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Abstract

Interactions between disordered proteins involve a wide range of changes in the structure

and dynamics of the partners involved. These changes can be classified in terms of binding

modes, which include disorder-to-order (DO) transitions, when proteins fold upon binding,

as well as disorder-to-disorder (DD) transitions, when the conformational heterogeneity is

maintained in the bound states. Furthermore, systematic studies of these interactions are

revealing that proteins may exhibit different binding modes with different partners. Proteins

that exhibit this context-dependent binding can be referred to as fuzzy proteins. Here we

investigate amino acid code for fuzzy binding in terms of the entropy of the probability distri-

bution of transitions towards decreasing order. We implement these entropy calculations

into the FuzPred (http://protdyn-fuzpred.org) algorithm to predict the range of context-

dependent binding modes of proteins from their amino acid sequences. As we illustrate

through a variety of examples, this method identifies those binding sites that are sensitive to

the cellular context or post-translational modifications, and may serve as regulatory points

of cellular pathways.

Author summary

Great advances have been made in the last several decades in deciphering how the behav-

ior of proteins is encoded in their amino acid sequences. A variety of sequence-based pre-

diction methods have been developed to estimate a wide range of properties of proteins,

including secondary structure propensity, native state structures, preference for being dis-

ordered and tendency to aggregate. Much less is known, however, about the rules that reg-

ulate the conformational changes of proteins upon binding. In particular, many proteins

change their binding modes upon interacting with different partners, or as a consequence

of post-translational modifications or changes in the cellular milieu. Here we address the

problem of how amino acid sequences can encode different binding modes depending on

their binding partners, and describe the FuzPred method of predicting context-dependent

binding modes.
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Introduction

With the advent of fast sequencing methods there has been an explosion in the number of pro-

teins of known amino acid sequence. As the number of proteins whose sequences have been

determined currently vastly exceeds that of proteins with known structures, especially in func-

tional forms, one can exploit this asymmetry of information to develop sequence-based predic-

tors of protein conformational behaviour. Great advances have been made in this area, with

several methods introduced in the last two decades [1–4].

Another major recent advance in molecular biology has been the discovery of disordered

proteins, which do not fold into well-defined three-dimensional structures but remain confor-

mationally heterogeneous in their native states [5, 6]. This discovery has further promoted the

development of sequence-based prediction methods to facilitate the study of the properties of

these proteins. While we have currently reached a good consensus about the prediction of the

degree of disorder of these proteins in their monomeric states [7, 8], there is still work to do to

predict what happens upon binding [9]. Disordered regions function in many cases via gaining

a well-defined structure upon interacting with their partners [10]. It has also been suggested

that versatile target selectivity via templated folding is enabled by heterogeneous contacts at

the transition state [11]. Experimental data demonstrate that disorder can persist [12, 13], and

even increase upon interactions [14]. More recently it has also been realised that the presence

of multiple modes, or fuzziness, in protein interactions is also required for liquid-liquid phase

separation [15, 16].

In addition, certain proteins have evolved the ability to adopt different binding modes

depending on their binding partners, which has been termed context-dependent binding (Fig

1). Disordered regions, in particular, often act as interaction hubs [17], and different partners

may require different modes of binding. To offer an example, the N-terminal region of glyco-

gen synthase kinase-3 (GSK3) can establish a well-defined structure and interactions with part-

ners in the insulin pathway, while remaining dynamic and exhibiting a variety of weak

binding modes with partners in the Wnt pathway [18]. Interconversion between ordered and

dynamic interactions can also take place after the complexes are formed, and could be regu-

lated by post-translational modifications [19]. Variations between binding modes may activate

different cellular pathways. For instance, the active state of β2-adrenergic receptor (ADRB2) is

not fully stabilized by high-affinity agonists, which enables allosteric regulation by G-proteins

[20], so that switching between different binding modes in the bound form regulates multiple

signalling pathways via a dynamical coupling to the G-protein interface [21].

How can different binding modes be encoded in the same sequence? While a repertoire of

methods for predicting the degree of disorder in the monomeric state of proteins are available [7,

8], we have a more limited knowledge of the conformational transitions that occur upon binding.

