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A new approach is proposed to reduce the basis set incompleteness error of the triple

excitation correction in explicitly correlated coupled-cluster singles and doubles with

perturbative triples [CCSD(T)] calculations. Our method is similar to the intuitive

triples correction approach of Knizia and co-workers [J. Chem. Phys. 130, 054104

(2009)], but in contrast to the latter, is size-consistent. The new approximation is

easy to implement, and its overhead is negligible with respect to the conventional

(T) correction. The performance of the approach is assessed for atomization, reac-

tion, and interaction energies as well as for bond lengths and harmonic vibrational

frequencies. The advantages of its size-consistency are also demonstrated.
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I. INTRODUCTION

If accurate results are desired in computational chemistry, mean-field techniques, such as

Hartree–Fock (HF) or density functional theory (DFT), are not sufficient, but more reliable

correlation methods are needed. Even low-level correlation methods like the second-order

Møller–Plesset (MP2) perturbation theory1 are not accurate enough for most purposes, and

the coupled-cluster (CC) approach2 is the method of choice if high-accuracy is required. Nev-

ertheless, the CC model including single and double excitations (CCSD)3 is not significantly

more trustworthy than modern DFT methods, and the consideration of triple excitations

is also recommended4,5. The most successful CC approach including triple excitations is

the CCSD with perturbative triples [CCSD(T)] method proposed by Raghavachari and co-

workers6. The accuracy provided by this method is adequate for most chemical applications

in the domain of single-reference systems, and it is often referred to as the “gold standard”

of quantum chemistry. It had been originally derived for canonical HF references, but later

it was also extended to the non-canonical case7,8. Subsequently, the analytic gradients9 and

second-derivatives10–12 were also implemented for this method facilitating the computation

of accurate properties. While its original proposition was more or less heuristic6, a more

rigorous derivation of the CCSD(T) method was presented by Stanton13. His approach was

later also the basis for the generalization of perturbative corrections to higher-order CC

methods14,15. Nowadays, several highly-efficient implementations of CCSD(T) facilitates its

use16–22, and the state-of-the-art local correlation techniques also enable CCSD(T) calcula-

tions for molecules of hundreds or thousands of atoms23–26.

Besides the level of correlation, the other factor seriously limiting the accuracy of com-

putational results is the quality of the atomic orbital (AO) basis set. It has been known for

a long time that large basis sets including functions of high angular momentum are required

to reduce the error stemming from the incompleteness of the basis below an acceptable mag-

nitude. Though the complete basis set (CBS) limit can be sufficiently approached utilizing

convergent basis set hierarchies27 and extrapolation techniques28–30, such calculations are

still rather expensive with correlated methods.

A partial solution to this problem is offered by explicitly correlated approaches31–33. These

approaches are based on wave functions that explicitly contain the interelectronic distances

thereby significantly reducing the basis set requirements. The development of explicitly cor-
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related methods was initiated by Kutzelnigg in the mid 80’s34, and it was later continued

by Kutzelnigg and Klopper31,35. In the early explicitly correlated models, termed the R12

ansätze, the correlation factor was linear in the interelectronic distance. The realization of

this theory at the MP2 level was accomplished already in 198735, and it was further improved

in the 90’s31. Parallel to these efforts, the theory was also extended to the CCSD level by

Noga et al.36 Over the years, the explicitly correlated theory went through significant evolu-

tion. The linear R12 correlation factor was replaced by the more advanced exponential F12

factors37, which systematically outperform the linear factor. A fixed amplitude approach

was proposed that remarkably simplifies the theory without sacrificing accuracy38. For the

resolution of the identity approximation, which is the cornerstone of explicitly correlated

methods, a new, numerically robust scheme, the complementary auxiliary basis (CABS)

approach was introduced39,40. The density fitting (DF) technique, which considerably accel-

erates the evaluation of the required integrals, was adapted to explicitly correlated models41.

Alternative formulations for the matrix elements of explicitly correlated MP2 theory were

put forward that result in less demanding calculations and also improve the convergence

properties toward the CBS limit42. Thanks to these achievements, by now MP2-F12 theory

probably reached its final form43–45.

The CC theory also benefited from the aforementioned achievements. A fully explicitly

correlated CCSD method with the Slater-type geminal correlation factor, CCSD-F12, was

introduced and implemented46–48. Though this approach was more efficient than its prede-

cessors, it was still too costly for general applications. At the same time, a more approxi-

mate explicitly correlated CCSD method, CCSD(F12), was also developed, which is almost

as accurate as CCSD-F12 but only three to five times as expensive as standard CCSD49,50.

Subsequently, even more cost-effective variants were proposed including the CCSD-F12a and

CCSD-F12b schemes of Knizia, Adler, and Werner (KAW)51,52, the CCSD(2)F12 approach of

Valeev and Crawford53,54, and the CCSD(F12*) method of Hättig and co-workers55. Bench-

mark studies show that these methods preserve the accuracy of the CCSD-F12 model, while

their computational expenses are not more than 1.5-times higher than those for conventional

CCSD56.

Concerning higher excitations, explicitly correlated iterative CC methods including up to

quadruple excitations were published by Shiozaki and co-workers57. For the rigorous treat-

ment of perturbative triple excitations, only one attempt has been made so far, by Köhn,
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who developed an explicitly correlated (T) correction58 based on his modified ansatz59.

