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Abstract. Two infinite sets A and B of nonnegative integers are called
additive complements if their sumset contains every nonnegative integer.
In 1964, Danzer constructed infinite additive complements A and B with
A(x)B(x) = (1 + o(1))x as x → ∞, where A(x) and B(x) denote the
counting function of the sets A and B, respectively. In this paper we solve
a problem of Chen and Fang by extending the construction of Danzer.

1. Introduction

Let N be the set of nonnegative integers and let A and B be infinite sets of

nonnegative integers. We define their sum by A+B = {a+b : a ∈ A, b ∈ B}.
We say A and B are infinite additive complements if their sum contains all

nonnegative integers i.e., A + B = N. Let A(x) be the number of elements

of A up to x i.e.,

A(x) =
∑
a∈A
a≤x

1.

Since A and B are infinite additive complements, every nonnegative integer

x can be written in the form a + b = x, where a ∈ A, b ∈ B. Then clearly

[7] we have A(x)B(x) ≥ x+ 1, which implies that

lim sup
x→∞

A(x)B(x)

x
≥ lim inf

x→∞

A(x)B(x)

x
≥ 1.

According to a conjecture of H. Hanani [3], the above result can be sharp-

ened in the following way.

Conjecture 1.1 (Hanani, 1957). If A and B are infinite additive comple-

ments, then

lim sup
x→∞

A(x)B(x)

x
> 1.

Later, Danzer [2] disproved the above conjecture of Hanani.
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Theorem 1.2 (Danzer, 1964). There exist infinite additive complements A

and B such that

lim
x→∞

A(x)B(x)

x
= 1.

Let A1, . . . , Ar be infinite sets of nonnegative integers. We define their

sum by A1 + A2 + . . . + Ar = {a1 + a2 + . . . + ar : ai ∈ Ai, 1 ≤ i ≤ r}.
Chen and Fang extended the notion of additive complements to more than

two sets in the following way [1]. The infinite sets A1, . . . , Ar of nonnegative

integers are said to form infinite additive complements if their sum contains

all nonnegative integers. Again, it is easy to see that A1(x) · · ·Ar(x) ≥
(A1 + . . . + Ar)(x) = x+ 1, thus

lim inf
x→∞

A1(x) · · ·Ar(x)

x
≥ 1.

Furthermore, they posed the following problem.

Problem 1.3. For each integer r ≥ 3 find additive complements A1, . . . , Ar

such that

lim
x→∞

A1(x) · · ·Ar(x)

x
= 1.

In this paper we solve this problem. Note that our construction is the

extension of Danzer’s result to r > 2.

Theorem 1.4. For each integer h ≥ 2 there exist infinite sets of nonnega-

tive integers A1, . . . , Ah with the following properties:

(1) A1 + . . . + Ah = N,

(2) A1(x) · · ·Ah(x) = (1 + o(1))x as x→∞.

Let RA+B(n) be the number of representations of the integer n in the

form a+ b = n, where a ∈ A, b ∈ B. W. Narkiewicz [4] proved the following

theorem.

Theorem 1.5 (Narkiewicz, 1960). If RA+B(n) ≥ C for every sufficiently

large integer n, where C is a constant and

lim sup
x→∞

A(x)B(x)

x
≤ C,

then

lim
x→∞

A(2x)

x
= 1,

or

lim
x→∞

B(2x)

x
= 1.
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Additive complements A, B are called exact if A(x)B(x) = (1 + o(1))x

as x→∞. For any h ≥ 2 integer let us define the system of sets Ah by

Ah = {A ⊂ N : there exist A2, . . . , Ah ⊂ N,

A+ A2 + . . . + Ah = N, A(x) · A2(x) · · ·Ah(x) = (1 + o(1))x as x→∞}.
Theorem 1.4 implies that Ah 6= ∅ for every h ≥ 2. We prove that the Ah’s

form an infinite chain.

Theorem 1.6. We have A2 ⊇ A3 ⊇ . . .

