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A solution to some problems of Conway and Guy on monostable
polyhedra
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Dedicated to the memories of J.H. Conway and R.K. Guy

Abstract

A convex polyhedron is called monostable if it can rest in stable position only on one of its
faces. The aim of this paper is to investigate three questions of Conway, regarding monostable
polyhedra, which first appeared in a 1969 paper of Goldberg and Guy. In this note we answer
two of these problems and make a conjecture about the third one. The main tool of our proof
is a general theorem describing approximations of smooth convex bodies by convex polyhedra
in terms of their static equilibrium points. As another application of this theorem, we prove the
existence of a convex polyhedron with only one stable and one unstable point.

1. Introduction

The study of static equilibrium points of convex bodies started with the work of Archimedes
[22], and has been continued throughout the history of science in various disciplines: from
geophysics and geology [16, 29] leading to examination of the possible existence of water on
Mars [30], to robotics and manufacturing [31, 4] to biology and medicine [1, 11, 17]. In modern
times, the mathematical aspects of this concept was started by a problem of Conway and Guy
[5] in 1966 who conjectured that there is no homogeneous tetrahedron which can stand in rest
only on one of its faces when placed on a horizontal plane, but there is a homogeneous convex
polyhedron with the same property. These two questions were answered by Goldberg and Guy
in [20] in 1969, respectively (for a more detailed proof of the first problem, see [7]), who called
the convex polyhedra satisfying this property monostable or unistable. In addition, in [20] Guy
presented some problems regarding monostable polyhedra, stating that three of them are due
to Conway (for similar statements in the literature, see e.g. [6, 8, 18]). These three questions
appear also in the problem collection of Croft, Falconer and Guy [6] as Problem B12. The aim
of our paper is to examine these problems.

Problem 1. Can a monostable polyhedron in the Euclidean 3-space R3 have an n-fold
axis of symmetry for n > 2?

Before the next problem, recall that the girth of a convex body in R3 is the minimum
perimeter of an orthogonal projection of the body onto a plane [18].
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Problem 2. What is the smallest possible ratio of diameter to girth for a monostable
polyhedron?

Problem 3. What is the set of convex bodies uniformly approximable by monostable
polyhedra, and does this contain the sphere?

It is worth noting that, according to Guy [20], Conway showed that no body of revolution
can be monostable, and also that the polyhedron constructed in [20] has a 2-fold rotational
symmetry. Problems 1-3 appear also in the problem collection of Klamkin [25], and Problem 1
and some other problems for monostable polyhedra appear in a 1968 collection of geometry
problems of Shephard [28], who described these objects as ‘a remarkable class of convex
polyhedra’ whose properties ‘it would probably be very rewarding and interesting to make
a study of’.

Before stating our main result, we collect some related results and problems from the
literature. Here, we should first mention from [20] the problem of finding the minimal dimension
d in which a d-simplex can be monostable. This problem have been investigated by Dawson
et al. [7, 10, 9, 8], who proved that there is no monostable d-simplex if d ≤ 8 and there is
a monostable 11-simplex. With regard to Problem XVI in [28], asking about the minimum
number of faces of a monostable polyhedron in R3, the original construction of Guy [20]
with 19 faces (attributed also to Conway) was modified by Bezdek [3] to obtain a monostable
polyhedron with 18 faces, while a computer-aided search by Reshetov [26] yields a monostable
polyhedron with 14 faces. In [23], Heppes constructed a homogeneous tetrahedron in R3 with
the property that putting it on a horizontal plane with a suitable face, it rolls twice before
finding a stable position. Another interesting convex body is found by Dumitrescu and Tóth
[18], who constructed a convex polyhedron P with the property that after placing it on a
horizontal plane with a suitable face, it covers an arbitrarily large distance while rolling until it
finds a stable position. Finally, we remark that a systematic study of the equilibrium properties
of convex polyhedra was started in [13].

Our main result is the following, where dH(·, ·) and B3 denotes the Hausdorff distance of
convex bodies, and the closed unit ball in R3 centered at the origin o, respectively.

Theorem 1. For any n ≥ 3, n ∈ Z and ε > 0 there is a homogeneous monostable
polyhedron P such that P has an n-fold rotational symmetry and dH(P,B3) < ε.

Theorem 1 answers Problem 1, and also the case of a sphere in Problem 3. In addition, from
it we may deduce Corollary 1 (for a lower bound without proof, see also [18]). This solves
Problem 2. Here, for any convex body K ⊂ R3, we denote by diam(K) and g(K) the diameter
and the girth of K, respectively.

Corollary 1. The infimum of the quantities diam(P )
g(P ) over the family of all monostable

polyhedra P is 1
π .

The proof of Theorem 1 is based on a general theorem on approximation of smooth convex
bodies by convex polytopes. Before stating it, we briefly introduce some elementary concepts
regarding their equilibrium properties. Let K ⊂ R3 be a smooth convex body with the origin as
its center of mass, and let δK : bd(K)→ R be the Euclidean distance function measured from o,
where bd(K) denotes the boundary of K. The critical points of δK are called equilibrium points
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of K. To avoid degeneracy, it is usually assumed that δK is a Morse function; i.e. it has finitely
many critical points, bd(K) is twice continuously differentiable at least in a neighborhood of
each critical point, and at each such point the Hessian of δK is nondegenerate [35]. Depending
on the number of negative eigenvalues of the Hessian, we distinguish between stable, unstable
and saddle-type equilibrium points, corresponding to the local minima, maxima and saddle
points of δK , respectively. The Poincaré-Hopf Theorem implies that under these conditions,
the numbers S, U and H of the stable, unstable and saddle points of K, respectively, satisfy
the equation S −H + U = 2.