In particular, we would like to increase our understanding how binding modes of a protein, or a

protein region, can be modulated according to the cellular context. Recently, we have demon-

strated that a wide range of binding modes of proteins are encoded in their amino acid sequences

and can be predicted without specific information about their partners using the FuzPred

method [22]. Here we show that it is possible to use this method not only to identify the most

likely binding mode, but also to evaluate the tendency to adopt alternative binding modes.

Results

Binding modes of disordered proteins

In this work, we considered three types of binding modes for interactions of disordered

regions (Fig 1). Disorder-to-order (DO) transitions take place when disordered regions fold
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upon binding into well-defined conformations. Disorder-to-disorder (DD) transition happen

instead when disordered regions still exhibit conformational heterogeneity in the bound states,

either by folding into alternatively conformations [23] or fluctuating while interacting with

their partners [24]. Context-dependent (CD) transitions can be observed when disorder-to-

order or disorder-to-disorder transitions are established in different complexes (Fig 1A). We

will also refer this binding mode as conditional ordering, reflecting conditional folding with

specific partners or conditions. Our work is aimed to distinguish context-dependent regions

(CDRs) with a multiplicity of binding modes from disorder-to-order regions (DORs) and

Fig 1. Illustration and assignment of binding modes. (A) Binding modes considered in this work. Binding modes are shown for the interferon-

induced, double-stranded RNA-activated protein kinase (RPK). The activation segment (residues 440–450) is not visible in the crystal structure of the

monomeric form (PDB: 6d3l [52]), and remains disordered in the dimeric form (PDB: 3uiu, 6d3k). This binding mode represents a disorder-to-

disorder transition. Interactions with eukaryotic initiation factor 2 (eIF2), however, triggers folding of the activation segment to mediate inter-

molecular contacts (PDB:2a1a [53]), which process is coupled to auto-phosphorylation of Thr446. The RPK binding to eIF2 is classified as a disorder-

to-order transition. (B) Assignment of context-dependent binding. Structures corresponding to the same sequence (P19525, residues 440–460) were

collected in the monomeric and complex forms. Residues were observed (O) in the crystal structures were assigned as ’ordered’, missing residues (M)

were assigned as disordered. ’Context-dependent’ residues (blue bar) were disordered in the monomeric form, but were represented both in ordered

and disordered forms in different complexes. ’Disorder-to-order’ residues were disordered in the monomeric structure and ordered (O) in all

complexes; whereas ’disorder-to-disorder’ residues also remained to be disordered (M) in all bound state structures.

https://doi.org/10.1371/journal.pcbi.1007864.g001
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disorder-to-disorder regions (DDRs), which were observed only in one state (either ordered

or disordered) in their complexes.

Disordered protein regions representing the three types of binding modes interactions have

been collected from the Protein Databank (PDB) based on missing electron density in the cor-

responding crystal structures (Fig 1). DORs were defined as disordered regions in the mono-

meric state, while gained a well-defined structure in all representative complexes (Methods,

Fig 1, S1 Table). In contrast, DDRs were identified as those regions that remained disordered

in the bound states (Methods, Fig 1, S1 Table). CDRs were defined as those regions that were

disordered in the monomeric state, while being observed in both structured and disordered

states in different complexes (Methods, Fig 1B, S1 Table). In this study, only regions with at

least one residue mediating inter-molecular interactions in the bound form were included

(Methods). Structural evidence in PDB, however, does not indicate whether regions undergo-

ing disorder-to-disorder transitions do contribute to intermolecular interactions. Thus, we

have been assembled fuzzy, disordered binding regions from the Fuzzy Complexes Database

(FuzDB, http://protdyn-database.org) [25], which also informs on the contributions to binding

(Methods, S1 Table). The possible mechanisms how fuzzy regions impact specific partner rec-

ognition have been reviewed elsewhere [9, 26, 27].

Probabilities of the binding modes of disordered regions

The characterisation of disorder in the bound states presents a challenge for disorder predic-

tion methods, which have been developed for predicting disorder in the free state of proteins.

