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a  b  s  t  r  a  c  t

The  optimization  of the  geometrical  properties  of  gold/silver  nanoparticle  arrangements  to  maximize
their  surface-enhanced  Raman  scattering  (SERS)  efficiency  is  studied  in this  work.  For  this  purpose,  the
metallic  nanostructures  were  created  by  thermally  annealing  gold  and  silver  thin  film  layers  deposited
onto  glass  substrates.  The SERS  capabilities  of the  samples  were  evaluated  by  measuring  an  analyte  solu-
tion of benzophenone  with  three  different  excitation  laser  wavelengths.  Systematic  investigations  were
carried  out  on  different  gold  and  silver  nanoisland  samples  to determine  how  the  SERS  enhancement
depends  on  the  geometrical  (particle  diameter,  interparticle  distance)  and  optical  parameters  (plasmon
wavelength)  of  the  nanostructures,  as  well  as on  the  wavelength  of  laser  excitation.  The  importance
of  matching  the  excitation  wavelength  with  the  resonant  plasmon  absorbance  properties  of  the  sur-
hotonic devices
ensors

face  was  proved.  However,  it was  also  shown  that the  optimization  of the  geometrical  properties  of
the nanoisland  arrangements  dominates  over the  selection  of the  excitation  wavelength.  A generalized
exponential  relationship  between  the  SERS  enhancement  and  the  non-dimensional  interparticle  dis-
tance/particle  diameter  ratio was  established.  Optimal  technological  parameters  for  the  fabrication  of
gold/silver  nanoisland  SERS  substrates  were  proposed.

©  2020  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Raman spectroscopy is an efficient vibrational spectroscopic
echnique that allows the analysis of the structure and composition
f materials in solid, liquid, or gas state [1]. The disadvantage is that
aman scattering has low scattering efficiency. Surface-enhanced
aman spectroscopy (SERS) is used for decades to improve the pro-
ess sensitivity [2] The SERS phenomenon was first observed in
974 by Fleischmann et al. [3], who observed unexpectedly large

aman signals when studying pyridine adsorbed on a roughened
ilver electrode [4]
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/).
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

The magnification of Raman signals by several orders of magni-
tude is made possible by the nanostructured or roughened metal
surface [5]. Several studies have addressed the SERS enhancement
mechanism. Nowadays, it is accepted that two  major factors con-
tribute to the enhancement of Raman signals: electromagnetic [6]
and chemical [7,8], from which the electromagnetic mechanism is
considered to be the key one [6,9]. SERS incorporates the essential
benefits of Raman spectroscopy such as fingerprint identification of
molecules, non-destructive analysis, minimal sample preparation;
analysis of biological samples; the possibility of carrying out field
analysis using portable devices [8], all with high sensitivity, which
in some cases even allows the detection of a single molecule [4,10].

Silver and gold nanostructures are the most widely used mate-
rials in SERS substrates due to their surface plasmon resonance

(LSPR) properties, which cover a wide wavelength range in the
visible and near-infrared regions where most Raman measure-
ments are made [1,11]. Several methods have been developed for
the fabrication of these substrates, which follow one of two gen-
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ral strategies: top-down and bottom-up [10,12]. The top-down
trategy is based on micro- and nanofabrication techniques (elec-
ron beam lithography [13], atomic layer deposition [14], focused
on beam [15] nanosphere lithography [16]). On the contrary, the
ottom-up strategy relies on chemical synthesis and assembly
hat offers the opportunity to prepare cost-effective SERS sub-
trates. The morphology of chemically synthesized nanostructures
ncludes nanospheres [17–19], nanocubes [20], nano triangles [21],
anorods [22], and nucleus nanostructures [23,24]. Each technol-
gy is capable of controlling the parameters (dimensions, shape) of
he nanoparticles. This is important because the enhancement of
he SERS effect is influenced by these parameters and other factors
s well [24,25].

Nowadays, research focuses on the structural properties of
ERS substrates [26,27] and the development and fabrication of
ubstrates with optimal enhancement properties [4]. The SERS
nhancement factor (SERS EF) of a substrate depends on several
actors, such as the geometrical properties of the nanoparticles
size, shape, interparticle distance, and general arrangement) or the
avelength of the excitation source [28]. These factors are inter-

wined in a nontrivial way, forming a complex system, which is
ssential to be optimized for the best SERS performance.

The effect of nanoparticle size on the SERS performance was
reviously studied [29–32] with mixed conclusions. It was shown
hat the highest SERS EF could be reached with spherical gold and
ilver nanoparticles with a diameter of 50 nm [29,31], while oth-
rs reported a broader range of optimal particle sizes between
0–100 nm for the improvement of SERS [30,32]. Generally, when
he particles are too small, both the actual conductivity and the
cattering properties are reduced, which expectedly reduces the
ERS efficiency [30]. As the particle size increases, the SERS effect
ncreases since they act as larger scattering centers. However, in
hese papers, there was no study concerning the interparticle dis-
ance.

Besides, other works studied this parameter, as interparticle
istance also affects the SERS enhancement. In previous works,

 relationship between the interparticle distance and the SERS
nhancement was demonstrated [33,34]. The closer the particles
re to each other, the higher the specific surface coverage of their
ctive surfaces is, and the surface density of hot-spots (number
f areas with increased near field intensities due to coupled plas-
ons between the particles) is also higher, which altogether results

n an improved SERS efficiency as it was shown in our previous
ork [35]. At very short distances (e.g., less than 1 nm), quantum
echanical phenomena play a role that limits the possible achiev-

ble field strengths [36]. Most papers only study the influence of
nterparticle distance and do not take into account the effect of
he nanostructures’ size, except for a few [35,37–39]. It could be
oncluded that several past works investigated the effect of these
arameters independently; their complex relationship is not yet
ully described.