Answering a conjecture of Arnold, Domokos and Várkonyi [32] proved that there is a
homogeneous convex body with only one stable and one unstable point. They called the body
they constructed ‘Gömböc’ (for more information, see [21]). In addition to the existence of
Gömböc, in their paper [32] Domokos and Várkonyi proved the existence of a convex body with
S stable and U unstable equilibrium points for any S,U ≥ 1. This investigation was extended
in [15] to the combinatorial equivalence classes defined by the Morse-Smale complexes of ρK ,
and in [12] for transitions between these classes. Based on these results, for any S,U ≥ 1 we
define the set (S,U)c as the family of smooth convex bodies K having S stable and U unstable
equilibrium points, where K has no degenerate equilibrium point, and at each such point
bd(K) has a positive Gaussian curvature. We define the class (S,U)p analogously for convex
polyhedra, where stable and unstable points of a convex polyhedron are defined formally in
Section 2. Our theorem is the following, where we call a convex body centered if its center of
mass is the origin o.

Theorem 2. Let ε > 0, S,U ≥ 1 be arbitrary, and let G be any subgroup of the orthogonal
group O(3). Then for any centered, G-invariant convex body K ∈ (S,U)c, there is a centered
G-invariant convex polyhedron P ∈ (S,U)p such that dH(K,P ) < ε.

Here we note that the fact that any nondegenerate convex polyhedron can be approximated
arbitrarily well by a smooth convex body with the same number of equilibrium points is
regarded as ‘folklore’ (we use a simple argument to show it in Section 2). On the other hand,
it is shown in [14] that any sufficiently fine approximation of a smooth convex body K by a
convex polyhedron P , using an equidistant partition of the parameter range of the boundary
of K, has strictly more stable, unstable and saddle points in general than the corresponding
quantities for K.

Even though the convex body constructed in [32] is not C2-class at its two equilibrium
points, in [15] it is shown that class (1, 1)c is not empty. Thus, Theorem 2 readily implies the
existence of a polyhedron in class (1, 1)p.

Corollary 2. There is a convex polyhedron with a unique stable and a unique unstable
point.

Furthermore, we remark that the elegant construction in the paper [18] of Dumitrescu and
Tóth yields an inhomogeneous monostable convex polyhedron arbitrarily close to a sphere.
Nevertheless, we must add that dropping the requirement of uniform density may significantly
change the equilibrium properties of a convex body. To show it we recall the construction
of Conway (see [8]) of an inhomogeneous monostable tetrahedron in R3, and observe that
spheres with inhomogeneous density, as also roly-poly toys, yield trivial solutions to Arnold’s
conjecture.

For completeness, we also recall the remarkable result of Zamfirescu [34] stating that a
typical convex body (in Baire category sense) has infinitely many equilibrium points, and note
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that critical points of the distance function from another point are examined in Riemannian
manifolds, e.g. in [2, 19, 24].

In Section 2, we introduce our notation and collect the necessary tools for proving Theorems 1
and 2, including more precise definitions for some of the concepts mentioned in Section 1. In
Section 3 we prove Theorem 1 and Corollary 1. In Section 4 we prove Theorem 2. Finally, in
Section 5 we collect some additional remarks and ask some open questions.

2. Preliminaries

In the paper, for any p, q ∈ R3, we denote by [p, q] the closed segment with endpoints p, q,
and by |p| the Euclidean norm of p. We denote the closed 3-dimensional unit ball centered at
the origin o by B3, and its boundary by S2. Furthermore, for any set S ⊂ R3 we let conv(S)
denote the convex hull of S. By a convex body we mean a compact, convex set with nonempty
interior.

Let K ⊂ R3 be a convex body. The center of mass c(K) of K is defined by the fraction
c(K) = 1

vol(K)

∫
x∈K x dv, where v denotes 3-dimensional Lebesgue measure. We remark that the

integral in this definition is called the first moment of K, and note that we clearly have c(K) ∈
int(K) for any convex body K. If q ∈ bd(K) satisfies the property that the plane through q
and orthogonal to the vector q − c(K) supports K, then we say that q is an equilibrium point
of K. Here, if K is smooth, then the equilibrium points of K coincide with the critical points
of the Euclidean distance function measured from c(K) and restricted to bd(K). We remark
that a convex body K ⊂ R3 is called smooth if for any boundary point x of K there is a unique
supporting plane of K at q; this property coincides with the property that bd(K) is a C1-class
submanifold of R3 (cf. [27]).

We define nondegenerate equilibrium points only in two special cases. If K is smooth, q ∈
bd(K) is an equilibrium point of K with a C2-class neighborhood in bd(K), and the Hessian
of the Euclidean distance function on bd(K), measured from c(K), is nondegenerate, we say
that q is nondegenerate. In this case q is called a stable, saddle-type or unstable point of K
if the number of the negative eigenvalues of the Hessian at q is 0, 1 or 2, respectively [15].
Consider now the case that K is a convex polyhedron in R3, and q ∈ bd(K) is an equilibrium
point of K. Then there is a unique vertex, edge or face of K that contains q in its relative
interior, where by the relative interior of a vertex we mean the vertex itself. Let F denote this
vertex, edge or face, and let H be the supporting plane of K through q that is perpendicular
to q − c(K). Observe that F ⊂ K ∩H. We say that q is nondegenerate if F = K ∩H. In this
case we call q a stable, saddle-type or unstable point of K if the dimension of F is 2, 1 or 0,
respectively [13]. In both the smooth and the polyhedral cases K is called nondegenerate if it
has only finitely many equilibrium points, and each such point is nondegenerate; note that the
first condition is automatically satisfied for convex polyhedra. We remark that in the above
definitions, we may replace the center of mass of K by any fixed reference point c ∈ K. In this
case we write about equilibrium points relative to c. We emphasize that in the paper, unless
it is stated otherwise, if the reference point is not specified, then it is meant to be the center
of mass of the body.