Unfortunately his approach is relatively expensive and turned out to be only moderately

competitive with the conventional (T) correction. A less rigorous approximation was pro-

posed by KAW52, who simply scaled the (T) correction computed in the conventional way

by the ratio of the MP2-F12 and MP2 correlation energies. Though their scheme is practi-

cally costless and performs quite well in practical applications, it is unfortunately not size

consistent, which may cause problems if the size of the system is increased. Here, we propose

a similar heuristic approach, which is, however, size consistent.

II. THEORY

The (T) correction can be evaluated as6–8

E(T) =
1

36

∑
ijkabc

W abc
ijk t

abc
ijk , (1)

where i, j, . . . (a, b, . . . ) denote correlated (semi-)canonical spin-orbitals, while p, q, . . . will

stand for generic indices. Here, tabcijk is a second-order triple excitation amplitude expressed

with converged CCSD doubles amplitudes, tabij , as

tabcijk =

[
P̂ (a|bc)P̂ (ij|k)

∑
d

〈bc||dk〉tadij − P̂ (ab|c)P̂ (i|jk)
∑
l

〈lc||jk〉tabil

]
/Dabc

ijk , (2)

where 〈pq||rs〉 is a two-electron integral in the Dirac notation, and Dabc
ijk is the usual energy

denominator, Dab···
ij··· = fii + fjj + · · · − faa − fbb − · · · with fpq as a Fock-matrix element.

Operator P̂ (p|qr) interchanges p with indices q and r in all possible ways in the subsequent

expression and multiplies it by (−1)P with P being the parity of the permutation, e.g.,

P̂ (a|bc)
∑

d〈bc||dk〉tadij =
∑

d〈bc||dk〉tadij −
∑

d〈ac||dk〉tbdij +
∑

d〈ba||dk〉tcdij . Intermediate W abc
ijk

is defined by

W abc
ijk = Dabc

ijk t
abc
ijk + P̂ (ab|c)P̂ (i|jk)

(
tai 〈jk||bc〉+ fait

bc
jk

)
, (3)

where tai is a converged CCSD single excitation amplitude.

In most explicitly correlated CCSD(T) theories50,51,55, the above perturbative triples cor-

rection is employed without any modification, and explicit correlation is only introduced at

the CCSD level. Alternatively, one can use the pragmatic approach of KAW52 and scale the

(T) correction as

E(T∗) =
EMP2−F12

EMP2
E(T). (4)
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Here, EMP2 is the conventional MP2 correlation energy calculated with the given AO basis

set as

EMP2 =
∑
ai

f 2
ai

Da
i

+
1

4

∑
ijab

〈ab||ij〉2

Dab
ij

, (5)

whereas EMP2−F12 denotes the MP2-F12 correlation energy,

EMP2−F12 = EMP2 + EF12. (6)

The expression for the F12 correction to the MP2 energy, EF12, depends on the explicitly

correlated approach. For instance, using the 2B ansatz, the F + K commutator approxima-

tion, and fixed amplitudes38,42,45, which approximations are utilized throughout the paper,

the EF12 contribution reads as

EF12 =
1

2

∑
ij

(Bij −Xij + Cij + Vij) , (7)

where intermediates B, X, C, and V are introduced in Appendix A. The rationale behind

this approach is that the MP2 correlation energy and the (T) correction scale similarly with

the size of the basis set. This simple scheme performs remarkably well but unfortunately

lacks size-consistency since the ratios EMP2−F12/EMP2 are, in general, different for different

non-interacting subsystems52. A simple way to ensure size-consistency is to use the same

scaling factor for all chemical species, determined, e.g., for the largest system23. However,

this approach could be impractical when dealing with a large number of molecules exhibiting

different rate of basis set convergence.

To define an improved (T) correction, we follow a slightly different route. Instead of the

entire MP2 correlation energy and (T) correction, we only suppose that the contributions of

a particular molecular orbital (MO) to the these quantities scale similarly with the basis set

size. Consequently, we scale the contribution of each MO to the (T) correction separately

with the ratio of the corresponding second-order contributions. To that end, we rewrite the

(T) correction by pulling out one of the occupied summation indices as

E(T) =
∑
i

1

36

∑
jkabc

W abc
ijk t

abc
ijk =

∑
i

δE
(T)
i . (8)

Analogously, the MP2 correlation energy and its F12 correction can be recast as

EMP2 =
∑
i

(∑
a

f 2
ai

Da
i

+
1

4

∑
jab

〈ab||ij〉2

Dab
ij

)
=
∑
i

δEMP2
i (9)
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and

EF12 =
∑
i

(
1

2

∑
j

Bij −Xij + Cij + Vij

)
=
∑
i

δEF12
i , (10)

respectively, and then the MP2-F12 correlation energy can also be split up as

EMP2−F12 =
∑
i

(
δEMP2

i + δEF12
i

)
=
∑
i

δEMP2−F12
i . (11)

With the above definitions, we are in the position to introduce our triple excitation correc-

tion, denoted as (T+), which reads as

E(T+) =
∑
i

δEMP2−F12
i

δEMP2
i

δE
(T)
i =

∑
i

qi δE
(T)
i . (12)

Similar to the (T*) approach, the (T+) correction can be combined with all flavors of

explicitly correlated CCSD, and it also reduces to (T) in the CBS limit because the δEF12
i

terms vanish in that limit. On the other hand, since the contribution of an orbital is scaled

separately with a factor that is specific to that orbital, the above correction is size-consistent

(see Appendix B for an in depth discussion of size-consistency). Moreover, one also expects

a more balanced performance from the (T+) correction as the treatment of the basis set

incompleteness of the correlation contribution is orbital specific.