Previously, we have applied different disorder prediction algorithms (IUPred [28], Dynamine

[29], Disopred3 [30] and Espritz NMR [31]) using different versions and thresholds to identify

regions that remain disordered in the bound states [22], finding that these methods could not

be applied to robustly identify DDRs from the amino acid sequences. For reference, Espritz

NMR [31] exhibited the highest performance out of these approaches, with a segmental over-

lap value [32] of SOV = 47.4% [22].

Instead of using the degree of disorder in the free state, we found that local biases in the

sequence composition of the binding regions as compared to their flanking regions can distin-

guish between disorder-to-order and disorder-to-disorder regions [22], and the discrimina-

tion is robust using different flanking window sizes and different disorder prediction

algorithms [22]. To implement these observations into the FuzPred prediction method, we

determined the difference in disorder scores (ΔIDR,Fl) by Espritz NMR (S1 Text), and com-

puted the differences in amino acid composition (ΔAR,Fl) and hydrophobicity (ΔHR,Fl) of the

binding sites with respect to their 20-residue flanking segments (S1 Text). We demonstrated

that these biases in disorder, composition and hydrophobicity significantly discriminate

between DORs and DDRs [22].

In the FuzPred method, we characterise the binding modes of disordered regions by the

probabilities of their transitions upon binding towards increasing (pDO) and or decreasing

(pDD) order. Such probabilities were derived from a binary logistic regression model as [22]

pDOðRÞ ¼
exp SFðRÞ

1 þ exp SFðRÞ
ð1Þ

where pDO(R) is the probability of disorder-to-order transition, R is the interacting region, and

SF(R) is the scoring function

SFðRÞ ¼ l1�DIDR;FL þ l2�DAR;Fl þ l3�DHR;Fl þ g ð2Þ
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where the three variables are the local biases in disorder propensity (ΔIDR,Fl), amino acid com-

position (ΔAR,Fl) and hydrophobicity (ΔHR,Fl) of region R as compared to the flanking regions.

λ1, λ2 and λ3 are the linear coefficients of the predictor variables and γ is a scalar constant

(intercept), which were determined on DORs and DDRs using a logistic regression model

[22]. Context-dependent regions were not included in the parametrisation (Methods).

Definitions and detailed description of these terms are given in the S1 Text.

The SF(R) scoring function distinguishes between regions that undergo disorder-to-order

and disorder-to-disorder transitions [22]. That is, increased local biases in the sequence com-

position as compared to the flanking regions facilitates ordering of the binding regions. The

lack of such biases promotes formation of alternative contacts and a possible exchange between

them, leading to disorder in the bound state and fuzzy (i.e. multimodal) interactions [22].

Context-dependence of binding modes

To be able to perform sequence-based predictions at the single-residue level without additional

information on the partner, we considered two problems: (1) the boundaries of an interacting

protein region R are not known a priori, and (2) a given residue Ai in the region R can belong

to interaction sites with different sizes and positions depending on the partner or cellular con-

ditions {Ri}.
To solve these problems, we assigned a residue Ai to different possible binding regions (Fig

2), which represent interactions with different partners and conditions. Then we evaluated the

SF(R) scoring function for each of these binding sites, which provided a distinct probability for

disorder-to-order transition pDO(Ri) for each of these hypothetical binding events (Methods).

This procedure provided a set of pDO(Ri) probabilities for all possible interacting regions of Ai

(Fig 2). The probabilities for disorder-to-order and disorder-to-disorder transitions of Ai upon

protein interactions can then be derived from such distributions as (see Methods).

pDOðAiÞ ¼ medianfpDOðRiÞgN ¼ median
exp SFðRiÞ

1þ exp SFðRiÞ

� �

N

ð3Þ

where pDO(Ri) is the probability of disorder-to-order transition with a given binding site Ri, N
is the number of possible binding regions of Ai between a given length range (5–9 residues).