Let K ∈ R3 be a nondegenerate smooth convex body with S stable, H saddle-type and U
unstable equilibrium points. Using a standard convolution technique, we may assume that K
has a C∞-class boundary, and hence, by the Poincaré-Hopf Theorem, we have S −H + U = 2
[15]. We show that the same holds if K is a nondegenerate convex polyhedron. Indeed, let
τ > 0 be sufficiently small, and set K(τ) = (K ÷ (τB3)) + (τB3), where ÷ denotes Minkowski
difference and + denotes Minkowski addition [27]. Then for any τ > 0, K(τ) is a smooth
nondegenerate convex body having the same numbers of stable, saddle-type and unstable
points relative to c(K); hence, we may apply the Poincaré-Hopf Theorem for K(τ) (here we
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note that by Lemma 2 the same property holds relative to c(K(τ)) as well). Thus, for any
nondegenerate convex body, the numbers of stable and unstable points determine the number
of saddle-type points. We define class (S,U)c as the family of nondegenerate, smooth convex
bodies K ⊆ R3 with S stable, U unstable points with the additional assumption that at each
equilibrium point of K, the principal curvatures of bd(K) are positive. Similarly, by (S,U)p
we mean the family of nondegenerate convex polyhedra with S stable and U unstable points.
Observe that if K is nondegenerate, the point of bd(K) closest to or farthest from c(K) is
necessarily a stable or unstable point, respectively, implying that the numbers S,U in the
above symbol are necessarily positive.

For the following remark, see Lemma 7 from [15].

Remark 1. Let K ∈ (S,U)c and for any equilibrium point q of K, let Vq be an arbitrary
compact neighborhood of q containing no other equilibrium point of K. Then c(K) has an
open neighborhood U such that for any x ∈ U , K has S stable and U unstable points relative
to x, and for any equilibrium point q of K relative to c(K), Vq contains exactly one equilibrium
point of K relative to x, and the type of this point is the same as the type of q.

For Remark 2, see the paragraph in [14] after Definition 2.

Remark 2. Let q be an equilibrium point of a centered convex body K in (S,U)c for
some S,U ≥ 1. Let |q| = ρ, and let κ1, κ2 denote the principal curvatures of bd(K) at q. Then
κ1, κ2 6= 1

ρ . Furthermore, 0 ≤ κ1, κ2 <
1
ρ if and only if q is a stable point, κ1, κ2 >

1
ρ if and

only if q is an unstable point, and 0 < min{κ1, κ2} < 1
ρ < max{κ1, κ2} if and only if q is a

saddle-type equilibrium point.

Lemma 1. The symmetry group of any nondegenerate convex body K is finite.

Proof. Let K be a nondegenerate convex body with symmetry group G. Without loss of
generality, assume that K is centered, i.e. c(K) = o. Since c(K) is clearly a fixed point of any
symmetry in G, we have that G is a subgroup of the orthogonal group O(3). Clearly, G is closed
in O(3), and thus, it is a Lie group embedded in O(3) by Cartan’s Closed Subgroup Theorem.
On the other hand, the Lie subgroups of O(3) are well known, and in particular we have that
if G is infinite, then it contains, up to conjugacy, SO(2) as a subgroup. In other words, K is
rotationally symmetric. Thus, by nondegeneracy, K has exactly one stable and one unstable
equilibrium point. But this property contradicts Conway’s result mentioned in Section 1 that
no rotationally symmetric convex body is monostable.

We finish Section 2 with two lemmas and two remarks, where X4Y denotes the symmetric
difference of the sets X,Y .

Lemma 2. Let K(τ) ⊂ R3 be a 1-parameter family of convex bodies, where τ ∈ [0, τ0] for
some τ0 > 0. For any τ ∈ [0, τ0], let c(τ) denote the center of mass of K(τ), and let K = K(0)
and c = c(0). Assume that for some C > 0 and m > 0, vol(K(τ)4K) ≤ Cτm holds for any
sufficiently small value of τ . Then there is some C ′ > 0 such that |c(τ)− c| ≤ C ′τm holds for
any sufficiently small value of τ .



Page 6 of 15 Z. LÁNGI

Proof. Without loss of generality, we may assume that K(τ) ⊆ rB3 for some suitable value

of r > 0 if τ is sufficiently small. By definition, c(τ) =

∫
x∈K(τ)

x dv

vol(K(τ)) . On the other hand, by the

conditions, we have | vol(K(τ))− vol(K)| ≤ Cτm, and |
∫
x∈K(τ)

x dλ−
∫
x∈K x dv| ≤ rCτ

m for

all sufficiently small values of τ . From these inequalities and the fact that vol(K) > 0, the
assertion readily follows.

Lemma 3. Let p ∈ int(B2) ⊂ R2 and q ∈ S1 such that p, q and o are not collinear, and let
L be a line through p such that L does not separate o and q. Furthermore, if A denotes the
convex angular region with q ∈ A and bounded by a half line of L starting at p, and the half
line starting at p and containing o, then assume that the angle of A is obtuse. Then there is
a convex polygon Q ⊂ B2 with vertices o, x0 = q, x1, . . . , xk = p in cyclic order in bd(Q) such
that xi−1xio∠ > π

2 for all values of i, and L supports Q.

q=x

x'

0

1

x'kp

1

o

Figure 1. The construction of the points x′
i in the proof of Lemma 3. The dotted curves indicate

arcs in the Thales circles of the segments [o, x′
i].

We remark that the conditions in Lemma 3 imply that the Euclidean distance function
x 7→ |x|, x ∈ R2 strictly decreases along the curve

⋃k
i=1[xi−1, xi] from q to p.