The shape of the nanoparticles can also be a factor, its effect
n the SERS enhancement was investigated by others [40–42].
ccording to these, anisotropic metallic nanoparticles with com-
lex shapes (e.g., hexagonal, triangular, cubical, star shape), could
e beneficial due to the more intense near-fields at the sharp edges.
owever, the complicated synthesis of some of these particles and

heir subsequent surface chemistry are the main drawback of their
urrent application.

Another general consideration is that the wavelength of the
xcitation source should match the plasmonic properties (LSPR
xcitation range) of the substrate as close as possible. The LSPR

bsorbance wavelength shifts to red with larger nanoparticle
ize and smaller interparticle distance (due to the plasmonic
oupling) [43,44]. If the excitation wavelength is far from the
lasmon excitation of the substrate, the SERS enhancement can
nd Actuators A 314 (2020) 112225

be reduced [25,35]. The fine-tuning of all these parameters is the
key to optimize the SERS substrate properties to maximize their
enhancement factor [45].

In this study, SERS substrates based on gold and silver
nanoislands were prepared on glass substrates with different tech-
nological parameters. The effect of material type, particle size,
interparticle distance (which altogether determine the plasmonic
properties of the substrates) and the excitation wavelength on the
SERS enhancement was  studied in detail. The complex relationship
between the size of the nanoparticles, the interparticle distance,
and the enhancement factor is studied and demonstrated compre-
hensively. For this purpose, a benzene derivative (benzophenone)
dissolved in isopropyl alcohol was used as a target material, for its
characteristic and identifiable phenol related peaks. Regarding the
application of SERS for the detection of other materials systems,
some recent reviews can be recommended [46,47].

2. Materials and methods

2.1. Preparation of SERS substrates

The substrates for the SERS active nanoparticles were cut from
microscope slides with a handheld glass cutter to form glass plates.
They were cleaned in an EMMI-20HC ultrasonic bath in 96 % ethanol
and then wiped dry with a sterile paper. The amount of material to
be evaporated was measured on a Sartorius Micro M3p  semi-micro
analytical balance. The thin metallic films with controlled thick-
nesses were prepared by thermal evaporation. The layer thickness
was measured by using an Ambios XP-1 profilometer. The thick-
nesses of the created gold layers were 9 and 12 nm,  while for the
silver layer 15 and 25 nm.  Samples were then heat-treated in a
quartz glass tube placed in an oven filled with Ar:H precursor gas.
The heat treatment (solid-state dewetting) took place at different
temperatures (350 ◦C, 450 ◦C, and 550 ◦C) for different periods (15,
30, 60 and 120 min), resulting in a variety of geometrical param-
eters (e.g., particle diameter, interparticle distance). During the
treatment, the high temperature induces diffusion on the surface
of the substrate, causing the thin film first to burst, then to form
nanoscale islands.

2.2. Characterization of SERS substrates

The freshly prepared metallic nanoislands were examined by
using a scanning electron microscope (SEM) and then an opti-
cal spectrophotometer. SEM images were recorded with a Hitachi
S4300-CFE instrument. Multiple locations and magnifications were
taken on each sample. The images were evaluated by using the
National Instruments Vision Assistant software package, which
determined the mean nanoisland diameter (defined as the equiv-
alent diameter of a circle having the same projected area as the
nanoisland), measurement uncertainty, and diameter distribution.

To further evaluate the diameter distribution, we  used the Orig-
inPro 9 software and a custom-written Matlab script to determine
the average interparticle distance and its standard deviation. The
measurement uncertainty of the diameter of the produced nanos-
tructures and the interparticle distance was  10–15 %, depending
on the sample. The next step was to investigate the plasmon
wavelength of the created metallic nanostructures. Measurements
were made with an OceanOptics Red Tide USB650 optical fiber
spectrophotometer. The optical transmittance of the samples was
measured in air.
Figs. 1 and 2 illustrates SEM images (with an acceleration voltage
of 5 kV and magnification of ×20 000 or ×30 000) of gold and silver
nanoislands and their transmittance spectra. The diameter, inter-
particle distance, and plasmon wavelengths could be controlled by
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Fig. 1. Illustration of the prepared gold nanoislands: a) SEM image of gold sample 1; b) S
the  samples. The technological parameters are given in Table 1. The magnification of SEM

Table 1
Parameters of the two  different gold samples.

Au Sample 1 Au Sample 2

Initial layer thickness 9 nm 12 nm
Annealing temperature 550 ◦C 550 ◦C
Annealing time 15 min  15 min

Table 2
Parameters of the two  different silver samples.

Ag Sample 1 Ag Sample 2

Initial layer thickness 15 nm 25 nm

t
t
w
t

tion.
Annealing temperature 350 ◦C 350 ◦C
Annealing time 60 min  60 min

he initial thickness while keeping the annealing temperature and

ime fixed. Fig. 1 and 2 illustrate two different gold/silver samples
ith the fabrication parameters given in Tables 1 and 2, respec-

ively. These figures show how the initial layer thickness affects
EM image of gold sample 2; c) The corresponding optical transmittance spectra of
 images was ×20 000.

the diameter of the formed nanoislands and the interparticle dis-
tance at the same annealing temperature and time. By starting from
a thicker layer, larger nanoislands are formed farther apart, while a
thinner film produces smaller nanoislands that are closer together.
Also, the different gold and silver patterns clearly show how the
transmittance of the sample varies with diameter, affected by the
initial layer thickness.