The disorder-to-order transition probability of Ai is computed as the median of the distribu-

tion {pDO(Ri)}N. The probability for disorder-to-disorder transition is obtained as pDD(Ri) = 1-

pDO(Ri). The FuzPred method predicts the pDO(Ai) and pDD(Ai) probabilities from the amino

acid sequences, which characterize the most likely binding mode of residue Ai [22]. Earlier we

had demonstrated that these residue-based pDO(Ai) and pDD(Ai) values can discriminate

between residues belonging to different classes of binding modes (disorder-to-order, disorder-

to-disorder and context-dependent) [22].

Here we address how the predicted binding mode of a given residue Ai varies with different

binding sites. The distribution of {pDO(Ri)}N values (Eqs 2 and 3) characterizes the possible

conformational transitions with a variety of partners, thus informs on the available binding

modes. The frequency of a given binding mode, defined by the probability for disorder-to-

order transition (pDO(R)) is given by

f ½pDOðRiÞ� ¼
nR½pDOðRiÞ�

N
ð4Þ

where N is the number of all possible binding sites around Ai, and nR[pDO(Ri)] is the number

of binding regions with a binding mode pDO(R). To define nR[pDO(Ri)] we have binned pDO(R)

into 0.1 intervals.
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Using the frequencies of all the possible binding modes of a given residue Ai, we compute

the Shannon entropy (Fig 2)

SAi
¼ �

X
f ½pDOðRiÞ�log2 f ½pDOðRiÞ� ð5Þ

where f[pDO(R)] is the frequency of a given binding mode with a given pDO(R) (Eq 4). The sum

runs over the bins of pDO(R).

Our approach is based on the assumption that the sequence-based prediction of the Shan-

non entropy (Eq 5) can quantify the diversity of binding modes of a given residue Ai (Fig 2)

Fig 2. Determination of binding mode diversity. (A) Assignment of possible binding sites. The sequence of the N-terminal 20-residue region of

glycogen synthase kinase 3 (GSK3, UniProt P49841) is shown. The possible 5 to 9 residue binding regions of Ser9 are displayed together with their

probabilities for disorder-to-order transition (pDORi). (B) Frequencies of binding modes. The distribution of the pDO(R) values for Ser9 are shown. The

bimodal distribution of the pDO(R) values indicates that Ser9 can populate both disorder-to-order and disorder-to-disorder binding modes. The

interactions with low-density lipoprotein receptor-related protein 6 (LRP6) peptides (wheat) and axin (violet) exemplifies the disorder-to-disorder

binding modes (PDB: 4nm5), where the N-terminal region (dashed, cyan) does not adopt a well-defined structure in the complex. Phosphorylation of

Ser9 induces folding of the N-terminal peptide (lime), which mediates an auto-inhibitory interaction (PDB: 4nm3)[18]. (C) Shannon entropy for

binding modes. The Shannon entropy (Eq 5) is evaluated for the binding mode distribution of each residue. The SAi
values predict increased number of

possible binding modes for residues 7–11, which is consistent with their conditional folding.

https://doi.org/10.1371/journal.pcbi.1007864.g002
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under many different cellular conditions and interaction partners, which are not known a pri-
ori. Low SAi

values reflect a strong preference for a given binding mode, whereas higher SAi
val-

ues indicate that different binding modes can be sampled under different conditions.

The Shannon entropy discriminates context-dependent binding modes

We compared the Shannon entropy SAi
of binding modes for all residues in the DOR, DDR

and CDR datasets (Methods, S1 Table). We computed the pDO(Ri) probabilities for each resi-

due for all possible positions of binding sites in the 5–9 residue range using the full protein

sequence (Eq 2) (Fig 2A). This process resulted in 35 predicted binding modes, in case all pos-

sible binding windows could be assigned (Methods). Fewer number of binding sites at the ter-

mini did not significantly affect the Shannon entropy values (S2 Fig). We divided the range of

binding modes (pDO [0,1]) into 10 bins, and determined the frequencies of the predicted bind-

ing modes for each residue in these 10 bins (Eq 4) (Fig 2B). The Shannon entropies of the pos-

sible binding modes were derived from such binding mode frequencies (Eq 5) (Fig 2C).