To further analyze the properties of the (T+) correction, we can rewrite it exploiting Eq.

(8) and the antisymmetry of intermediate W and the cluster amplitudes as

E(T+) =
1

3

(∑
i

qi δE
(T)
i +

∑
j

qj δE
(T)
j +

∑
k

qk δE
(T)
k

)

=
1

3

(∑
i

qi
1

36

∑
jkabc

W abc
ijk t

abc
ijk +

∑
j

qj
1

36

∑
ikabc

W abc
jik t

abc
jik +

∑
k

qk
1

36

∑
jiabc

W abc
kji t

abc
kji

)

=
1

36

∑
ijkabc

1

3
(qi + qj + qk)W abc

ijk t
abc
ijk . (13)

First, the above equation offers an alternative interpretation of the (T+) correction. It

suggests that E(T+) can also be considered as a (T) correction with a different scaling factor

for each triplet of occupied orbitals. Second, Eq. (13) is more suitable for a computer

implementation. As qi + qj + qk is symmetric, it can be easily implemented in existing (T)

codes irrespective of the order and restrictions of the loops running over the summation

indices, and the additional costs arising due to the multiplication with the qi + qj + qk

factors are negligible. Furthermore, the δEMP2
i and δEF12

i contributions required for the qi
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scaling factors can also be simply evaluated from quantities that are anyway computed in

an MP2-F12 calculation preceding an explicitly correlated CCSD(T) calculation. Thus, the

overhead of the (T+) correction is insignificant.

Eq. (13) also suggests that the contribution of the triplets of occupied orbitals could also

be scaled with other quantities. An intuitive choice is to use the quotients of pair energies.

The MP2, F12, and MP2-F12 pair energies are defined, respectively, as

δEMP2
ij =

1

2

∑
ab

〈ab||ij〉2

Dab
ij

, (14)

δEF12
ij = Bij −Xij + Cij + Vij, (15)

and

δEMP2−F12
ij = δEMP2

ij + δEF12
ij . (16)

Note that, similar to the orbital contributions, the sum of the above pair energies over all

pairs of orbitals gives back the total MP2 correlation energy, F12 correction, and MP2-F12

correlation energy, respectively. We can evaluate the ratios of the MP2-F12 and MP2 pair

energies as

qij =
δEMP2−F12

ij

δEMP2
ij

, (17)

which quantities are proportional with the basis set incompleteness of the MP2 pair energies.

Now, an alternative (T+) correction can be defined as

E(T+)′ =
1

36

∑
ijkabc

1

3
(qij + qik + qjk)W abc

ijk t
abc
ijk . (18)

This triples correction has the same favorable properties as (T+), that is, it size-consistent,

easy to implement, and practically costless. We also implemented this alternative form of

the (T+) correction. In test calculations, we found that the performance of the two (T+)

variants is similar, but in average, the first form of the (T+) correction is somewhat more

accurate. Consequently, in the following, we will only discuss the first variant.

We note that here, our new approach has been introduced for the (T) correction, but

it can also be applied to reduce the basis set incompleteness error of other methods whose

energy expression is similar to Eq. (1). These include numerous many-body methods, most

notably, higher-order perturbative CC approaches, such as the (Q) correction14,15. These

avenues will be explored in further studies.
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III. BENCHMARK CALCULATIONS

A. Computational details

The present approach has been implemented in the Mrcc suite of quantum chemical

programs60,61, which is also used in all the calculations. The technical details of our explicitly

correlated CCSD implementation will be discussed elsewhere. The conventional CCSD(T)

parts of the computations utilize the hand-optimized, parallel and (partially) integral-direct

open- and closed-shell DF-CCSD(T) implementations of the Mrcc suite22,61,62.

As the AO basis set, the correlation consistent X-tuple-ζ cc-pVXZ-F12 (X = D,

T, Q) sets developed for explicitly correlated calculations by Peterson et al.63 were em-

ployed together with the corresponding cc-pVXZ-F12-OPTRI CABS bases of Yousaf and

Peterson64,65. In all calculations, the DF approximation was invoked at both the HF and the

correlated levels. In the explicitly correlated calculations, the fitting bases were the aug-cc-

pV(X + 1)Z-RI-JK sets of Weigend66 and the aug-cc-pwCV(X + 1)Z-RI bases of Hättig67,

respectively. The pseudopotential-based cc-pVXZ-PP-F12, cc-pVXZ-PP-F12-OPTRI, and

cc-pVXZ-PP-F12-RI bases of Hill and Peterson68 were employed for the post-d main group

elements in combination with the corresponding small-core pseudopotentials69,70. A Slater-

type f12 correlation factor was used with exponents of 0.9, 1.0, and 1.1 with the cc-pVDZ-

F12, cc-pVTZ-F12, and cc-pVQZ-F12 basis sets, respectively63. Six Gaussians were used

to fit the correlation factor, and the expansion coefficients were taken from Ref. 71. In

the reference calculations with the conventional CCSD(T) method, Dunning’s augmented

correlation consistent pentuple- and hextuple-ζ basis sets27,72–74 were used together with the

corresponding HF66 and correlation75 fitting bases.