It follows from Theorem 1.6 that if A ∈ A2, then A(x) = xo(1) or A(x) =

x1+o(1) as x→∞. Then for any h ≥ 2, A ∈ Ah implies that A(x) = xo(1) or

A(x) = x1+o(1) as x→∞. If the sets A1, . . . , Ah ⊂ N satisfy A1 + . . . +Ah =

N and A1(x) · · ·Ah(x) = (1 + o(1))x as x → ∞, then Ai(x) = x1+o(1) or

Ai(x) = xo(1) for every 1 ≤ i ≤ h while x→∞. As a corollary, one can get

from Theorem 1.4 that

Corollary 1.7. Let A1, . . . , Ah be infinite sets of nonnegative integers such

that A1 + . . . + Ah = N and

A1(x) · · ·Ah(x) = (1 + o(1))x

as x → ∞. Then there exists an index i such that Ai(x) = x1+o(1) and

Aj(x) = xo(1) for every 1 ≤ j ≤ h with j 6= i as x→∞.

We pose the following problems for further research.

Problem 1.8. Does Ah 6= Ah+1 hold for every h ≥ 2?

Problem 1.9. Assume that A1 + . . . + Ah = N and A1(x) · · ·Ah(x) =

(1 + o(1))x hold as x→∞. Does there exist a permutation i1, . . . , ih of the

indices 1, . . . , h such that Aij(x) = (Aij−1
(x))o(1) for every 2 ≤ j ≤ h as

x→∞?

The statement in Problem 1.9 holds for h = 2.

The exact complemets have been investigated by many authors in the last

few decades. In particular, they studied what kind of sets A of nonnegative

integers with A(x) = xo(1) as x→∞ have exact additive complement. It was

proved in [2] that the sequence an = (n!)2 + 1 has an exact complement. In

[5] Ruzsa showed that the set of the powers of an integer a ≥ 3 has an exact

complement. Furthermore, in [6] he proved that the set of powers of 2 has

an exact complement. Moreover, he also proved in [6] that A = {a1, a2, . . . }
with 1 ≤ a1 < a2 < . . . has an exact complement if limn→∞

an+1

nan
= ∞. In

view of these results, it is natural to ask
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Problem 1.10. Is it true that if A ∈ A2, A(x) = xo(1) as x→∞, then

A(x) = O(log x)?

2. Proof of Theorem 1.4

For any nonnegative integers a < b, let us define [a, b] = {x ∈ N : a ≤
x ≤ b}. The following lemma plays the key role in the proof of Theorem

1.4.

Lemma 2.1. Assume that A1, . . . , Ah ⊂ N are infinite subsets with the

following properties

(1) A1 + . . . + Ah = N,

(2) there exists a monotone increasing arithmetic function fh(n) ≥ 0 with

lim
n→∞

fh(n) =∞

such that the equation a1 + . . . + ah = n, ai ∈ Ai has a solution with

ai ≥ fh(n),

(3) A1(x) · · ·Ah(x) = (1 + o(1))x as x→∞.

For m ∈ N, let g(m) be an integral-valued strictly increasing function such

that g(fh(n)) ≥ n2 for every n ∈ N. Put for shortness

Φn = g(n+ 1)! + h(g(n+ 1)− 1)!,

∆n = n− d
√
ne,

and for n ≥ 6 let

Mn = [g(n)!− 2∆n,Φn].

Furthermore, for 1 ≤ i ≤ h, let Bi = {0} ∪ {g(a)! + a : a ∈ Ai} and define

the sets of integers

Bh+1 = {a : 0 ≤ a ≤ Φ5 − 1} ∪
⋃
n≥6

{α ∈Mn : ∆n | α}.

Then

(i) B1 + . . . +Bh+1 = N,

(ii) there exists a monotone increasing arithmetic function fh+1(n) ≥ 0

with

lim
n→∞

fh+1(n) =∞

such that the equation b1 + . . . + bh+1 = n, bi ∈ Bi has a solution with

bi ≥ fh+1(n),

(iii) B1(x) · · ·Bh+1(x) = (1 + o(1))x as x→∞.
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2.1. Proof of the lemma. Now we prove that for any N ≥ 6,

B1 + . . . +Bh + {α ∈MN : ∆N | α} ⊇ [ΦN−1 − 2∆N +N,ΦN ].

Consider an element from the interval on the right hand side i.e., let y be

ΦN−1 − 2∆N +N ≤ y ≤ ΦN .

It is clear that there exists an d
√
Ne ≤ m ≤ N − 1 with y ≡ m (mod ∆N).