The FuzPred predictions show that context-dependent regions exhibit more disordered

interactions (higher pDD values) than regions, which fold upon binding, while shifted towards

more ordered interactions as compared to regions, which remain to be disordered in their

complexes (Fig 3A). Context-dependent regions, however, exhibit the highest Shannon entro-

pies as compared to DOR and DDR residues, which were observed in a unique binding mode

(Fig 3B). The Shannon entropies (Eq 5) discriminate rather well between DOR and CDR data-

sets (AUC = 69.6%) as well as between DDR and CDR datasets (AUC = 72.0%) (Methods, S1

Table). SAi
values, however, do not differentiate between DOR and DDR datasets, which were

observed in a uniform binding mode. Comparison of SAi
values of context-dependent,

disorder-to-order and disorder-to-disorder regions mediating intra-molecular interactions

corroborated that binding mode diversity discriminates between these binding modes [22]

(S1 Fig).

We also compared these binding modes to fuzzy, disordered binding regions (DBRs),

which exhibit multiple conformations when bound, with experimental evidence corroborating

their contribution to binding affinity [25] (Methods, S1 Table). Fuzzy regions have comparable

pDD values to DDRs (Fig 3A), but have significantly higher SAi
values (Fig 3B). While DBRs

are significantly more disordered in their bound states than CDRs (Fig 3A), the SAi
values of

these binding modes are comparable (Fig 3B), indicating that fuzzy regions exhibit context-

dependent binding modes, in accord with experimental data [25]. Taken together, these results

suggest that the Shannon entropy values could be used to identify context-sensitive binding

regions based on the diversity of interaction modes.

FuzPred applications to predict context-dependent binding modes

We implemented the evaluation of Shannon entropy into the FuzPred method, which thus can

estimate the pool of available binding modes from the sequence. Using both pDD(Ai) and SAi

values, which are predicted by FuzPred, we can significantly discriminate context-dependent

regions from disorder-to-order (CDR vs DOR AUC = 91.0%) and disorder-to-disorder

regions (CDR vs DDR AUC = 93.6%).

In this section, we illustrate a range of applications of the FuzPred method by identifying

context-dependent regions in different model systems.

Disordered binding regions. Mitogen activated protein kinase (MAPK) kinase MKK4

contacts its MAPK partner p38α via a canonical docking motif and a kinase specificity

sequence (KIS). The canonical binding site has higher pDO and low SAi
values indicating a
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Fig 3. Predicted binding modes of disorder-to-order (DOR), context-dependent (CDR), disorder-to-disorder (DDR) and fuzzy regions.

(A) Binding mode probabilities. The probabilities of disorder-to-disorder transitions are shown for DOR (blue), CDR (lime), DDR (salmon)

and fuzzy (red) regions. The pDD values indicate significantly elevated disorder for interactions of DDRs and fuzzy regions as compared to

DORs and CDRs. (B) Shannon entropy of binding modes. SAi
values for DOR (blue), CDR (lime), and DDR (salmon) regions significantly

differ between these binding modes. Context-dependent regions exhibit the highest binding mode diversity as compared to DORs and DDRs.

Fuzzy, disordered binding regions (from the Fuzzy Complexes Database [25]) also have elevated SAi
values indicating their context dependence.

Statistical significances were determined by Mann-Whitney tests as implemented in the R program. p values as compared to CDRs are shown

(�� p< 10−2; ��� p< 10−5).

https://doi.org/10.1371/journal.pcbi.1007864.g003
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more stable interaction site (Fig 4A). The 45-55-residue peptide has comparable pDO and pDD
probabilities, indicating a possible variation of binding modes between ordered and disor-

dered conformations (Fig 4A). The predicted increase in SAi
values corroborates the change in

binding modes, leading to disordered binding. These results are in agreement with the calcu-

lated NMR transverse relaxation rates (R2,bound), which reflect sizeable conformational fluctua-

tions in the MKK4-p38α complex (Fig 4A) [33]. As the bound structures of the docking motif

are similar with different partners, variable binding modes of the KIS domain are important to

tune specificity for p38α [33].