For the CCSD step of the explicitly correlated CC calculations, the CCSD(F12*) approach

of Hättig and co-workers was applied55. For the open-shell species, restricted open-shell HF

orbitals were used. The core electrons were frozen in all correlation calculations.

For benchmarking our method for thermochemistry, the closed- and open-shell reaction

energy and atomization energy test sets of KAW52 were taken. Only those species were

considered for which canonical CCSD(T) reference results extrapolated from pentuple- and

hextuple-ζ basis sets were published in Ref. 52, but the reference values were recalculated to

avoid any inconsistency. The test sets include 28 and 48 reactions of closed- and open-shell
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systems, respectively, as well as 49 atomization energies.

The performance of the new method for molecular properties was assessed for the test

set of Knizia76 including six closed-shell (HF, N2, CO, BF, F2, C2) and seven open-shell

(OH, NH, CH, CN, NO, O2, CF) diatomic molecules. The bond lengths and the har-

monic vibrational frequencies were computed for the lowest electronic state of the species.

The geometry optimizations were carried out with the Newton method applying numerical

derivatives. The force constants were evaluated via the 5-point central difference formula.

The reference values were also recomputed.

Further test calculations were carried out for the complexes of the water molecule and

the chloride anion with π-electron systems. The complexes of water with ethyne, benzene,

and pyridine were taken from the S66 compilation of Řezáč et al.77 From the anion-π test

set of Garau and co-workers78, the complexes of the chloride ion with s-triazine (TAZ)

and trifluoro-s-triazine (TFZ) were considered. A linked system of two TAZ moieties was

also studied (L-TAZ2 of Fig. 1) representing realistic systems designed for selective halide-

binding79. Small halogen-bonded complexes of hydrogen cyanide and formaldehyde with

nine dihalogen molecules were taken from the XB18 compilation of Kozuch and Martin80.

To characterize the performance of the methods, the mean absolute error (MAE), the

root mean square (RMS) deviation, and the maximum error (MAX) of the computed results

will be applied.

FIG. 1. A linked system of two s-triazine moieties (L-TAZ2) binding with an iodide ion as a

representative of realistic halide-binding ion traps79.
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B. Atomization energies

To evaluate the performance of new method, first, the atomization energies were com-

puted for the species of the KAW test set. The statistical error measures for the (T), (T*),

and (T+) corrections, all computed with converged CCSD(F12*) amplitudes, are compiled

in Table I.

TABLE I. Errors of perturbative triples corrections (in kJ/mol) for the atomization energies of the

KAW test set.

Basis set Error (T) (T*) (T+)

cc-pVDZ-F12 MAE 4.03 0.84 0.83

RMS 4.77 1.18 1.15

MAX 10.09 3.00 2.95

cc-pVTZ-F12 MAE 1.82 0.26 0.24

RMS 2.16 0.34 0.32

MAX 4.82 0.88 0.74

cc-pVQZ-F12 MAE 0.88 0.14 0.12

RMS 1.06 0.18 0.16

MAX 2.30 0.56 0.46

As we can see, the performance of the (T+) correction is very similar to that of (T*).

Both methods effectively reduce the basis-set error of the (T) contribution. Depending on

the basis set, they decrease the average (maximum) error by a factor of 4 to 7 (3 to 6). The

gain in the accuracy is significantly larger with the triple-ζ basis set than with cc-pVDZ-F12,

and it is only moderately smaller with the quadruple-ζ basis. Of course, we should keep in

mind that the uncertainty of the reference data is almost as large as the errors of the (T*)

and (T+) approaches, thus the cc-pVQZ-F12 results are less representative. Concerning

the basis set convergence, the error is reduced by about a factor of 3 to 4 when going from

cc-pVDZ-F12 to cc-pVTZ-F12, while the improvement is more moderate when the cardinal

number of the basis set is increased to 4. Nevertheless, the errors are under 1 kJ/mol

already with the triple-ζ basis set. Consequently, this basis set can be used if an error of 1

kJ/mol is acceptable. The results suggest that (T+) slightly but consistently outperforms
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(T*). Again, for the aforementioned reason, only the differences of about 0.1 kJ/mol in the

maximum errors can be considered significant from this point of view as the differences of

the MAE and RMS values are smaller than the uncertainty of the reference.

C. Reaction energies

Next, we analyze the errors of the reaction energies obtained for the test set of KAW.

The results for the reactions of closed- and open-shell species are presented in Tables II and

III, respectively.

TABLE II. Errors of perturbative triples corrections (in kJ/mol) for the closed-shell reaction en-

ergies of the KAW test set.