Proof. Without loss of generality, we may assume that q = (1, 0) and the y-coordinate
of p is positive. Set poq∠ = β ∈ (0, π), and choose an arbitrary positive integer k. For any

i = 0, 1, . . . , k, define the point x′i =
(
ri cos iβk , ri sin iβ

k

)
, where ri = cosi βk . Then x′0 = q, and

x′i is on the Thales circle of the segment [0, x′i−1], and thus, x′i−1x
′
io∠ = π

2 (cf. Figure 1) for

all i = 1, 2, . . . , k. Using elementary calculus, we obtain that limk→∞ cosk βk = 1, which yields
that there is some value of k such that |x′k| > |p|. Since x′k and p are on the same half line, we
may decrease the values of ri for i = 1, 2, . . . , k slightly such that for the points xi obtained in
this way the convex polygon Q = conv{o, x0, x1, . . . , xk} satisfies the required conditions apart
from the one for L. Now, if L supports Q, we are done. On the other hand, if L does not
support Q, then we may take the polygon obtained as the intersection of Q and the closed half
plane bounded by L and containing o in its interior.

Remark 3. Let a, b > 0, where a 6= b, and let E ⊂ R2 be the ellipse with equation x2

a2 +
y2

b2 ≤ 1. Then, for any δ > 0 there is some ε > 0 such that if K ⊂ R2 is a plane convex body
satisfying E ⊆ K ⊆ (1 + δ)E, and the vector w is perpendicular to a supporting line of K
through w ∈ bd(K), then the angle between w and the x-axis or the y-axis is at most δ.
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Remark 4. Let f, g be two real functions defined in a neighborhood of a ∈ R. If f, g are
both locally strictly increasing (resp., decreasing) at a, then so are min{f, g} and max{f, g}.

Finally, we remark that in the proof of Theorem 2, we use ideas also from [15, 12, 18].

3. Proofs of Theorem 1 and Corollary 1

First, we show how Theorem 2 implies Theorem 1.
Let n ≥ 3 be a positive integer and let ε > 0 be a sufficiently small fixed value. By Theorem 2,

it is sufficient to construct a smooth convex body K ∈ (1,m)c for some value of m with n-fold
rotational symmetry and satisfying dH(K,B3) ≤ ε. Let P be a regular n-gon inscribed in a
fixed circle C on B3 parallel to, but not contained in the (x, y)-plane. Let the vertices of P be
pi, i = 1, 2, . . . , n. Let Q(ε) = conv

(
B3 ∪ {(1 + ε)p1, . . . , (1 + ε)pn}

)
(cf. Figure 2).

o

q
5 q

1
q

2

q
3

q
4 P

Figure 2. The construction of Q(ε) with ε = 0.15 and n = 5, where qi = (1 + ε)pi.

Then Q(ε) is the union of B3 and n cones Ci, i = 1, 2, . . . , n, with spherical circles centered
at the points pi as directrixes. By symmetry, the center of mass c of Q(ε) is on the z-axis,
and by the Thales Theorem and Lemma 2, its distance from o is of magnitude O(ε2). Thus,
the points (1 + ε)pi are equilibrium points of Q(ε) if ε is sufficiently small. Furthermore, we
have c 6= o. On one hand, from this we have that there are exactly two equilibrium points of
Q(ε) on S2, namely the points (0, 0, 1) and (0, 0,−1), and exactly one of these points is stable,
and the other one is unstable. On the other hand, this also implies that Q(ε) has exactly one
equilibrium point on each cone Ci apart from its vertex; this point is a saddle point in the
relative interior of a generating segment of Ci (cf. Figure 3).

o

pi

z-axis

Figure 3. An illustration for the proof of Theorem 1: equilibrium points on a conic part of bd(Q(ε).
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Now, we set Q′(ε) = (Q(ε)÷ (τB3)) + (τB3), where τ > 0 is negligible compared to ε. Then
Q′(ε) is a smooth convex body which has 1 stable, n saddle-type and (n+ 1) unstable points
by Lemma 2. To guarantee that the body has positive principal curvatures at each equilibrium
point, we may replace the generating segments of the cones by circular arcs of radius R > 0,
where 1

R is negligible compared to τ . The obtained convex body K(ε) ∈ (1, n+ 1)c satisfies the
required conditions.

Finally, we prove Corollary 1. Clearly, diam(B3) = 2 and g(B3) = 2π, and hence, the first
statement follows from the continuity of diameter and girth with respect to Hausdorff distance.
On the other hand, it is well known that for any convex body K in R3, diam(K)

g(K) ≥ 1
π ; here we

include the proof only for completeness. Let K ⊂ R3 be a convex body, and let w(·) and
perim(·) denote mean width and perimeter, respectively. Then, for any projection M of K, we

have w(M) ≤ diam(M) ≤ diam(K). On the other hand, it is well known that w(M) = perim(M)
π ,

implying that diam(K)
perim(M) ≥

1
π . From this, we readily obtain diam(K)

g(K) ≥ 1
π .

4. Proof of Theorem 2

First, observe that by Lemma 1, G is finite.
We construct P by truncating K with finitely many suitably chosen planes; or more precisely

by taking its intersection with finitely many suitably chosen closed half spaces. We carry out
the construction of P in three steps.

In Step 1, we replace some small regions of bd(K) by polyhedral regions disjoint from all
equilibrium points of K. These polyhedral regions will serve as ‘controlling regions’; that is,
after constructing a polyhedron with S stable and U unstable points relative to o, we modify
these regions to move back the center of mass of the constructed polyhedron to o. In Step 2,
we truncate a neighborhood of each equilibrium point to replace it by a polyhedral surface in
such a way that each polyhedral surface contains exactly one equilibrium point relative to o,
and the type of this point is the same as the type of the corresponding equilibrium point of
K. Finally, in Step 3 we truncate the remaining part of bd(K) such that no new equilibrium
point is created. We describe these steps in three separate subsections.