Fig 4. Prediction of context-dependent regions by the FuzPred method. (A) Prediction of binding mode profiles. Comparable probabilities for

disorder-to-order transition (pDO, dark gray) and disorder-to-disorder transition (pDD, light gray) indicate a disordered binding mode for the region of

residues 45–55 (grey box), which involves both the docking and the KIS motif, consistently with the experimental data [33] (top panel). Based on the

binding profile, this region can fluctuate between ordered and disordered interactions (bottom panel), which will depend on the signaling pathway. The

SAi
values indicate that both the docking motifs and the N-terminal part of the KIS domain are capable to establish different binding modes, consistent

with their involvement in disordered interactions. Selected MKK4 conformers docked onto p38α structure (PDB:1lew). The docking motif (marine)

and the KIS domain (light blue) are shown (coordinates as a courtesy of Dr. Malene Ringkjobing-Jensen). (B) Prediction of phosphorylation-induced

folding. Trans-autophosphorylation induces folding of the activation loop in the dual-activity enzyme Ire1, which promotes its oligomerisation [19].

Packing of four monomers (wheat, light blue, pale green and light pink surfaces) (PDB: 3fbv) are stabilised by the ordered activation loop (cartoon, the

phosphorylated Ser841 is shown by spheres). FuzPred predicts slightly higher probabilities for disorder-to-order transition (pDO, dark gray, top panel)
for the activation loop (grey box) than for disorder-to-disorder transition (pDD, light gray, top panel), indicating that it can fold upon binding. The high

SAi
values (bottom panel) corroborate that the activation loop can sample both disordered and ordered states in the bound form, which could be shifted

towards the folded form by phosphorylation.

https://doi.org/10.1371/journal.pcbi.1007864.g004
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Phosphorylation-induced folding. Folding as well can be induced by post-translational

modifications, which may interfere with binding. For example, inositol-requiring enzyme 1

(Ire1) conveys unfolded protein response signals via oligomerization, which activates both its

kinase and RNase domains [19]. Ire1 trans-autophosphorylation triggers a disorder-to-order

transition of the activation loop, which in turn provides a positive feedback for oligomer

assembly. In agreement with these observations, residues 836–848 exhibit elevated SAi
values

indicating a possible change in binding mode upon phosphorylation (Fig 4B). The predicted

comparable pDO and pDD values further support changes in binding modes (Fig 4B).

Transient binding sites. The nonsense-mediated decay factor regulator of nonsense tran-

scripts 2 (UPF2) binds its partner regulator of nonsense transcripts 1 (UPF1) in a bi-partite

manner. The linker (1130-1166-residue), which connects the structured binding elements

however, remains disordered in the bound state [34], yet contributes substantially to the bind-

ing affinity of UPF2. FuzPred predicts elevated SAi
values in particular in the middle of the

linker, indicating a variation in binding modes (S3 Fig). This finding is in accord with the

increased probability for disorder-to-order transition, indicating transient interactions of the

linker via conditional folding (S3 Fig).

Binding mode landscapes

The pDD and SAi
values define a two-dimensional landscape for context-dependent protein

interactions (Fig 5). Such binding mode landscape characterises the extent to which residues

undergo disorder-to-order or disorder-to-disorder transitions upon binding, and the strength

of their preference for such binding modes or context-dependence. The x axis defines the level

of disorder in the bound state, ranging from structured, well-defined to disordered, heteroge-

neous interactions, as quantified by the pDD values; whereas the y axis defines the number of

binding modes, or fuzziness (Fig 5), as quantified by the SAi
values. Points at the bottom of the

landscape represent transitions with low level of context-dependence and one bound state,

while points at the upper part of the landscape represent context-dependent transitions with

multiple bound states. The binding mode landscape represents a continuum of interaction sce-

narios, out of which we discuss some distinct modes below.

Points on the bottom left of the landscape (pDD< 0.25 and SAi
< 1.8) have a strong prefer-

ence for disorder-to-order transitions, and fold into a stable structure in the bound complex

(Fig 5). DORs establish well-defined interactions with the partner and are visible in the elec-

tron density of complex crystal structures.