Basis set Error (T) (T*) (T+)

cc-pVDZ-F12 MAE 1.75 1.06 1.04

RMS 2.81 1.42 1.40

MAX 9.21 3.48 3.35

cc-pVTZ-F12 MAE 0.77 0.38 0.39

RMS 1.36 0.55 0.55

MAX 5.18 1.90 1.84

cc-pVQZ-F12 MAE 0.37 0.14 0.15

RMS 0.65 0.19 0.20

MAX 2.43 0.48 0.46

Inspecting the error metrics for the reactions involving only closed-shell molecules, we

can see that the behavior of the various triples corrections is somewhat different from that

observed for the atomization energies. While the error of the canonical (T) correction is

smaller for the reaction energies than for the atomization energies, the improvement brought

by the scaled variants is smaller (cf. Tables I and II), especially with the triple-ζ basis. They

only decrease the average (maximum) error by a factor of 2 to 3 (2 to 5), and these factors

are larger for the quadruple-ζ basis set. The basis set convergence is also slower: the basis

set error is halved between the double- and triple-ζ bases, but the reduction is larger when

going to cc-pVQZ-F12. Whereas the average error is smaller than 1 kJ/mol with cc-pVTZ-
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F12, the quadruple-ζ basis is needed to achieve this accuracy in the maximum errors. The

performances of the (T*) and (T+) schemes are also very similar in this case. The average

errors are indistinguishable, while the maximum errors are slightly better for (T+) with the

cc-pVDZ-F12 and cc-pVTZ-F12 basis sets.

TABLE III. Errors of perturbative triples corrections (in kJ/mol) for the open-shell reaction ener-

gies of the KAW test set.

Basis set Error (T) (T*) (T+)

cc-pVDZ-F12 MAE 2.72 1.28 1.29

RMS 3.30 1.88 1.90

MAX 10.01 6.97 6.93

cc-pVTZ-F12 MAE 1.19 0.55 0.55

RMS 1.48 0.84 0.83

MAX 4.07 2.65 2.56

cc-pVQZ-F12 MAE 0.58 0.28 0.27

RMS 0.72 0.45 0.44

MAX 1.83 1.47 1.46

The conclusions are similar for the reactions containing also open-shell species, but the

improvement over the canonical (T) correction is even more moderate. The scaled (T)

variants reduce the average basis set error by a factor of about 2 independently of the

basis set, and the drop in the maximum error is even smaller. The basis set convergence is

also slow, the basis set error is only reduced by a factor of 2 when increasing the cardinal

number by 1. Seeking the reason for the less satisfactory performance of the modified

(T) corrections for the open-shell reactions, one finds that their error is relatively large for

particular species, e.g., the oxygen molecule. These species appear in a couple of reactions

with big stoichiometric coefficients resulting in large errors for those reactions and worsening

the error statistics. The average performances of the (T*) and (T+) approaches is again

indistinguishable. A tiny statistically significant difference can only be observed for the

maximum error with the triple-ζ basis set.
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D. Molecular properties

To also evaluate the performance of the approximate triple excitation models for molecu-

lar properties, the bond lengths and harmonic vibrational frequencies were calculated for the

test set of Knizia76. The error measures for the bond lengths and frequencies are presented

in Tables IV and V, respectively.

TABLE IV. Errors of perturbative triples contributions (in pm) to the bond lengths of diatomic

molecules.

Basis set Error (T) (T*) (T+)

cc-pVDZ-F12 MAE 0.108 0.021 0.028

RMS 0.147 0.024 0.043

MAX 0.424 0.049 0.131

cc-pVTZ-F12 MAE 0.042 0.008 0.009

RMS 0.057 0.009 0.012

MAX 0.160 0.015 0.028

cc-pVQZ-F12 MAE 0.022 0.004 0.005

RMS 0.031 0.005 0.007

MAX 0.091 0.010 0.019

Concerning bond lengths, the conclusions are in line with those for the thermochemical

properties, but here, the (T*) approach seems to perform somewhat better than (T+),

especially the maximum deviations are considerably better with the former. The (T*)

approach reduces the average (maximum) error of the genuine (T) method by factors of 5 to

7 (9 to 11) with the various basis sets, while the corresponding values vary between 3 and 5

(3 and 6) with (T+). As to the basis set convergence, we realize that the error is decreased

by about a factor of 3 (2) when going from cc-pVDZ-F12 to cc-pVTZ-F12 (cc-pVTZ-F12 to

cc-pVQZ-F12). The average accuracy of 0.0001 Å achieved with the triple-ζ basis is already

acceptable for almost all applications.

Turning our attention to the frequencies, we can see that, for this property, the improve-

ment over the conventional (T) approach is less pronounced. The scaled corrections reduce

the error of (T) by a factor of 3–4, and the performance of (T*) is again somewhat more
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TABLE V. Errors of perturbative triples contributions (in cm−1) to harmonic vibrational frequen-

cies of diatomic molecules.

Basis set Error (T) (T*) (T+)

cc-pVDZ-F12 MAE 8.5 2.4 3.0

RMS 9.5 2.9 3.7

MAX 19.1 5.3 7.7

cc-pVTZ-F12 MAE 3.4 0.8 1.0

RMS 3.8 1.0 1.2

MAX 7.4 1.8 2.3

cc-pVQZ-F12 MAE 1.7 0.4 0.5

RMS 1.9 0.6 0.7

MAX 3.8 1.2 1.5

convincing. The basis set convergence follows a similar pattern as that of the bond lengths:

the accuracy is improved by factors of about 3 and 2 when increasing the cardinal number

from 2 to 3 and 3 to 4, respectively. The accuracy attained with the cc-pVTZ-F12 basis is

also quite high and sufficient for most purposes, but spectroscopic, i.e., sub-cm−1 accuracy

cannot be achieved even with the quadruple-ζ basis set. Of course, we should not forget that

the remaining basis set error of the reference is still about 0.1–0.2 cm−1, thus the reference

does not approach spectroscopic accuracy either.

