
showed markedly different, larger cells in single-cell phenotyping measurements. The po-
tential relevance of this to pathogenicity is, however, hard to evaluate as the co-incubation
was substantially prolonged before the transmigration was observed.

On the other hand, pathogenicity in the larva model showed, surprisingly, that the
highest lethality was among larvae inoculated with the probiotic products, and not with
the clinical samples (Figure 2, Supplementary File S8).

Altogether, when PCA and phenotypic clustering were used to form phenotypically
similar groups within the 14 isolates in this study (Figure 6), most groups contained
commercial and clinical (mycosis and/or non-mycosis) isolates as well, there was no clear
distinction based on origin. These results are summarized in Figure 6.
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entry of yeast probiotic—besides the normal oral route—into the human body is possible 
through air [64,65], or from person to person [66]. Development of fungemia is possible 
due to catheter usage [65], intentional injection [67], and a case suggests that it is possible 
through other injuries in the gut resulting from gastrointestinal surgery [68]. Immunosup-
pressive treatments and conditions also predispose someone to fungal infections and its 
combination with the above-mentioned scenarios increase the risk of fungemia. Thus, 
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non-mycosis) numbered according to Table 1, grouped into distinct categories based on simple comparisons, PCA, and
phenotypic clustering.

Regarding interactions with in vitro differentiated primary human dendritic cells and
T-cells, the yeast isolates tested in our study displayed relatively small variation in their
ability to elicit immune response or in the extent to which they were phagocytized by DCs,
while donor-dependent differences in DC and T-cell activation were more pronounced,
similar to our previous study with various S. cerevisiae clinical isolates [34] (Table 3, Figure 3,
Supplementary Files S5–S7). Interactions with these actors of the innate and adaptive
immune system are important not solely on the basis of the immune system’s role during
a potential infection stemming from probiotic products, but also based on the fact that
the yeast probiotic products themselves are known to exert their beneficial effects on the
host by modulating the immune system. For example, anti-inflammatory properties are
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thought to be important in the case of S. ‘boulardii’ as several studies have reported a
reduction of intestinal inflammation through the modulation of DC function by these
yeasts [59–61]. Yeast species are very much variable in their capacity to elicit inflammatory
or pro-inflammatory responses from the (gut) immune system, even down to a strain-
specific manner [34,61,62]. Immunogenicity of various yeasts correlate with the cell wall
composition of strains [62] and it is unclear how immune modulation capability may
change during commensal–pathogen transition in fungi. Differential recognition of specific
cell wall mannan structures is crucial in the discrimination between harmful (e.g., C.
albicans) and harmless yeasts (e.g., as generally recognized, S. ‘boulardii’) [63]. Evolving
a pathogenic lifestyle from a commensal or probiotic strain, while retaining phenotypic
characteristics that enables recognition as ‘harmless’ by the immune system is arguably an
efficient evolutionary strategy, and this may be the case for the fungemia isolates in this
study. In contrast with the other factors tested here, however, the Th-17 cell polarization
found in the case of the two mycosis isolates may point to more inflammatory properties
than that of the product isolates.

An intriguing finding of our study is that probiotic isolates that cause mycosis did not
show such phenotypic traits that would enable them to actively invade the vascular system.
Thus, the mechanism of entering the bloodstream and thereby causing systemic infection
by probiotic isolates is still unclear. Nevertheless, previous studies have already proposed
several possibilities in this regard. For example, it has been demonstrated that entry of
yeast probiotic—besides the normal oral route—into the human body is possible through
air [64,65], or from person to person [66]. Development of fungemia is possible due to
catheter usage [65], intentional injection [67], and a case suggests that it is possible through
other injuries in the gut resulting from gastrointestinal surgery [68]. Immunosuppressive
treatments and conditions also predispose someone to fungal infections and its combination
with the above-mentioned scenarios increase the risk of fungemia. Thus, yeast probiotics
are contraindicated for patients with such serious health conditions. Despite these findings,
in many cases these products are administered intentionally or unintentionally to patients
with severe health conditions [14,15]. For instance, S. ‘boulardii’ probiotics are applied most
of the time in the presence of gastrointestinal dysbiosis, a condition that itself carries a risk
of impaired barrier function embedding for additional infections [69–71]. The notion that
yeast probiotic products may be hazardous in specific instances has already led one hospital
to recently remove S. ‘boulardii’ probiotic products from its pharmacy [17]. These and our
results presented here thus support the idea that the entry of yeast probiotics into the
bloodstream is not due to active mechanisms of the yeast itself but depends on the actual
condition of the body. Survival and reproduction of these probiotic yeast strains in the
bloodstream or in other niches in the human body might be attributed to several factors in
the yeast. Future works should elucidate the exact molecular mechanisms underlying this
phenotypic change during the transition from being a probiotic product/commensal yeast
to having a pathogenic lifestyle. The differences in product, commensal (non-mycosis),
and mycosis isolates in phenotypic characteristics, immune interactions, and other aspects
tested in this study are summarized in Figure 7.
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described for each group-level comparison.