2.3. Sample preparation for SERS measurements

The analyte solution used for the Raman measurements was
50 mM benzophenone, dissolved in isopropyl alcohol, and all SERS
measurements were performed with a solution taken from the
same batch. During the preparation, special care was given to
dissolve all the benzophenone crystals and to homogenize the solu-
Spin coater was  used to place the benzophenone solution on
the SERS substrates, which allows creating a uniform thin layer
of the analyte. The substrates were placed in the center of the
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ig. 2. Illustration of the prepared silver nanoislands: a) SEM image of silver sampl
f  the samples. The technological parameters are given in Table 2. The magnificatio

evice, which was fixed with double-sided adhesive. Then, using
 micropipette, 20 �L of the sample solution was dropped into the
enter of the active surface, and the spin coater was  started and
otated at 1000 rpm for 1 min. The centrifugal force occurring dur-
ng high-speed rotation uniformly distributes the solution on the
ubstrate surface.

.4. SERS measurements

A Renishaw inVia, a Renishaw 1000B, and a Horiba LabRam
aman spectrometer were used for Raman measurements on the
amples. During the work, 488, 532, and 633 nm lasers were used as
xcitation sources, and the measurement time for each sample was
0 s. The excitation beam was focused onto the sample surface with
 50x lens. Raman measurements were performed in several points
n the substrate surface (5–7 points), and the measurement has
een repeated in the point where the SERS enhancement proved
o be the best. For the reference Raman spectrum, the analyte was
 SEM image of silver sample 2; c) The corresponding optical transmittance spectra
EM images was  ×30 000.

placed on a bare glass slide under the same conditions and in the
same amount.

The characteristic spectra of benzophenone were obtained in
our measurements on a pure glass substrate and metallic nanopar-
ticles as well. The main bands of benzophenone can be observed on
both with different intensities (see Fig. 3). Based on these, the SERS
enhancement was calculated from the intensity of the 1596 cm−1

peak, which corresponds to the vibration of the C C bonds of the
phenyl ring [48].

In this work, we  calculated the SERS enhancement based on the
enhancement factor (EF) [9], which can be defined as Eq. (1):

EF =
ISERS ⁄NSERS

IRS ⁄NRS

(1)

In this approach, IRS is the Raman signal under non-SERS con-

ditions (e.g., on the surface of the reference sample). Under the
same experimental conditions and the same preparation condi-
tions, the SERS signal measured on the SERS substrate will have
the intensity of ISERS [9,30]. At the same time, the NRS – is the aver-
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Fig. 3. The measured Raman and SERS spectra of the benzophenone.

ge number of molecules in the scattering volume for the Raman
non-SERS) measurement, and NSERS – is the average number of
dsorbed molecules in the scattering volume for the SERS exper-
ments. This EF calculation approach ignores the fact that SERS is

 surface-sensitive phenomenon: only surface-adsorbed molecules
ontribute to the highest EM enhancement, and the signal contribu-
ion decays exponentially with increasing distance to the surface.
ince in our experiments, the sample was present only in the form
f a thin spin-coated layer (for both SERS and reference measure-
ents) we assumed that NSERS ∼= NRS, thus EF can be simplified as

he ratio of the measured intensities.

. Results and discussion

.1. Gold substrates

For both gold and silver nanoislands, measurements were made
ith three lasers of different wavelengths. Before that, their optical
arameters, diameter, and interparticle distance were measured,
nd the EF was evaluated for each excitation wavelength.

As mentioned in the introduction, the relationship between the
lasmon wavelength of the substrate and the excitation wave-
ength affects the SERS enhancement. The three different excitation
avelengths in our study are meant to probe this relationship. The
lasmon resonance of nanoislands can be effectively tuned with the
article diameter, structure, and interparticle distance [33,38,39].

ig. 4. a) Normalized absorbance spectra illustrating the effect of different gold nanoisla
1:  50 nm,  #2: 54 nm,  #3: 75 nm); b) Dependence of the enhancement factor on the excit
or  this, the normalized absorbance of the samples (as in Fig. 4a) were evaluated at the ex
Fig. 5. Surface-enhanced Raman spectra of benzophenone measured on a gold
nanoisland substrate with three different excitation wavelengths.

Fig. 4a illustrates the effect of the nanoisland diameter on the plas-
mon wavelength. The measured diameter, interparticle distance
and plasmon wavelength of the three nanoisland arrangements
shown in the figure are the following: sample 1: 50 nm, 45 nm,
514 nm,  sample 2: 54 nm,  46 nm,  527 nm,  sample 3: 59 nm,  37 nm,
561 nm,  respectively. It can be seen that by increasing the diam-
eter of the gold nanoislands, the position of the plasmon peak is
shifting to higher wavelengths. The relationship between the plas-
mon  absorbance properties and the excitation wavelengths can be
studied based on Fig. 4b. Since the plasmon resonance of the gold
nanoislands is in the 500−600 nm range, it can be expected that the
laser with 532 nm excitation wavelength will yield the highest SERS
enhancement. Fig. 4b partially confirm this, since, in general, the
532 nm excitation resulted in the highest average EF. Fig. 5 presents
sample Surface-enhanced Raman spectra measured with the three
different excitation sources, which also illustrate that the highest
enhancement was obtained by using 532 nm excitation. It should be
noted that the Raman scattering will be non-resonant for all these
excitation wavelengths. The analysis of the absorption spectrum of
benzophenone [49] shows that the absorption bands of the com-
pound are in the UV region, well below our lowest laser wavelength

of 488 nm.