In the proof, we denote by E the set of the equilibrium points of K, and for any point
q ∈ bd(K), we denote by Hq the unique supporting plane of K at q. Observe that by the
definition of (S,U)c, Hq ∩K = {q} for any q ∈ E , and set X = bd(K) \ E . Finally, by F we
denote the set of the fixed points of G, and note that F is a linear subspace of R3 that contains
the center of mass of any G-invariant convex body.

4.1. Step 1: Truncating some small regions disjoint from all equilibrium points

We distinguish two cases depending on dim(F ).

Case 1, if F = R3.
By Carathéodory’s theorem, there are points z1, z2, z3, z4 ∈ X such that o ∈ conv{z1, z2, z3, z4}.
Since X is open in bdK, we may choose these points to satisfy o ∈ int conv{z1, z2, z3, z4}. By
the definition of (S,U)c, we have that Hzi is disjoint from Hq for any 1 ≤ i ≤ 4 and q ∈ E .
We show that the zis can be chosen such that the planes Hzi are pairwise distinct. Suppose
for contradiction that, say, three of these planes coincide. Without loss of generality, assume
that Hz1 = Hz2 = Hz3 , and denote this common plane by H. Then there are points z′1, z

′
2, z
′
3 ∈

relbd(K ∩H) such that conv{z1, z2, z3} ⊆ conv{z′1, z′2, z′3}. Now we may replace z′2 and z′3
by two points z′′2 , z

′′
3 /∈ H such that z′′i is sufficiently close to z′i for i = 2, 3. Then we have

o ∈ int conv{z′1, z′′2 , z′′3 , z4}, where no supporting plane of K contains three of the points. If
a supporting plane of K contains two of these points, we may repeat the above procedure,
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and finally obtain some points w1, . . . , w4 ∈ X such that o ∈ int conv{w1, . . . , w4}, and the sets
Hwi ∩K are pairwise disjoint.

Let δ > 0, and let us truncate K by planes H1, . . . ,H4 such that for all is Hi is parallel
to Hzi and it is at the distance δ from it in the direction of o. We denote the truncated
convex body by K ′ and its center of mass by c′. By Remark 1, if δ is sufficiently small, then
K has S stable and U unstable equilibrium points relative to c′, and each such equilibrium
point is contained in bd(K ′) \ (

⋃4
i=1Hi). Furthermore, if δ is sufficiently small, then for any

point q ∈ Hi ∩ bd(K) and any plane H supporting K ′ at q, q is not perpendicular to H.
Finally, since o ∈ int conv{w1, . . . , w4}, we may choose points w′i ∈ relint(Hi ∩K ′) such that
c′ int conv{w′1, . . . , w′4}. For any w′i, choose some convex ni-gon Pi ⊂ relint(Hi ∩K ′) such that
the center of mass of Pi is w′i (cf. Figure 4). Now we obtain the body K ′′ by truncating K ′ by
ni planes almost parallel to Hi such that for each i, every side of Pi is contained in one of the
truncating planes, and we have Pi = Hi ∩K ′′. We choose the truncating planes such that the
center of mass c′′ of K ′′ satisfies c′′ ∈ int conv{w′1, . . . , w′4}, and K ′′ has S stable and U unstable
points on the smooth part of its boundary, and no equilibrium point on the non-smooth part.
Now, we set K1 = K ′′ − c′′, w′′i = w′i − c′′ and P ′i = Pi − c′′ for all is, and for some sufficiently
small τ̄ > 0 we define four 1-parameter families of polyhedral cones Ci(τi) = conv(P ′i ∪ {(1 +
τi)w

′′
i }), τi ∈ [0, τ̄ ], i = 1, 2, 3, 4. Furthermore, for later use, we set K0 = K − c′′, and call the

set X1 = K1 ∩ bd(K0) the non-truncated part of bd(K1).

o

w

w
w

w2
3

1

4

H

H

H

H

w3

w4

w1

w2

K

Hw1 w'1 H1P1

(a) (b)

Figure 4. An illustration for Step 1. Panel (a): The points wi and the planes supporting K at these
points. Panel (b): the polygon P1 constructed on the intersection H1 ∩K′.

If τ̄ is sufficiently small, then K1 ∪
⋃4
i=1 Ci(τi) is convex for all values of the parameters τi.

Furthermore, note that the center of mass of Ci(τi) lies on the line through [o, w′′i ] for any value
of i. This yields that the first moment of

⋃4
i=1 Ci(τi) is

∑4
i=1(αiτi + βiτ

2
i )w′′i for some suitable

constants αi, βi > 0, which implies that it is surjective in a neighborhood of o. Thus, since
K1 is centered, after we replace the non-truncated part of bd(K1) by a polyhedral surface in
Steps 2 and 3, we may choose values of the τis in such a way that the sum of the first moment
of
⋃4
i=1 Ci(τi) and of the first moment of the polyhedron P obtained after Step 3 is equal

o. This makes the polyhedron P ∪
⋃4
i=1 Ci(τi) centered. Finally, we observe that by choosing

sufficiently small values of δ and τ̄ , for all values of the parameters, no point of Ci(τi) is an
equilibrium point of K1 relative to o.