5. Conclusions

Selection in the host may result in population bottlenecks for probiotic and infectious
yeast and novel geno- and phenotypes may emerge during in-host microevolution. We
analyzed the phenotypic changes, changes in interactions with the epithelium, and dif-
ferences in immune activation using 14 S. ‘boulardii’ isolates. Four of these were product
isolates, while ten were clinical samples already subjected to in-host selection. We found
that in both groups (commercial and clinical), individual yeast isolates may show different
phenotypes, but clear differentiation between commercial and clinical, or clinical mycosis
and clinical non-mycosis samples is not apparent. This shows that S. ‘boulardii’, a popular
probiotic microbe investigated by hundreds of studies for its effects on health, described as
a potential pathogen by many dozen studies, and regularly taken by millions of people, can
infect or survive in the human host for extended time periods without evolving characteris-
tics that earlier studies aimed to link with pathogenicity. In other words, currently screened
virulence factors fail to differentiate among virulent mycosis isolates, isolates virulent in
animal models, and the isolates from generally regarded as safe probiotic products that
have not yet been subjected to in-host selection in the first place. The resistance to an
antifungal agent (fluconazole) in probiotic products is also noteworthy.

Given the results reported in the present and previous studies, the use of yeast
products should be regulated and controlled more carefully in the future. In addition,
further research should be conducted to explore the properties of yeast that allow it to
survive in the various niches of the human body, but with a greater emphasis on the use of
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animal models instead of measuring virulence factors established mainly in, and applied
from, the Candida literature.
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57. Mroczyńska, M.; Brillowska-Dąbrowska, A. Virulence of clinical Candida isolates. Pathogens 2021, 10, 466. [CrossRef]
58. Pérez-Torrado, R.; Querol, A. Saccharomyces cerevisiae show low levels of traversal across the human blood brain barrier in vitro.

F1000Research 2017, 6, 944. [CrossRef]
59. Czerucka, D.; Rampal, P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections.

World J. Gastroenterol. 2019, 25, 2188–2203. [CrossRef]

http://doi.org/10.1016/j.ijfoodmicro.2010.10.025
http://doi.org/10.1371/journal.pone.0098094
http://www.ncbi.nlm.nih.gov/pubmed/24879417
http://doi.org/10.1002/mnfr.201601099
http://doi.org/10.1002/yea.3562
http://www.ncbi.nlm.nih.gov/pubmed/33844327
http://www.ncbi.nlm.nih.gov/pubmed/16118419
http://doi.org/10.1093/molbev/msy096
http://doi.org/10.1016/j.ijfoodmicro.2010.03.024
http://doi.org/10.1016/0168-9525(90)90190-h
http://doi.org/10.1128/JCM.39.8.2971-2974.2001
http://doi.org/10.1002/yea.1183
http://doi.org/10.1073/pnas.0509436102
http://doi.org/10.1101/pdb.prot078667
http://www.ncbi.nlm.nih.gov/pubmed/25834262
http://doi.org/10.15252/msb.20145264
http://doi.org/10.1099/mic.0.000383
http://doi.org/10.3390/molecules23071827
http://doi.org/10.4161/viru.1.6.12985
http://www.ncbi.nlm.nih.gov/pubmed/21178491
http://vassarstats.net/index.html
https://www.R-project.org/
http://doi.org/10.1093/nar/gkv468
http://www.ncbi.nlm.nih.gov/pubmed/25969447
https://www.statskingdom.com/350kaplan_meier.html
http://doi.org/10.1038/s41598-019-38768-4
http://doi.org/10.1534/genetics.118.301019
http://doi.org/10.1534/g3.117.300245
http://doi.org/10.1111/j.0014-3820.2005.tb01001.x
http://doi.org/10.3390/pathogens10040466
http://doi.org/10.12688/f1000research.11782.1
http://doi.org/10.3748/wjg.v25.i18.2188


J. Fungi 2021, 7, 746 29 of 29

60. Stier, H.; Bischoff, S.C. Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin. Exp.
Gastroenterol. 2016, 9, 269–279. [CrossRef]

61. Smith, I.M.; Christensen, J.E.; Arneborg, N.; Jespersen, L. Yeast modulation of human dendritic cell cytokine secretion: An in vitro
study. PLoS ONE 2014, 9, 12–14.