However, there are some peculiarities worth mentioning. In
Fig. 4b, the presented data are given as a function of the normalized
absorbance measured at the given excitation wavelength. A higher

nd diameters on the plasmonic absorbance of the substrates (average diameters:
ation wavelength in the function of the normalized absorbance at that wavelength.
citation laser’s wavelength.
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ig. 6. Enhancement factors obtained for 532 nm excitation, in the function of a) th
he  interparticle distance/nanoisland diameter ratio (r/D).

ormalized absorbance means that the nanoparticle arrangement
as a stronger plasmonic resonance at the given wavelength. The

act that the EF does not correlate directly with the normalized
bsorbance indicates that the excitation wavelength is impor-
ant not only because of its relation to plasmon excitation. E.g.,
n some of the cases, a 633 nm excitation with small normalized
bsorbance (around 0.1, in other words far from the plasmon res-
nance peak) resulted in better enhancement than the 532 nm
xcitation with high normalized absorbance (around 1, e.g., in the
lasmon resonance peak). Also, the 488 nm excitation resulted in
he smallest average EF regardless of the normalized absorbance
t this wavelength. These observations indicate that other factors
etermine or influence the effect of excitation wavelength on the
ERS EF besides its relation to the plasmonic properties of the sub-
trate.

To evaluate the effect of the geometrical parameters on the
easured SERS enhancement factors in more detail, the result-

ng EFs obtained with the 532 nm laser excitation were plotted
s a function of both the average nanoisland diameter (Fig. 6a)
nd the average interparticle distance (Fig. 6b). As expected –
ccording to the discussions in the introduction – the measured
F shows a strong positive linear correlation with the particle size
nd also decays exponentially with increasing interparticle dis-
ance. The variation of the data decreases significantly when the

btained EFs are plotted as a function of the interparticle dis-
ance/nanoisland diameter ratio (r/D). The enhancement factor
hows a clear exponential relationship with this non-dimensional
arameter (equation given in Fig. 6c, in which the ID is the interpar-
rage gold nanoisland diameter (D); b) the average interparticle distance (r); and c)

ticle distance/nanoisland diameter ratio), which makes the design
and optimization of the SERS substrates simpler.

Based on the results, the highest SERS enhancement (∼6.5)
was achieved with gold nanoislands prepared with the follow-
ing fabrication parameters: initial layer thickness: 9 nm, annealing
temperature: 500 ◦C, annealing time: 15 min. The SERS substrate
fabricated with these conditions has the following parameters:
plasmon wavelength peak: 528 nm,  particle diameter: 58 nm,  inter-
particle distance: 30 nm.

3.2. Silver substrates

The silver-based nanoisland SERS substrates were investigated
with the same methodology. Fig. 7a shows the three typical spectra
with the following geometrical and plasmonic properties (diam-
eter, interparticle distance, and plasmon wavelength): sample 1:
34 nm,  41 nm,  422 nm, sample 2: 37 nm,  36 nm,  436 nm,  sam-
ple 3: 39 nm,  31 nm,  445 nm.  For the silver nanoisland samples,
the plasmon absorbance peaks are between 400−460 nm, thus, as
expected, the highest average enhancement factors were achieved
with the 488 nm laser excitation (see Fig. 7b). This is also con-
firmed by the sample Surface-enhanced Raman spectra presented
in Fig. 8. However, similarly to what we  saw in the case of the gold
nanoislands, the measured EF does not correlate clearly with the

normalized absorbance, regardless of the excitation wavelength
(Fig. 7b).

As in the case of gold nanoislands, the effect of the geomet-
rical parameters was  studied in detail. The charts of Fig. 9 show
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Fig. 7. a) Normalized absorbance spectra illustrating the effect of different silver nanoisl
#1:  34 nm,  #2: 37 nm,  #3: 39 nm); b) Dependence of the enhancement factor on the excit
For  this, the normalized absorbance of the samples (as in Fig. 7a) were evaluated at the ex
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or revising it critically for important intellectual content; and (c)
ig. 8. Surface-enhanced Raman spectra of benzophenone measured on a silver
anoisland substrate with three different excitation wavelengths.

he same linear and exponential tendencies between the measured
F and the nanoisland diameter and interparticle distance, respec-
ively (for the data obtained with the 488 nm excitation). The EF also
hows a clear exponential relationship with the non-dimensional
r/D) parameter (equation in Fig. 9c, where ID is the interparticle
istance/nanoisland diameter ratio). It has to be noted that silver
anoislands show a higher respective SERS enhancement in the

unction of r/D (by comparing the equations in Figs. 6c and 9 c).
The highest SERS enhancement (∼27) was achieved with silver

anoislands prepared with the following fabrication parame-
ers: initial layer thickness: 25 nm,  annealing temperature: 350 ◦C,
nnealing time: 60 min. The SERS substrate fabricated with these
onditions has the following parameters: plasmon wavelength
eak: 438 nm,  particle diameter: 61 nm,  interparticle distance:
2 nm.

. Conclusions

By comparing the results obtained on the gold and silver nanois-
and arrangements, we can draw the following conclusions:

1)The highest average and maximum obtained SERS analytical
nhancement factors were achieved with the 532 nm laser irradia-

ion for gold nanoislands and with the 488 nm excitation for silver
anoislands. This proves that the relationship between the exci-
ation wavelength and the plasmon absorbance properties of the
and diameters on the plasmonic absorbance of the substrates (average diameters:
ation wavelength in the function of the normalized absorbance at that wavelength.
citation laser’s wavelength.

surface is important and should be considered when selecting a
SERS substrate.

2)Our findings partially contradict the fact that for both of the
cases, the obtained EFs did not show a clear correlation with the
normalized absorbance peaks considering all investigated excita-
tion wavelengths. This suggests that other factors – such as the
geometrical properties of the nanoisland arrangements – dominate
over the excitation wavelength to a reasonable extent.

3)The SERS EF showed a positive linear correlation with the
nanoparticle size and a negative exponential relation with the
interparticle distance for both types of nanomaterials. This can be
attributed to the higher scattering efficiency (bigger particle size)
and the higher density of near-field hot spots on the surface in the
case of tightly packed particles.