Case 2, if F 6= R3.
In this case F is a plane or a line through o, or F = {o}. Consider the case that F is a plane.
Then, by the properties of isometries, the orbit of any point p under G consists of p and its
reflection about F . Let KF = F ∩K, and observe that since K is symmetric about F , for any
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q ∈ bd(K) Hq is either disjoint from KF or q ∈ relbd(KF ). Thus, we may apply the argument in
Case 1 for KF , and obtain some points z1, z2, z3 ∈ X ∩KF such that o ∈ relint conv{z1, z2, z3}
and the planes Hzi are pairwise disjoint. But then there are some points z′3 and z′′3 , sufficiently
close to Hz3 such that z′′3 is the reflected copy of z′3 about F , o ∈ int conv{z1, z2, z

′
3, z
′′
3 }, and

the supporting planes at these points are pairwise disjoint. Clearly, the set {z1, z2, z
′
3, z
′′
3 } is

G-invariant. From now on, we may apply the argument in Case 1.
If F is a line, we may apply a similar argument. Indeed, let F ∩K = [p, p′]. Then, by

symmetry, p and p′ are equilibrium points with respect to o, and thus, the planes H and
H ′, containing p and p′, and perpendicular to [o, p] and [o, p′], respectively, support K. Thus,
we may choose a point w1, with {w1, w2, . . . , sk} as its orbit, such that w1 is sufficiently close
to H, and the orbit of H1 ∩K, where H1 is the supporting plane of K, contains mutually
disjoint sets. Choosing points w′1, w

′
2, . . . , w

′
k similarly and sufficiently close to H ′, we have

o ∈ int conv{w1, . . . , wk, w
′
1, . . . , w

′
k}, and we may proceed as in Case 1.

Finally, if F = {o}, then any G-invariant convex body (and in particular the convex
polyhedron constructed in Steps 2 and 3) is centered. Thus, in this case we may skip Step
1.

Based on the existence of the families Ci(τi), in Steps 2 and 3 all equilibrium points are
meant to be relative to o. We denote by E1 the set of the equilibrium points of K1.

4.2. Step 2: Truncating small neighborhoods of equilibrium points

In this step we take all points q ∈ E1, and truncate neighborhoods of them in bd(K1)
simultaneously for all points in the orbit of q. Here we observe that the orbit of an equilibrium
point consists of equilibrium points. We carry out the truncations in such a way that the regions
truncated in Step 1 or Step 2 are pairwise disjoint. We denote the convex body obtained in
this step by K2, and set X2 = bd(K1) ∩K2. We construct K2 in such a way that for any point
p ∈ X2 there is no supporting plane H of K2 through p which contains an equilibrium point
of K2.

Consider some q ∈ E1. Without loss of generality, we may assume that q = (0, 0, ρ) for some
ρ > 0, and denote by ex, ey, and ez the vectors of the standard orthonormal basis. With a little
abuse of notation, for any p ∈ bd(K0), we denote by Hp the unique supporting plane of K0 at p.

Case 1, the stabilizer of q in G is the identity; i.e. q not fixed under any element of G other
than the identity.

Subcase 1.1, q is a stable point of K1.
In this case we truncate K1 by a plane H ′q parallel to, and sufficiently close to Hq. Then we
truncate K1 by finitely many additional planes such that any point of H ′q ∩ bd(K1) is truncated
by at least one of them, and for any point p of the non-truncated part X2 of bd(K1) there is
no supporting plane H of K2 through p which contains an equilibrium point of K2 relative to
o.

Subcase 1.2, q is a saddle-type equilibrium point.
Note that by Remark 2, q is not an umbilic point of bd(K1), and its principal curvatures
κ1 < κ2 satisfy the inequalities 0 < κ1 <

1
ρ < κ2.

Without loss of generality, we may assume that the sectional curvature of bd(K1) in the
(x, z)-plane is κ1, and in the (y, z)-plane it is κ2. For any τ > 0, let K1(τ) denote the set of
points of K1 with z-coordinates at least ρ− τ , and observe that by the fact that κ2 > κ1 > 0,
for any ε > 0 there is some τ > 0 such that K1(τ) is contained in the neighborhood of q of
radius ε. For any {i, j} ⊂ {x, y, z}, let Hij denote the (i, j) coordinate plane, and projij denote
the orthogonal projection of R3 onto Hij .

For any η > 0, let C(η) be the set of the points of the circular disk y2 + (z − ρ+ η)2 ≤ η2 in
Hyz whose z-coordinates are at least ρ− τ . Then, since bd(K1) is C2-class in a neighborhood
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of q, we have that for any η1, η2 > 0 satisfying 1
ρ <

1
η1
< κ2 <

1
η2

, if τ is sufficiently small,
then C(η2) ⊆ projyz(K1(τ)) ⊆ C(η1) holds. Since projyz(K1) is convex, relbd(projyz(K1))
has exactly two points with their z-coordinates equal to ρ− τ . Let these points be q− =
(0, σ−, ρ− τ) and q+ = (0, σ+, ρ− τ) such that σ− < 0 < σ+ (cf. Figure 5). Then there are
some supporting lines L−, L+ of projyz(K1) passing through q− and q+, respectively.

y

proj  (   )Kyz

q=(0,0,  )
qq z=

+

C

C

1
2

1

(   )

(   )

Figure 5. An illustration for Step 2 in the proof of Theorem 2.

Clearly, for i ∈ {−,+}, Li is the orthogonal projection of some supporting plane Hi of K1

onto Hyz. Let ri be a point of Li, on the open half line starting at qi such that the line through
[o, qi] do not separate q and ri. Then, for any fixed values of η1 and η2 and sufficiently small
value of τ , the angles oqiri∠ are obtuse. Now we choose some sufficiently small value of ζ > 0,
and define qi

′
= ζez + qi, ri

′
= ζez + ri, Li

′
= ζez + Li, Hi′ = ζez +Hi and q′ = −ζez + q.