Though the major focus of this paper is on the perturbative triple excitation correc-

tions, it is also instructive to inspect the overall performance of the CCSD(F12*)(T),

CCSD(F12*)(T*), and CCSD(F12*)(T+) methods (see the Supplementary material). As

the basis set error of CCSD(F12*) may cancel with the error of (T), it might happen that

CCSD(F12*)(T) is better than the more advanced approaches. Fortunately, this only occurs

for the bond lengths with the cc-pVDZ-F12 basis. Otherwise, the modified CCSD(F12*)(T)

models are superior to CCSD(F12*)(T), and the performance of CCSD(F12*)(T*) and

CCSD(F12*)(T+) is almost indistinguishable.
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E. Binding energies of complexes

As it has been revealed above, the (T+) correction is quite accurate but its performance

is similar to that of the (T*) approach, probably because the size-consistency error (SCE)

is not pronounced for the small systems considered hitherto. Big SCEs can be expected

for processes where systems of different size and electronic structure interact. Thus, to

demonstrate the benefits of the (T+) correction, first, we carried out benchmark calculations

for the complexes of the water molecule and the chloride anion with π-electron systems.

We computed the (unrelaxed) complexation energies with the various perturbative triples

approaches as well as the SCE of the (T*) correction. The latter quantity was calculated as

the energy of the supersystem separated by a sufficiently large distance minus the energies

of the aromatic molecule and the other species. The results are presented in Table VI.

In absolute terms, the difference between the (T*) and (T+) approaches and the SCE

of the former are not large. Obviously, the correlation between these quantities is perfect,

which means that the SCE directly propagates into the (T*) binding energies. The SCE,

and thus the difference of (T*) and (T+) reaches its maximum in the cc-pVDZ-F12 basis

and diminishes with increasing basis set size as the F12 contribution and consequently the

SCE goes to zero in the CBS limit. The largest absolute error, 2.5 kJ/mol, is measured for

the L-TAZ2-iodide complex with the double-ζ basis. The errors are also above 1 kJ/mol

for the complexes of TAZ and TFZ with chloride and about 0.4-0.5 kJ/mol for the water

complexes. With the triple-ζ basis set, the SCE can still be as large as 0.4 kJ/mol, and it

drops to about 0.1 kJ/mol with cc-pVQZ-F12. The SCE obviously slows down the basis

set convergence of the (T*) correction. While (T+) converges to about 0.1 kJ/mol in the

triple-ζ basis, the basis set error of the (T*) correction is so large even with the quadruple-ζ

basis. It is also important to realize that, in most cases, the error of the (T*) approach is

larger than that of the genuine (T) correction.

Even though the absolute SCEs of the (T*) method seem acceptable, its relative errors

are pronounced. They fluctuate in the 20-50 % interval with the double-ζ basis set and

can still exceed 20 % using the cc-pVTZ-F12 basis. Of course, similar relative errors are

expected for more extensive systems, that is, the absolute errors can be much larger.

An alternative source of SCE could be the different rate of basis set convergence within

the subsystems. In such cases, the scaling factors of (T*) are expected to differ markedly
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TABLE VI. Perturbative triples corrections and SCEs for the (T*) approach (in kJ/mol) for the

binding energies of weakly-bound complexes. All signs are reversed.

Complex Basis (T) (T*) (T+) SCE

Ethyne· · ·H2O cc-pVDZ-F12 0.59 1.06 0.70 0.38

cc-pVTZ-F12 0.59 0.80 0.63 0.17

cc-pVQZ-F12 0.61 0.71 0.63 0.08

Benzene· · ·H2O cc-pVDZ-F12 1.64 2.35 1.92 0.48

cc-pVTZ-F12 1.83 2.18 1.94 0.27

cc-pVQZ-F12 1.85 2.00 1.89 0.12

Pyridine· · ·H2O cc-pVDZ-F12 1.80 2.49 2.07 0.46

cc-pVTZ-F12 1.87 2.22 1.99 0.27

cc-pVQZ-F12 1.88 2.04 1.93 0.12

TAZ· · ·Cl− cc-pVDZ-F12 3.24 5.52 4.00 1.73

cc-pVTZ-F12 3.44 4.05 3.78 0.37

cc-pVQZ-F12 3.55 3.83 3.70 0.17

TFZ· · ·Cl− cc-pVDZ-F12 3.92 5.73 5.02 1.02

cc-pVTZ-F12 4.14 4.54 4.56 0.06

cc-pVQZ-F12 4.32 4.46 4.50 0.00

L-TAZ2· · · I− cc-pVDZ-F12 11.0 15.0 13.9 2.51

for the monomers and the complex. The halogen-bonded dimers of the XB18 compilation

appear to be particularly SCE sensitive from this perspective (see Table VII). The largest

SCE, 1.7 kJ/mol, with cc-pVDZ-F12 was found for the iodine-hydrogen cyanide complex.

While the average SCE of (T*) for the nine HCN-dihalogen complexes of the XB18 set is

1.3 kJ/mol with the cc-pVDZ-F12 basis set, the analogous average SCE for the other nine,

formaldehyde-dihalogen type complexes is only 0.5 kJ/mol. On the example of HCN· · · I2 in

Table VII, we again find a rapid decrease of SCE with increasing basis sets: the SCE drops
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to 0.2 and 0.02 kJ/mol with the cc-pVTZ-F12 and cc-pVQZ-F12 bases, respectively.