4)A precise exponential relationship could be established
between the measured EF and the non-dimensional r/D parame-
ter, which is the ratio of the interparticle distance and the particle
diameter, for both material types.

5)Silver nanoislands (measured at 488 nm)  showed a steeper
exponential increase in the EF with decreasing r/D compared to the
gold nanoislands (measured at 532 nm excitation).

6)These results suggest that larger and closer packed metallic
nanostructures will result in better SERS enhancement. In the case
of gold, this can be achieved with a thinner starting layer (6 nm),
lower annealing temperature (450 ◦C) and longer annealing time
(30−60 min), or a thicker layer (9 nm), higher temperature (500 ◦C),
and shorter time (15 min). In the case of silver, larger and denser
nanoislands were achieved with a thicker starting layer (25 nm),
low annealing temperature (350 ◦C), and longer time (60−120 min).

7)These sets of technological parameters result in smaller aver-
age r/D parameters for the silver nanoislands and thus higher SERS
enhancement factors, compared to the gold nanoislands.

Declaration of Competing Interest

Please check the following as appropriate:

• All authors have participated in (a) conception and design, or
analysis and interpretation of the data; (b) drafting the article
approval of the final version.
• This manuscript has not been submitted to, nor is under review

at, another journal or other publishing venue.



8 P. Pal, A. Bonyár, M.  Veres et al. / Sensors and Actuators A 314 (2020) 112225

F e aver
t

•

•

D

A

1
a
s
fi
r
H
C
(
a
C
S

ig. 9. Enhancement factors obtained for 488 nm excitation, in the function of a) th
he  interparticle distance/nanoisland diameter ratio (r/D).

The authors have no affiliation with any organization with a direct
or indirect financial interest in the subject matter discussed in the
manuscript
The following authors have affiliations with organizations with
direct or indirect financial interest in the subject matter discussed
in the manuscript:

eclaration of Competing Interest

The authors report no declarations of interest.

cknowledgments

This work was financially supported by the grant GINOP-2.3.2-
5-2016-00041. The project is co-financed by the European Union
nd the European Regional Development Fund. This work was
upported by the VEKOP-2.3.2-16-2016-00011 grant, which is co-
nanced by the European Union and European Social Fund. The
esearch reported in this paper was partially supported by the
igher Education Excellence Program of the Ministry of Human
apacities in the frame of Nanotechnology and Materials Science

BME FIKP-NAT) and also Biotechnology (BME-FIKP-BIO) research
reas of Budapest University of Technology and Economics. Istvan
sarnovics is grateful for the support of the János Bólyai Research
cholarship of the Hungarian Academy of Sciences. The support
age silver nanoisland diameter (D); b) the average interparticle distance (r); and c)

through the New National Excellence Program of the Ministry of
Human Capacities is acknowledged as well.

Appendix A. Supplementary data

Supplementary material related to this article can be found,
in the online version, at doi:https://doi.org/10.1016/j.sna.2020.
112225.

References

[1] L.T. Hoang, H.V. Pham, M.T.T. Nguyen, Investigation of the factors influencing
the surface-enhanced raman scattering activity of silver nanoparticles, J.
Electron. Mater. (2019) 1–8, http://dx.doi.org/10.1007/s11664-019-07870-8.

[2]  C.L. Haynes, C.R. Yonzom, X. Zang, R.P. Van Duyne, Surface-enhanced Raman
sensors: early history and the development of sensors for quantitative
biowarfare agent and glucose detection, J. Raman Spectrosc. 36 (2005)
471–484, http://dx.doi.org/10.1002/jrs.1376.

[3]  M.  Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine
adsorbed at a silver electrode, ChemR. Phys. Lett. 26 (1974) 163–166, http://
dx.doi.org/10.1016/0009-2614(74)85388-1.

[4]  R. Pilot, R. Signorini, C. Durante, L. Orian, M.  Bhamidipati, L. Fabris, A review
on  surface-enhanced raman scattering, Biosensors. 9 (2019) 1–100, http://dx.
doi.org/10.3390/bios9020057.

[5] J. Choi, J.-H. Kim, J.-W. Oh, J.-M. Nam, Surface-enhanced raman
scattering-based detection of hazardous chemicals in various phases and

matrices with plasmonic nanostructures, Nanoscale. 11 (2019) 20379–20391,
http://dx.doi.org/10.1039/c9nr07439b.

[6] S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Electromagnetic theories of
surface-enhanced Raman spectroscopy, Chem. Soc. Rev. 46 (2017)
4042–4076, http://dx.doi.org/10.1039/c7cs00238f.

https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
https://doi.org/10.1016/j.sna.2020.112225
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1007/s11664-019-07870-8
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1002/jrs.1376
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.1016/0009-2614(74)85388-1
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c9nr07439b
dx.doi.org/10.1039/c7cs00238f
dx.doi.org/10.1039/c7cs00238f
dx.doi.org/10.1039/c7cs00238f
dx.doi.org/10.1039/c7cs00238f
dx.doi.org/10.1039/c7cs00238f
dx.doi.org/10.1039/c7cs00238f
dx.doi.org/10.1039/c7cs00238f


sors a

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

P. Pal, A. Bonyár, M. Veres et al. / Sen

[7] A. Otto, The “chemical” (electronic) contribution to surface-enhanced Raman
scattering, J. Raman Spectrosc. 36 (2005) 497–509, http://dx.doi.org/10.1002/
jrs.1355.

[8] A. Otto, Charge transfer in first layer enhanced Raman scattering and surface
resistance, Q. Phys. Rev. 3 (2017) 1–14.