By (2), there exist a1, . . . , ah integers with ai ∈ Ai such thatm = a1+. . .+ah

and ai ≥ fh(m). Since fh(m) is a monotone increasing function and g(m) is

a strictly increasing function, we have

g(ai) ≥ g(fh(m)) ≥ g(fh(d
√
Ne)) ≥ (d

√
Ne)2 ≥ N

and so g(ai)! ≡ 0 (mod ∆N). Let bi = g(ai)! + ai. Then bi ∈ Bi for every

1 ≤ i ≤ h. It follows that

h∑
i=1

bi =
h∑

i=1

(g(ai)! + ai) ≡
h∑

i=1

ai ≡ m ≡ y (mod ∆N),

which implies that y−(b1+...+bh)
∆N

is an integer and clearly

y = b1 + . . . + bh +
y − (b1 + . . . + bh)

∆N

·∆N .

In view of these facts, it is enough to show that

g(N)!− 2∆N ≤ y − (b1 + . . . + bh) ≤ ΦN .

Since g(n) is a strictly increasing function, we have

0 ≤ bi = g(ai)! + ai ≤ g(m)! +m ≤ g(N − 1)! +N − 1 < (g(N)− 1)! +N

and so

0 ≤
h∑

i=1

bi < h((g(N)− 1)! +N).

It follows that

y − (b1 + . . . + bh) ≥ y − h((g(N)− 1)! +N)

≥ g(N)!− 2(N − d
√
Ne) + h((g(N)− 1)! +N)− h(g(N)− 1)! +N)

= g(N)!− 2∆N

and

y − (b1 + . . . + bh) ≤ y ≤ ΦN .

Thus for N ≥ 6, we have

B1 + . . . +Bh+1 ⊇ [ΦN−1 − 2∆N +N,ΦN ] ⊇ [ΦN−1,ΦN ].
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This implies that

B1 + . . . +Bh+1 ⊇
⋃
N≥6

[ΦN−1,ΦN ] = [Φ5,+∞).

Moreover, for 1 ≤ i ≤ h, 0 ∈ Bi and Bh+1 ⊇ [0,Φ5 − 1]. Therefore,

[0,Φ5 − 1] ⊆ B1 + . . . +Bh+1

and so B1 + . . . +Bh+1 = N, which proves (i).

If ΦN−1 ≤ n ≤ ΦN , then there exists a representation n = b1 + . . . +bh+1,

where bi = g(ai)! + ai ≥ ai ≥ fh(d
√
Ne) and bh+1 ≥ g(N)! − 2∆N ≥

N !− 2∆N , which proves (ii) with a suitable function fh+1(n).

To prove (iii) we assume that ΦN−1 ≤ x ≤ ΦN . Since g(N) is strictly

increasing, g(N + 2h) ≥ g(N + 1) + h. This implies that

x ≤ ΦN = (g(N + 1) + h)(g(N + 1)− 1)!

≤ g(N + 2h)(g(N + 1)− 1)! < g(N + 2h)! +N + 2h

and

x ≥ ΦN−1 > g(N)! + h(N − 1)! ≥ g(N − 1)! +N − 1.

Therefore, we have Ai(N) ≤ Bi(x) ≤ Ai(N + 2h) for every 1 ≤ i ≤ h. Thus

we have, Bi(x) = Ai(N) + O(1) = (1 + o(1))Ai(N) as x → ∞ for every

1 ≤ i ≤ h. Now, we have

B1(x) · · ·Bh(x) = (1 + o(1))A1(N) · · ·Ah(N) = (1 + o(1))N

as x → ∞. It remains to prove that Bh+1(x) = x
N

(1 + o(1)) as x → ∞. It

follows from the definition of Bh+1 that for x ≥ Φ5 we have

Bh+1(x) = Φ5 +
N−1∑
n=6

(
Φn

∆n

− g(n)!

∆n

+ 3

)
+

⌊
x

∆N

− g(N)!

∆N

+ 3

⌋

= O(N) +
N−1∑
n=6

(
Φn

∆n

− g(n)!

∆n

)
+

(
x

∆N

− g(N)!

∆N

)
.

By x ≥ ΦN−1 ≥ N !, we have O(N) = o
(

x
N

)
as x→∞. It follows from (2)

in Lemma 2.1 that n ≥ fh(n). Then by the definition of g(n), we have

g(n) ≥ g(fh(n)) ≥ n2.

Applying this observation, a straightforward computation shows that

Φn

∆n

− g(n)!

∆n

=

(
1 +O

(
1

n2

))
· Φn

∆n

=

(
1 +O

(
1√
n

))
· g(n+ 1)!

n+ 1
.