TABLE VII. Perturbative triples corrections and SCEs for the (T*) approach (in kJ/mol) for the

binding energies of SCE-sensitive complexes. All signs are reversed.

Complex Basis (T) (T*) (T+) SCE

HCN· · · I2 cc-pVDZ-F12 1.64 3.72 2.16 1.68

cc-pVTZ-F12 2.10 2.50 2.29 0.22

cc-pVQZ-F12 2.22 2.33 2.31 0.02

(CN)2· · · 2I2 cc-pVDZ-F12 4.08 9.49 5.72 4.47

cc-pVTZ-F12 4.97 6.46 5.66 1.01

cc-pVQZ-F12 5.50 6.03 5.80 0.30

HCN· · ·Xe2 cc-pVDZ-F12 0.31 4.23 0.43 3.82

cc-pVTZ-F12 0.51 1.84 0.59 1.27

cc-pVQZ-F12 0.57 1.03 0.61 0.43

The extensivity of the SCE in (T*) is illustrated for the complex of cyanogen with io-

dine molecules [(CN)2· · · 2I2 of Table VII]. Compared to the similar HCN· · · I2 complex, a

difference of more than twice as large is found between the (T*) and (T+) results, while

the corresponding relative errors remain comparable (66–72 % with cc-pVDZ-F12, which

drops to 9–14 % with cc-pVTZ-F12). In rare and particularly unfortunate cases, e.g., when

the iodine atoms of HCN· · · I2 are replaced with xenon atoms, the combination of the small

interaction energies and the sizeable SCE could lead to large relative errors, which remain

214 % and 69 % even with triple- and quadruple-ζ basis sets, respectively (see Table VII).

The unscaled (T) and the (T+) binding energy components converge to the same value also

for the complexes of Table VII. Again, the rate of convergence is accelerated for the (T+)

approach: the basis set incompleteness of (T+) appears to be below 0.2 kJ/mol already with

cc-pVDZ-F12.

These findings point out that the (T*) correction should be employed with caution for

larger systems, especially with smaller basis sets or with subsystems including markedly

different atom types. Since the (T+) approach is free from the SCE, its performance is
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expected to be stable for bigger systems.

IV. CONCLUSIONS

A new approach has been presented to approximate the CBS limit of the (T) correction in

explicitly correlated CCSD(T) calculations. Just as the (T*) correction of Knizia et al.52, our

(T+) approach utilizes the ratio of MP2-F12 and MP2 correlation contributions. However,

in our scheme, the correlation energy is broken down into orbital contributions, which are

then scaled separately ensuring the size-consistency of our method. The new approach can

simply be implemented in existing (T) codes, and the additional costs incurring for the

evaluation of the (T+) correction are negligible.

The new method has been benchmarked for atomization and reaction energies of smaller

systems. Our results show that the (T+) correction efficiently decreases the basis-set incom-

pleteness error of the perturbative triple excitation correction. Depending on the system

and the basis set, the error can be reduced by factors of 2 to 7. In further test calculations

for bigger systems, we have demonstrated the advantages of the size-consistency of our ap-

proach. Our results also reveal that the size-consistency error of the (T*) correction can be

sizeable for larger systems, which can be problematic, for example, when the approach is

used together with explicitly correlated local CCSD methods.

The basic idea of the (T+) approach, that is, the separate scaling of the correlation

contributions of the orbitals can also be used to cure the basis-set incompleteness of other

correlation methods. This will be the subject of future investigations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the calculated correlation, atomization, and reaction

energies; binding energies of the complexes; bond lengths and vibrational frequencies; and

geometries of the model systems that are not available in the literature.
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Appendix A: MP2-F12 intermediates

Here, we define the intermediates for EF12 supposing ansatz 2B, the F + K commutator

approximation, and fixed amplitudes38,42,45.
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Bij = 〈ij|Ŝ+
ij (∇̂1f12)

2Ŝij|ij〉 (A1)

+ 〈ij|Ŝ+
ijf

2
12Ŝij |̃ij〉+ 〈ij|Ŝ+

ijf
2
12Ŝij|ij̃〉

+
∑
p′q′s′

〈p′q′|f12Ŝij|ij〉kp′s′〈s′q′|f12Ŝij|ij〉

−
∑
p′ms′

〈p′m|f12Ŝij|ij〉fp′s′〈s′m|f12Ŝij|ij〉

+
∑
ma′n

〈ma′|f12Ŝij|ij〉fmn〈na′|f12Ŝij|ij〉

−
∑
pas

〈pa|f12Ŝij|ij〉fps〈sa|f12Ŝij|ij〉

− 2
∑
ma′s′

〈ma′|f12Ŝij|ij〉fms′〈s′a′|f12Ŝij|ij〉

− 2
∑
paa′

〈pa|f12Ŝij|ij〉fpa′〈a′a|f12Ŝij|ij〉

Xij = P̂+(i|j)
∑
k

fkj

(
〈ij|Ŝ+

ijf
2
12Ŝik|ik〉 (A2)

+
∑
p<q

〈pq|f12Ŝij|ij〉〈pq|f12Ŝik|ik〉

+
∑
ma′

〈a′m|f12Ŝij|ij〉〈a′m|f12Ŝik|ik〉
)

Cij =

[∑
a<b

(
2〈ab||ij〉+Rab

ij

)
Rab

ij

]
/Dab

ij (A3)

Vij = 2

(
〈ij|f12r−112 Ŝij|ij〉 (A4)

−
∑
p<q

〈pq|f12Ŝij|ij〉〈pq||ij〉

−
∑
ma′

〈a′m|f12Ŝij|ij〉〈a′m||ij〉
)

In the above equations, f12 is the correlation factor, |ij〉 stands for a Slater determinant

composed of orbitals i and j, and ∇̂1 denotes the del operator with respect to the coordinates

of the first electron. p′ and q′ are orbitals in the MO plus CABS basis, a′ and b′ denote

complementary virtual orbitals represented in the CABS basis, while indices m and n run
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over the frozen core and correlated occupied orbitals. The rational generator Ŝij is defined

as

Ŝij =
3

8
+

1

8
P̂ij, (A5)

where P̂ij permutes the spatial components of spin orbitals i and j in determinant |ij〉.