[9] H.K. Lee, Y.H. Lee, C.S.L. Koh, G.C. Phan-Quang, X. Han, C.L. Lay, X.Y. Ling, H.Y.F.
Sim, Y.-C. Kao, Q. An, Designing surface-enhanced Raman scattering (SERS)
platforms beyond hot-spot engineering: emerging opportunities in analyte
manipulations and hybrid materials, Chem. Soc. Rev. 48 (2019) 731–756,
http://dx.doi.org/10.1039/c7cs00786h.

10] H. Chu, S. Song, C. Li, D. Gibson, Surface enhanced raman scattering substrates
made by oblique angle deposition: methods and applications, Coatings 7
(2017) 1–23, http://dx.doi.org/10.3390/coatings7020026.

11]  P.A. Mosier-Boss, Review of SERS substrates for chemical sensing,
Nanomaterials. 7 (2017) 142.

12] S.-Y. Ding, X.-M. Zhang, B. Ren, Z.-Q. Tian, Surface-enhanced raman
spectroscopy (SERS): general introduction, Encyclopedia of Analytical
Chemistry (2014) 1–34, http://dx.doi.org/10.1002/9780470027318.a9276.

13]  Z.-Q. Tian, B. Ren, Infrared and raman spectroscopy in analysis of surfaces,
Encyclopedia of Analytical Chemistry (2006) 1–40, http://dx.doi.org/10.1002/
9780470027318.a2516.

14] J. Theiss, P. Pavaskar, P.M. Echternach, R.E. Muller, S.B. Cronin, Plasmonic
nanoparticle arrays with nanometer separation for high-performance SERS
substrates, Nano Lett. 10 (2010) 2749–2754, http://dx.doi.org/10.1021/
nl904170g.

15] X.Y. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, Ultrastable
substrates for surface enhanced Raman spectroscopy: Al2O3 overlayers
fabricated by atomic layer deposition yield improved anthrax biomarker
detection, J. Am.  Chem. Soc. 128 (2006) 10304–10309, http://dx.doi.org/10.
1021/ja0638760.

16] J.T. Bahns, A. Imre, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, L.H. Chen, U.
Welp, Enhanced Raman scattering from focused surface plasmons, Appl. Phys.
Lett. 91 (2007), 081104, http://dx.doi.org/10.1063/1.2759985.

17]  J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne,
Biosensing with plasmonic nanosensors, Nat. Mater. 7 (2008) 442–453,
http://dx.doi.org/10.1038/nmat2162.

18] K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Preparation and
characterization of Au colloid monolayers, Anal. Chem. 67 (1995) 735–743,
http://dx.doi.org/10.1021/ac00100a008.

19] A. Wei, B. Kim, B. Sadtler, S.L. Tripp, Tunable surface-enhanced Raman
scattering from large gold nanoparticle arrays, Chemphyschem. 12 (2001)
743–745,
doi:10.1002/1439-7641(20011217)2:12<743::aid-cphc743>3.0.co;2-1.

20] P.Z. EI-Khoury, E. Khon, Y. Gong, A.G. Joly, P. Abellan, J.E. Evans, N.D.
Browning, D.Hu M.  Zamkov, Electric field enhancement in a self-assembled
2D array of silver nanospheres, J. Chem. Phys. 141 (2014) 214308, http://dx.
doi.org/10.1063/1.4902905.

21] H. Chen, Z.H. Sun, W.H. Ni, K.C. Woo, H.Q. Lin, L.D. Sun, C.H. Yan, J.F. Wang,
Plasmon coupling in clusters composed of two-dimensionally ordered gold
nanocubes, Small. 5 (2009) 2111–2119, http://dx.doi.org/10.1002/smll.
200900256.

22] M.  Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D. Qin, Y.N.
Xia, Controlling the synthesis and assembly of silver nanostructures for
plasmonic applications, Chem. Rev. 111 (2011) 3669–3712, http://dx.doi.org/
10.1021/cr100275d.

23] J. Kumar, K.G. Thomas, Surface-enhanced Raman spectroscopy: investigations
at  the nanorod edges and dimer junctions, J. Phys. Chem. Lett. 2 (2011)
610–615, http://dx.doi.org/10.1021/jz2000613.

24]  L. Zhang, C. Guan, Y. Wang, J. Liao, Highly effective and uniform SERS
substrates fabricated by etching multi-layered gold nanoparticle arrays,
Nanoscale. 8 (2016) 5928–5937, http://dx.doi.org/10.1039/c6nr00502k.

25]  N.D. Israelsen, C. Hanson, E. Vargis, Nanoparticle properties and synthesis
effects on surface-enhanced raman scattering enhancement factor: an
introduction, The Scientific World Journal. (2015) 1–12, http://dx.doi.org/10.
1155/2015/124582.

26] S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J.
Natan, G.C. Schatz, R.P. Van Duyne, Structure enhancement factor
relationships in single gold nanoantennas by surface-enhanced raman
excitation spectroscopy, J. Am.  Chem. Soc. 135 (2013) 301–308, http://dx.doi.
org/10.1021/ja309300d.

27] E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E.
Blackie, P.G. Etchegoin, Experimental verification of the SERS electromagnetic
model beyond the E4 approximation: polarization effects, J. Phys. Chem. C
Lett. 112 (2008) 8117–8121, http://dx.doi.org/10.1021/jp802219c.

28] M.  Fan, G.F.S. Andrade, A.G. Brolo, A review on the fabrication of substrates for
surface enhanced Raman spectroscopy and their applications in analytical
chemistry, Anal. Chim. Acta 693 (2011) 7–25, http://dx.doi.org/10.1016/j.aca.
2011.03.002.