Hence,
N−1∑
n=6

Φn

∆n

− g(n)!

∆n

=
N−1∑
n=6

(
1 +O

(
1√
n

))
· g(n+ 1)!

n+ 1
.
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In the next step, we show that
N−1∑
n=6

(
1 +O

(
1√
n

))
· g(n+ 1)!

n+ 1
= (1 + o(1)) · g(N)!

N

as N →∞. Since g(m) is strictly increasing,

g(N + 1)!

g(N)!
≥ (g(N) + 1)!

g(N)!
= g(N) + 1 ≥ N + 1 ≥ N + 1

N
,

which implies that g(N)!
N

is monotone increasing. By g(m) ≥ m2, we have

g(N − 1)! ≤ 1

N2
g(N)!.

On the other hand,

g(N − 1)!

N − 1
≤ g(N)!/N2

N − 1
= O

(
g(N)!

N3

)
.

By using the above observations, we have
N−1∑
n=6

(
1 +O

(
1√
n

))
·g(n+ 1)!

n+ 1
=

N−1∑
n=7

(
1 +O

(
1√
n

))
·g(n)!

n
+
g(N)!

N
(1+o(1))

=
N−1∑
n=7

O

(
g(N − 1)!

N − 1

)
+ (1 + o(1))

g(N)!

N

= O

(
N
g(N)!

N3

)
+
g(N)!

N
(1 + o(1)) =

g(N)!

N
(1 + o(1))

as x→∞. It is clear that

x

∆N

− g(N)!

∆N

=

(
1 +O

(
1√
N

))(
x− g(N)!

N

)
= (1 + o(1))

x− g(N)!

N
as x→∞. Then it follows that

Bh+1(x) = o
( x
N

)
+ (1 + o(1))

g(N)!

N
+
x− g(N)!

N
(1 + o(1)) = (1 + o(1))

x

N
as x→∞, which proves (iii). The proof of Lemma 2.1 is completed.

2.2. Proof of Theorem 1.4. Now, we prove Theorem 1.4 by induction on

h. We show that there exist infinite sets A1, . . . , Ah ⊂ N with the following

properties:

(1) A1 + . . . + Ah = N,

(2) there exists a monotone increasing arithmetic function fh(n) ≥ 0 with

lim
n→∞

fh(n) =∞

such that the equation a1 + . . . + ah = n, ai ∈ Ai has a solution with

ai ≥ fh(n),

(3) A1(x) · · ·Ah(x) = (1 + o(1))x as x→∞.
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For h = 1 consider the set of natural numbers and the function f1(n) = n,

which gives the result. Assume that the statement of Theorem 1.4 holds for

h. For h + 1 the result follows from Lemma 2.1. (Actually, for h = 2 our

construction is the same as the construction of Danzer [2]). The proof of

Theorem 1.4 is completed.

3. Proof of Theorem 1.6

Let h ≥ 2. We will prove that Ah+1 ⊆ Ah. Let A ∈ Ah+1. Then

there exist A2, . . . , Ah+1 ⊆ N such that A + A2 + . . . + Ah+1 = N and

A(x)A2(x) · · ·Ah+1(x) = (1 + o(1))x as x → ∞. Let A∗h = Ah + Ah+1. It is

clear that A∗h(x) ≤ Ah(x) · Ah+1(x). Then we have

A+ A2 + . . . + Ah−1 + A∗h = N

and so A(x)A2(x) · · ·Ah−1(x)A∗h(x) ≥ x+ 1. On the other hand,

A(x)A2(x) · · ·Ah−1(x)A∗h(x) ≤ A(x)A2(x) · · ·Ah+1(x) = (1 + o(1))x

as x→∞, thus we have

A(x)A2(x) · · ·Ah−1(x)A∗h(x) = (1 + o(1))x

as x → ∞, which implies that A ∈ Ah. The proof of Theorem 1.6 is com-

pleted.

Acknowledgements. This first author was supported by the National Re-

search, Development and Innovation Office NKFIH Grant No. K115288 and

K129335. This paper was supported by the János Bolyai Research Schol-

arship of the Hungarian Academy of Sciences. Supported by the ÚNKP-
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nomics, Egry József utca 1, 1111 Budapest, Hungary

Email address: ksandor@math.bme.hu

Institute of Mathematics, Budapest University of Technology and Eco-
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