62. Di Paola, M.; Rizzetto, L.; Stefanini, I.; Vitali, F.; Massi-Benedetti, C.; Tocci, N.; Romani, L.; Ramazzotti, M.; Lionetti, P.; De Filippo,
C.; et al. Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients
and their interactions with the gut microbiome. J. Transl. Autoimmun. 2020, 3, 100036. [CrossRef] [PubMed]

63. Rizetto, L.; Kuka, M.; De Filippo, C.; Cambi, A.; Netea, M.G.; Beltrame, L.; Napolitani, G.; Torcia, M.G.; D’Oro, U.; Cavalieri, D.
Differential IL-17 production and mannan recognition contribute to fungal pathogenicity and commensalism. J. Immunol. 2010,
184, 4258–4268. [CrossRef]

64. Kelesidis, T.; Pothoulakis, C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of
gastrointestinal disorders. Therap. Adv. Gastroenterol. 2012, 5, 111–125. [CrossRef] [PubMed]

65. Hennequin, C.; Kauffmann-Lacroix, C.; Jobert, A.; Viard, J.P.; Ricour, C.; Jacquemin, J.L.; Berche, P. Possible role of catheters in
Saccharomyces boulardii fungemia. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 16–20. [CrossRef]

66. Cassone, M.; Serra, P.; Mondello, F.; Girolamo, A.; Scafetti, S.; Pistella, E.; Venditti, M. Outbreak of Saccharomyces cerevisiae Subtype
boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J. Clin. Microbiol. 2003, 41,
5340–5343. [CrossRef]

67. Cohen, L.; Ranque, S.; Raoult, D. Saccharomyces cerevisiae boulardii transient fungemia after intravenous self-inoculation. Med.
Mycol. Case Rep. 2013, 2, 63–64. [CrossRef] [PubMed]

68. Fadhel, M.; Patel, S.; Liu, E.; Levitt, M.; Asif, A. Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis
and long term probiotic use. Med. Mycol. Case Rep. 2019, 23, 23–25. [CrossRef]

69. Dauby, N. Risks of Saccharomyces boulardii-containing probiotics for the prevention of Clostridium difficile Infection in the elderly.
Gastroenterology 2017, 153, 1450–1451. [CrossRef] [PubMed]

70. Ragonnaud, E.; Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing. 2021, 18, 2.
[CrossRef] [PubMed]

71. Santino, I.; Alari, A.; Bono, S.; Teti, E.; Marangi, M.; Bernardini, A.; Magrini, L.; Di Somma, S.; Teggi, A. Saccharomyces cerevisiae
fungemia, a possible consequence of the treatment of Clostridium difficile colitis with a probioticum. Int. J. Immunopathol. Pharmacol.
2014, 27, 143–146. [CrossRef]

http://doi.org/10.2147/CEG.S111003
http://doi.org/10.1016/j.jtauto.2020.100036
http://www.ncbi.nlm.nih.gov/pubmed/32743520
http://doi.org/10.4049/jimmunol.0902972
http://doi.org/10.1177/1756283X11428502
http://www.ncbi.nlm.nih.gov/pubmed/22423260
http://doi.org/10.1007/s100960050003
http://doi.org/10.1128/JCM.41.11.5340-5343.2003
http://doi.org/10.1016/j.mmcr.2013.02.003
http://www.ncbi.nlm.nih.gov/pubmed/24432219
http://doi.org/10.1016/j.mmcr.2018.11.003
http://doi.org/10.1053/j.gastro.2017.04.054
http://www.ncbi.nlm.nih.gov/pubmed/28988917
http://doi.org/10.1186/s12979-020-00213-w
http://www.ncbi.nlm.nih.gov/pubmed/33397404
http://doi.org/10.1177/039463201402700120

	Introduction 
	Materials and Methods 
	Isolates and Patient Data 
	Genotyping 
	Phenotyping 
	Immune Tests 
	Human Epithelium Model Interactions 
	Galleria Mellonella Larva Infection Model 
	Statistics and Data Visualization 

	Results 
	S. ‘boulardii’ Isolates 
	Phenotypic Differences among Commercial, Non-Mycosis, and Mycosis Isolates of S. ‘boulardii’ 
	Virulence Factors and Pathogenicity of Commercial, Non-Mycosis, and Mycosis Isolates of S. ‘boulardii’ 
	Cell Morphology and Pseudohypha Formation, Adhesion 
	Antifungal Susceptibility 
	Epithelial Interactions (Adhesion, Damage, Transmigration) 
	Immunological Interactions 
	Galleria Infections 

	Discussion 
	Conclusions 
	References