Indices with tilde refer to orbitals transformed by the Fock-matrix where the exchange

terms are neglected, that is,

|̃i〉 =
∑
p′

(fip′ + kip′)|p′〉, (A6)

where kip′ is an element of the exchange matrix. Operator P̂+(i|j) has the same effect as

P̂ (i|j) but does not change the sign of the terms. r12 is the distance of the two electrons.

Finally, intermediate R is evaluated as

Rab
ij = P̂ (a|b)

∑
a′

faa′〈a′b|f12Ŝij|ij〉. (A7)

Appendix B: Size-consistency of the (T+) ansatz

The (T+) ansatz is trivially size-consistent if the occupied orbitals are localized on the

non-interacting subsystems. This is usually the case for canonical HF orbitals. Exceptions

are the systems where two or more orbitals of different subsystems are degenerate and

can therefore mix with each other. This may happen for identical subsystems arranged

symmetrically, or if the orbitals of the subsystems are accidentally degenerate.

To address this problem, let us consider two different subsystems with two degenerate

orbitals, i and j. In the subspace spanned by the latter, there always exit two orbitals,

i′ and j′, which are localized on the subsystems. Then, the two pairs of orbitals can be

transformed into each other by a unitary rotation parameterized by angle φ as

|i〉 = cosφ|i′〉 − sinφ|j′〉 (B1)

|j〉 = sinφ|i′〉+ cosφ|j′〉. (B2)

Utilizing that the energy denominators are invariant to this transformation, and that the

δEMP2
i contributions are also invariant to the unitary transformation of the orbitals, one can

simply show that

δEMP2
i = cos2 φ δEMP2

i′ + sin2 φ δEMP2
j′ (B3)

δEMP2
j = sin2 φ δEMP2

i′ + cos2 φ δEMP2
j′ , (B4)
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and similar expressions hold for the δEMP2−F12
i and δE

(T)
i increments. For symmetrically

arranged identical subsystems, δEMP2
i′ and δEMP2

j′ are equal, and consequently the δEMP2
i

contributions are invariant to the rotations of the degenerate orbitals. Since the same is true

for δEMP2−F12
i and δE

(T)
i , the (T+) correction is also insensitive to these orbital mixings.

Unfortunately, in the unlikely event the two orbitals are accidentally degenerate, the

δEi′ and δEj′ contributions are not identical, and the (T+) correction is not invariant to

their rotation. As it rarely happens, this inconsistency is mainly important only from the

theoretical point of view. Nevertheless, we were curious how large the size-consistency error

is in such situations. To that end, using the cc-pVDZ-F12 basis set, we assembled a model

system with accidentally degenerate orbitals. Our system consisted of an Ar and two Ne

atoms placed in an L-shaped position. The Ar atom and the first Ne was located 10000 Å

from each other, while the distance between the first Ne and the additional Ne atom was

adjusted to make the 3s orbital of the Ar and an MO formed from the 2s orbitals of the

Ne’s degenerate. We could not achieve such a high level of numerical degeneracy that the

diagonalizer itself could automatically mix those orbitals, but we simply rotated the orbitals

according to Eq. (B1). We found that the error did not exceed 4 µEh for any φ, which is

negligible

As it is also obvious from the above analysis, the (T+) correction is not invariant to

the unitary rotation of the MOs. It does not raise any issue if (T+) is employed on top

of canonical explicitly correlated CCSD methods. It may be, of course, problematic for

local CC methods, where localized MOs are used. However, in many cases, the perturbative

triples correction is evaluated in a semicanonical MO basis, which eliminates this problem.

The application of the (T+) correction in local correlation methods will be discussed in

subsequent publications.
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Kramer, E. Aprà and K. Kowalski, J. Chem. Theory Comput. 10, 4307 (2014).

21C. Peng, J. A. Calvin and E. F. Valeev, Int. J. Quantum Chem. 119, e25894 (2019).
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48A. Köhn, G. W. Richings and D. P. Tew, J. Chem. Phys. 129, 201103 (2008).

49H. Fliegl, W. Klopper and C. Hättig, J. Chem. Phys. 122, 084107 (2005).

50D. P. Tew, W. Klopper, C. Neiss and C. Hättig, Phys. Chem. Chem. Phys. 9, 1921 (2007).

51T. B. Adler, G. Knizia and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).

52G. Knizia, T. B. Adler and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).

53M. Torheyden and E. F. Valeev, Phys. Chem. Chem. Phys. 10, 3410 (2008).

54E. F. Valeev and T. Daniel Crawford, J. Chem. Phys. 128, 244113 (2008).
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