Then we may assume that |qi′| < |q′|, the angles oqi
′
ri
′
∠ are obtuse, and the planes Hi′ are

disjoint from K1.
Thus, by Lemma 3, for i ∈ {−,+}, there is a polygonal curve Γi in Hyz, connecting q′ to qi

′

such that the Euclidean distance measured from the points of Γi to o is strictly decreasing as we
move from q′ to qi

′
(see the remark after Lemma 3), Γi is contained in relbd(conv(Γi ∪ {o})),

and the latter set is supported by Li
′ in Hyz. Consider the closed, convex set CH ⊂ Hyz

bounded by Γ− ∪ Γ+, the half line of L+′ starting at q+′ and not containing r+′, and the
half line of L−

′
starting at q−

′
and not containing r−

′
, and set C = proj−1

yz (CH) ⊂ R3. By the
previous consideration, C is an infinite convex cylinder with the properties that o ∈ int(C),
K1 \ C ⊆ K1(τ), and the equilibrium points of C relative to o are q and two stable points on
L+
′ and L−

′, respectively. To construct K2, we truncate K1 by C, and show that, apart from
the saddle point q′, no new equilibrium point is created by this truncation.

Observe that by our construction, any new equilibrium point is a point of bd(K1) ∩ bd(C).
Suppose that there is some equilibrium point q ∈ bd(K1) ∩ bd(C) of K1 ∩ C. To reach a
contradiction, we identify Hxy with R2, and parametrize bd(K1) in a neighborhood of q
as the graph of a function f : R2 → R and bd(C) in a neighborhood of q′ as the graph
of a function g : R2 → R. Note that by the nondegeneracy of q, for some value of φ > 0, o
has a neighborhood U ⊂ R2 such that for any w = (x0, y0) ∈ U whose angle with the x-axis
is at most φ, |(x, y, f(x, y)| is locally strictly increasing at w as a function of x if x0 > 0
and locally strictly decreasing if x0 < 0; furthermore, if the angle of w with the y-axis is
at most φ, then |(x, y, f(x, y)| is locally strictly decreasing as a function of y if y0 > 0 and
locally strictly increasing if y0 < 0. Note that by Remark 4, the same property holds for
min{|(x, y, f(x, y))|, |(x, y, g(x, y))|} as well. Observe that since q is an equilibrium point of
K1 ∩ C, it is an equilibrium point of the section of K1 ∩ C with the plane through q parallel to
Hxy. Thus, by Remark 3, if τ > 0 is chosen small enough, then the angle of projxy(q) with the
x-axis or the y-axis is at most φ. But this contradicts our previous observation that at such a
point min{|(x, y, f(x, y))|, |(x, y, g(x, y))|} is locally strictly increasing or decreasing parallel to
the x- or the y-axis.
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Finally, to exclude the possibility that a support plane of K1 ∩ C through a point in bd(K1) ∩
bd(C1) contains q′, we truncate all points of bd(K1) ∩ bd(C) by planes, not containing q′, whose
intersections with K1 ∩ C do not contain equilibrium point.

Subcase 1.3, q is an unstable point.
In this case both principal curvatures κ1, κ2 of bd(K1) at q satisfy κ1, κ2 >

1
ρ > 0, and

thus, there is some constant max
{

1
κ1
, 1
κ2

}
< η < ρ such that the ball ρ−η

ρ q + ηB3 contains

a neighborhood of q in bd(K1). We parametrize bd(K1) in a neighborhood of q as the graph
{z = f(x, y)} of a function (x, y) 7→ f(x, y), and note that by nondegeneracy, there is some
r0 > 0 such that the function |(r cos(φ), r sin(φ), f(r cos(φ), r sin(φ)))| is a strictly decreasing
function of r on [0, r0] for all values of φ.

For any τ > 0, let K1(τ) denote the set of points of K1 with z-coordinates at least ρ− τ , let
Hτ denote the plane with equation {z = ρ− τ}. Let τ > 0 be sufficiently small. Then there is
a circle C0 centered at (0, 0, ρ− τ) which is contained in Hτ ∩ int(ηB3), and is disjoint from
K1. Let H be a plane supporting K1 at a point of Hτ such that its angle α with Hτ is minimal
among these supporting planes. Let H ′ be the translate of H touching C0 such that H strictly
separates o and H ′, and let the intersection point of H ′ and the z-axis be r. Consider the infinite
cone C with apex r and base C0, and observe that it contains K1 \K1(τ) in its interior. Now,
let q′ = q − ζez for some suitably small ζ > 0, and let Γ be a polygonal curve connecting q′

to a point p ∈ C0 such that the plane of o, p, q′ contains Γ, Γ ⊂ relbd(conv(Γ ∪ {o})), and the
Euclidean distance function is strictly decreasing along Γ from q′ to p. Let Lp denote the closed
half line in the line of [r, p] starting at p and not containing r, and let Γ′ = Γ ∪ Lp. Let m ≥ 3
be arbitrary, and for any i = 0, 1, . . . ,m− 1, let Γ′i denote the rotated copy of Γ′ around the
z-axis, with angle 2πi

m . Let P ′ = conv
⋃m−1
i=0 Γ′i. Then P ′ is a convex polyhedral domain such

that K1 \ P ′ ⊆ K1(τ), and if m is sufficiently large, then at any boundary point of P ′ with z-
coordinate greater than ρ− τ , |(x, y, g(x, y))| is strictly locally increasing in a neighborhood of
(0, 0) as a function of

√
x2 + y2, where bd(P ′) is given as the graph of the function z = g(x, y).

Thus, by Remark 4 and following the idea at the end of Subcase 1.2 in Step 2, we may truncate
a neighborhood of q in bd(K1) by a convex polyhedral region P ′ such that the only equilibrium
point of the truncated body on bd(P ′) is the unstable point q′, and the truncated body has no
non-truncated boundary point where some supporting plane contains an equilibrium point.