29] S. Hong, X. Li, Optimal size of gold nanoparticles for surface-enhanced Raman
spectroscopy under different conditions, J. Nanomater. (2013) 1–9, http://dx.
doi.org/10.1155/2013/790323.
30] M.  Moskovits, Surface-enhanced Raman spectroscopy: a brief retrospective, J.
Raman Spectrosc. 36 (2005) 485–496, http://dx.doi.org/10.1002/jrs.1362.

31] K.G. Stamplecoskie, J.C. Scaiano, V.S. Tiwari, H. Anis, Optimal size of silver
nanoparticles for surface-enhanced raman spectroscopy, J. Phys. Chem. C 115
(2011) 1403–1409, http://dx.doi.org/10.1021/jp106666t.
nd Actuators A 314 (2020) 112225 9

32] P.N. Njoki, I.-I.S. Lim, D. Mott, et al., Size correlation of optical and
spectroscopic properties for gold nanoparticles, J. Phys. Chem. C 111 (2007)
14664–14669, http://dx.doi.org/10.1021/jp074902z.

33] S.S. Masango, R.A. Hackler, N. Large, A.I. Henry, M.O.  McAnally, G.C. Schatz,
P.C.  Stair, R.P. Van Duyne, High-resolution distance dependence study of
surface-enhanced raman scattering enabled by atomic layer deposition, Nano
Lett. 16 (2016) 4251–4259, http://dx.doi.org/10.1021/acs.nanolett.6b01276.

34] V.T.N. Linh, J. Moon, C.W. Mun, V. Devaraj, J.-W. Oh, S.-Gy. Park, D.-H. Kim, J.
Choo, Y.-I. Lee, H.S. Jung, A facile low-cost paper-based SERS substrate for
label-free molecular detection, Sens. Actuators B Chem. 291 (2019) 369–377,
http://dx.doi.org/10.1016/j.snb.2019.04.077.

35] A. Bonyár, I. Csarnovics, M.  Veres, L. Himics, A. Csik, J. Kámán, B. Balázs, S.
Kökényesi, Investigation of the performance of thermally generated gold
nanoislands for LSPR and SERS applications, Sens. Actuators B Chem. 255
(2018) 433–439, http://dx.doi.org/10.1016/j.snb.2017.08.063.

36] Y. Huang, Q. Zhou, M.  Hou, L. Ma, Z. Zhang, Nanogap effects on near- and
far-field plasmonic behaviors of metallic nanoparticle dimers, Phys. Chem.
Chem. Phys. 17 (2015) 29293–29298, http://dx.doi.org/10.1039/c5cp04460j.

37] Z. Skeete, H.-W. Cheng, Q.M. Ngo, Ch. Salazar, W.  Sun, J. Luo, Ch-J. Zhong,
Squeezed’ interparticle properties for plasmonic coupling and SERS
characteristics of duplex DNA conjugated/linked gold nanoparticles of
homo/hetero-sizes, Nanotechnology 27 (2016) 325706, http://dx.doi.org/10.
1088/0957-4484/27/32/325706.

38] H. Xu, E.J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo,
Ch. Larsson, F. Hook, M.  Kall, Interparticle coupling effects in
surface-enhanced raman scattering Proc. SPIE 4258, Nanoparticles and
Nanostructured Surfaces: Novel Reporters With Biological Applications, 4258,
2001, pp. 35–42, http://dx.doi.org/10.1117/12.430771.

39] Z. Zhu, T. Zhu, Zh. Liu, Raman scattering enhancement contributed from
individual gold nanoparticles and interparticle coupling, Nanotechnology 15
(2004) 357–364, http://dx.doi.org/10.1088/0957-4484/15/3/022.

40] K. Nehra, S.K. Pandian, M.S.S. Bharati, V.R. Soma, Enhanced catalytic and SERS
performance of shape/size controlled anisotropic gold nanostructures, New J.
Chem. 43 (2019) 3835–3847, http://dx.doi.org/10.1039/C8NJ06206D.

41] H. Yockell-Leliévre, F. Lussier, J.-F. Masson, Influence of the particle shape and
density of self-assembled gold nanoparticle sensors on LSPR and SERS, J. Phys.
Chem. C 119 (2015) 28577–28585, http://dx.doi.org/10.1021/acs.jpcc.
5b09570.

42] Ch.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Surface-enhanced raman
spectroscopy of self-assembled monolayers: sandwich architecture and
nanoparticle shape dependence, Anal. Chem. 77 (2005) 3261–3266, http://dx.
doi.org/10.1021/ac048176x.

43] NanoComposix, Tools, NanoComposix, 2014 (accessed 30 Jan 2020 http://
nanocomposix.com/pages/tools.

44] M.  Quinten, Optical Properties of Nanoparticle Systems: Mie  and Beyond,
Wiley-VCH, Weinheim, Germany, 2011.

45] Y.-H. Kwon, R. Ossig, F. Hubenthal, H.-D. Kronfeldt, Influence of surface
plasmon resonance wavelength on SERS activity of naturally grown silver
nanoparticle ensemble, J. Raman Spectrosc. 43 (2012) 1385–1391, http://dx.
doi.org/10.1002/jrs.4093.

46] B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS:
materials, applications, and the future, Mater. Today 15 (2012) 16–25, http://
dx.doi.org/10.1016/S1369-7021(12)70017-2.

47] R. Pilot, R. Signorini, C. Durante, L. Orian, M.  Bhamidipati, L. Fabris, A review
on surface-enhanced raman scattering, Biosensors 9 (2019) 57, http://dx.doi.
org/10.3390/bios9020057.

48] Y. Fleger, Y. Mastai, M.  Rosenbluh, D.H. Dressler, Surface enhanced Raman
spectroscopy of aromatic compounds on silver nanoclusters, Surf. Sci. 603
(2009) 788–793, http://dx.doi.org/10.1016/j.susc.2009.01.020.