The procedure discussed in Subcases 1.1-1.3 for q is applied for any equilibrium point in the
orbit of q in an analogous way.

Case 2, if the stabilizer of q in G is not the identity.
In this case the procedure described in Case 1 is carried out in such a way that the truncating
polyhedral domain is invariant under any element of G fixing q.

Summing up, to construct K2 in Step 2 we truncated a neighborhood of each equilibrium
point of K1 by a polyhedral region in such a way that each region contains exactly one
equilibrium point relative to o, and no plane supporting K2 at any point of X2 = bd(K1) ∩K2

contains an equilibrium point of K2 relative to o. In addition, K2 is G-invariant.

4.3. Step 3: Truncating the remaining part of the boundary

In this step let Y = X1 ∩X2. Furthermore, for any plane H let oH denote the orthogonal
projection of o onto H, and let H denote the family of planes H with the property that
oH ∈ K2. Note that H consists of

– all planes through o, and,
– for any p ∈ K2 \ {o}, the (unique) plane passing through p and perpendicular to [o, p].

Observe that Y is compact, and by our construction, for any plane H supporting K2 at some
point p ∈ Y , we have oH /∈ H ∩K2; or equivalently, we have {oH : H ∈ H} ∩ Y = ∅. Thus, by
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compactness, there is some δ > 0 such that for any H ∈ H and p ∈ Y , the distance of oH and p
is at least δ > 0. Now, for any p ∈ Y , let Hp denote the unique closed half space whose boundary
supports K0 at p and which satisfies int(Hp) ∩K1 = ∅. Let up denote the outer unit normal

vector of K at p, and for any ζ > 0, set Hp(ζ) = Hp − ζup, and Y (ζ) = K2 ∩
(⋃

p∈Y Hp(ζ)
)

(cf. Figure 6). Clearly, Y (ζ) tends to Y with respect to Hausdorff distance as ζ → 0+. Thus,
there is some sufficiently small ζ0 > 0 such that for any H ∈ H, oH /∈ Y (ζ0).

o

p

oHp
up

Hp

H (  )p

K2

Figure 6. An illustration for Step 3 in the proof of Theorem 2.

Now, for any p ∈ Y , set U(p) = Y ∩ int(Hp(ζ0)). Then U(p) is an open neighborhood of
p in Y . Thus, by the compactness of Y , there are finitely many points p1, . . . , pm such
that

⋃m
i=1 U(pi) = Y . Then, clearly P = K2 ∩

(⋂m
i=1

(
R3 \ int(Hpi(ζ0))

))
is a convex polytope

contained in K2. Furthermore, since ζ0 > 0 can be arbitrarily small, P can be arbitrarily close
to K2.

We show that no point q ∈ bd(P ), contained in some bd(Hpi(ζ0)) is an equilibrium point
of P . Indeed, if q was such a point, then the plane H through q and perpendicular to [o, q] is
contained in H. On the other hand, q ∈ bd(P ) ∩ bd(Hpi(ζ0)) ⊂ Y (ζ0), which is impossible by
our choice of ζ0.

Finally, we may choose the points p1, p2, . . . , pm in such a way that the set {p1, . . . , pm} is
invariant under the act of any element of G.

5. Remarks and open questions

First, we remark that by using truncations instead of conic extensions in the proof of
Theorem 1, we readily obtain Theorem 3. Here, a mono-unstable convex body is meant to
be a nondegenerate convex body with a unique unstable point.

Theorem 3. For any n ≥ 3, n ∈ Z and ε > 0 there is a homogeneous mono-unstable
polyhedron P such that P has an n-fold rotational symmetry and dH(P,B3) < ε.

We ask the following.

Question 1. What are the positive integers n ≥ 2 such that class (1, 1)p contains a convex
polyhedron with an n-fold axis of symmetry?

In light of the words of Shephard in [28] from Section 1 about monostable polyhedra, we
remark that a consequence of Theorem 2 is that to study the metric properties of nondegenerate
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polyhedra, in particular monostable polyhedra, it is sufficient to study the metric properties
of their smooth counterparts, which seem to be much more tractable.

Next, we conjecture that Theorem 2 remains true if we omit the condition that the principal
curvatures of bd(K) at every equilibrium point of K are strictly positive.

Finally, to propose a conjecture for the first part of Problem 3, we recall the following
concept from [33], where the function ρK : S2 → R, ρK(x) = max{λ : λx ∈ K} is called the
gauge function of the convex body K.

Definition 1. Let K ∈ R3 be a centered convex body, and for any simple, closed curve
Γ ⊂ S2, let Γ+ and Γ− denote the two compact, connected domains in S2 bounded by Γ. Then
the quantities

F (K) = sup
Γ

sup
p1∈Γ+,p2∈Γ−

min{ρK(s) : s ∈ Γ}
max{ρK(p1), ρK(p2)}

and

T (K) = sup
Γ

sup
p1∈Γ+,p2∈Γ−

min{ρK(p1), ρK(p2)}
max{ρK(s) : s ∈ Γ}

are called the flatness and the thinness of K, respectively.

Domokos and Várkonyi in [33] proved that for any nondegenerate, centered smooth convex
body K, F (K) = 1 if and only if K is monostable, and T (K) = 1 if and only if K is mono-
unstable.

Recall that a nondegenerate convex body is mono-monostatic if it has a unique stable and
a unique unstable point [32]. We conjecture the following.

Conjecture 1. For any centered convex body K ⊂ R3, K can be uniformly approximated
by monostable convex polyhedra if and only if F (K) = 1, by mono-unstable convex polyhedra
if and only if T (K) = 1, and by mono-monostatic convex polyhedra if and only if F (K) =
T (K) = 1.
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