49] Benzophenone datasheet in the NIST Chemistry WebBook, https://webbook.
nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec.

Biographies

Petra Pál is a 1st year Ph.D. student at the Department of Experimental Physics,
Faculty of Science and Technology, University of Debrecen. She has an M.Sc. degree in
material science. She has 3 years of experience in Raman spectroscopy and Surface-
enhanced Raman Scattering. She did her master thesis in this field and now continue
the work during her Ph.D. studies.

Attila Bonyár is an associate professor at the Department of Electronics Technology
at  Budapest University of Technology and Economics. He has two  M.Sc. degrees in
electrical engineering and biomedical engineering and a Ph.D. in electrical engineer-
ing. He has 14 years of experience in the development of optical and electrochemical,
affinity-type biosensors, utilizing low-dimensional nanomaterials, plasmonics, and
nanometrology (AFM).

Miklós Veres is the head of the Department of Applied and Nonlinear Optics at the

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics. He
has an M.Sc. degree in physics and a Ph.D. in physics in the field of investigation
of  carbon materials with Raman spectroscopy. He has 20 years of experience in
Raman Spectroscopy, developing the SRS technique. He is leading a project based
on nanostructures and applied spectroscopy.

dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
dx.doi.org/10.1002/jrs.1355
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0040
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.1039/c7cs00786h
dx.doi.org/10.3390/coatings7020026
dx.doi.org/10.3390/coatings7020026
dx.doi.org/10.3390/coatings7020026
dx.doi.org/10.3390/coatings7020026
dx.doi.org/10.3390/coatings7020026
dx.doi.org/10.3390/coatings7020026
dx.doi.org/10.3390/coatings7020026
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0055
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a9276
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1002/9780470027318.a2516
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/nl904170g
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1021/ja0638760
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1063/1.2759985
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1038/nmat2162
dx.doi.org/10.1021/ac00100a008
dx.doi.org/10.1021/ac00100a008
dx.doi.org/10.1021/ac00100a008
dx.doi.org/10.1021/ac00100a008
dx.doi.org/10.1021/ac00100a008
dx.doi.org/10.1021/ac00100a008
dx.doi.org/10.1021/ac00100a008
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0095
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1063/1.4902905
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1002/smll.200900256
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/cr100275d
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1021/jz2000613
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1039/c6nr00502k
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1155/2015/124582
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/ja309300d
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1021/jp802219c
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1016/j.aca.2011.03.002
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1155/2013/790323
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1002/jrs.1362
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp106666t
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/jp074902z
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1021/acs.nanolett.6b01276
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2019.04.077
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1016/j.snb.2017.08.063
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1039/c5cp04460j
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1088/0957-4484/27/32/325706
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1117/12.430771
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1088/0957-4484/15/3/022
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1039/C8NJ06206D
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/acs.jpcc.5b09570
dx.doi.org/10.1021/ac048176x
dx.doi.org/10.1021/ac048176x
dx.doi.org/10.1021/ac048176x
dx.doi.org/10.1021/ac048176x
dx.doi.org/10.1021/ac048176x
dx.doi.org/10.1021/ac048176x
dx.doi.org/10.1021/ac048176x
http://nanocomposix.com/pages/tools
http://nanocomposix.com/pages/tools
http://nanocomposix.com/pages/tools
http://nanocomposix.com/pages/tools
http://nanocomposix.com/pages/tools
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
http://refhub.elsevier.com/S0924-4247(20)30721-4/sbref0220
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1002/jrs.4093
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.1016/S1369-7021(12)70017-2
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.3390/bios9020057
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
dx.doi.org/10.1016/j.susc.2009.01.020
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec


1 nsors a

L
a
H
o
R

L
m
p
h

L
F

als, and investigation of the stimulation of photo-induced effects by the plasmon
0 P. Pal, A. Bonyár, M.  Veres et al. / Se

ászló Himics is a research fellow at the Department of Applied and Nonlinear Optics
t  Institute for Solid State Physics and Optics, Wigner Research Centre for Physics.
e  has an M.Sc. degree in physics and a Ph.D. in physics in the field of investigation
f  diamond materials with Raman spectroscopy. He has 10 years of experience in
aman spectroscopy.

ászló Balázs is a physicist at the University of Debrecen. He has an M.Sc. degree in
aterial science in the field of creation of metallic nanoparticles, investigating their
arameters and their Localized Surface Plasmon Resonance characteristics. He did
is  master thesis in this field and now continue the co-operation with our group.

aura Juhász is a 4th year Ph.D. student at the Department of Solid State Physics,
aculty of Science and Technology University of Debrecen. She has an M.Sc. degree
nd Actuators A 314 (2020) 112225

in physics. She is working in the field of creation and investigation of metallic-
plasmonic structures and their properties. She has 4 years of experience in the field
of Scanning Electron Microscope.

Istvan Csarnovics is an assistant professor at the Department of Experimental
Physics, Faculty of Science and Technology, University of Debrecen. He has an M.Sc.
in  physics and a Ph.D. in physics in the field of photosensitive, inorganic materi-
field of gold nanoparticles. He has 12 years of experience in the field of atomic
force microscopy, creation and investigation of metallic nanoparticles, few years
experience in the field of plasmonic sensing devices, Raman spectroscopy, and
Surface-enhanced Raman scattering effect.


	A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nano...
	1 Introduction
	2 Materials and methods
	2.1 Preparation of SERS substrates
	2.2 Characterization of SERS substrates
	2.3 Sample preparation for SERS measurements
	2.4 SERS measurements

	3 Results and discussion
	3.1 Gold substrates
	3.2 Silver substrates

	4 Conclusions
	Declaration of Competing Interest
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References

	Biographies