By contrast, residues at the bottom right of the landscape (0.65 < pDD and SAi
< 1.8) tend to

increase their flexibility or unfold in the bound states (Fig 5). DDRs exhibit highly heteroge-

neous conformations, and many redundant interaction patterns, detailed structural characteri-

sation of which presents a challenge for most experimental methods. DDRs have a strong

preference to remain disordered in the bound states, so cellular conditions unlikely trigger

their disorder-to-order transitions.

In the upper region of the landscape, residues exhibit a variety of binding modes with dif-

ferent partners or cellular conditions (Fig 5). Context-dependent regions include: (1) polymor-

phic regions (pDD� 0.25 and 2.25< SAi
), which fold into alternative structures with different

partners, (2) conditionally folding regions (0.25 < pDD� 0.45 and 2.25< SAi
), which can be

induced into a well-defined structure by specific partners or post-translational modifications,

and (3) disordered binding regions (0.45 < pDD� 0.75 and 2.25< SAi
), which exhibit confor-

mational exchange in the complex (Fig 5). All these context-dependent regions are fuzzy [12],

as they can exhibit a wide variety of binding modes.
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Fig 5. A binding mode landscape for disordered protein interactions. Residues are characterised by their binding modes to increase or decrease

order upon interactions and the context-dependence of such binding modes. (A) The binding modes, reflecting the level of disorder in the bound state,

are represented on the x axis; ranging from structured, well-defined to disordered, heterogeneous interactions, as quantified by the pDD values. Context-

dependence, reflecting the level of fuzziness, is displayed on the y axis, ranging from stable, uniform to diverse, inducible binding modes, as quantified

by the SAi
values. The pDD and SAi

values are predicted from the sequence by the FuzPred program. A disorder-to-order binding with low context-

dependence is exemplified by a disordered loop (504–512 aa, blue squares) in Taq polymerase, which adopts a stable structure upon interacting with

DNA (PDB: 3lwl [54]). A disorder-to-disorder binding with low context-dependence is represented by the heterogeneous interactions between the

elongation factor AF4 (residues 747–754, orange diamonds) with leukemia fusion protein AF9 (PDB:2lm0 [55]). Fuzzy, context-depedent interactions

sample a wide variety of binding modes ranging from disorder-to-order to disorder-to-disorder transitions. Context-dependent disorder-to-order

binding is exemplified by the polymorphic interactions of the ribosomal S6 kinase 1 (RSK1, residues 697–703, light blue dots), which adopts different
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We also observe that the top left and right corners of the landscape have no data points

showing that residues with strong probabilities for DO or DD transitions unlikely visit other

binding modes. In contrast, residues with the pDD ~ 0.2–0.8 are prone to changing their bind-

ing modes, and are unlikely sample the same type of interaction under different conditions,

leading to paucity of data in the bottom middle of the landscape (Fig 5).

We illustrate the type of insights that can be obtained from the analysis of the binding

mode landscape by considering the case of the tumor suppressor p53 (Fig 6). p53 is an interac-

tion hub, which binds to multiple partners in a variety of cellular processes. The N- and C-ter-

minal regions of p53 are disordered, and comprise many linear interaction motifs [35].

FuzPred predictions indicate that these interactions sample a wide variety of different binding

modes. These calculations indicate a strong preference for a disorder-to-order transition for

secondary structures upon binding to S100B, corresponding to autoinhibited and active forms (PDB:5csf, 5csi, 5csj [23]). Conditional folding upon

binding is represented by the N-terminal region (residues 15–25, lime dots) of the large chain of ribonucleoside-diphosphate reductase, which can be

structured or disordered in different oligomers (PDB: 1zyz, 1zzd [56]). Context-dependent disordered binding is exemplified by the p150 subunit of

the eukaryotic initiation factor 4F (residues 225–235, light orange dots). eIF4 wraps around the translation initiation factor 4E, but the flanking region

remains to be highly dynamic in the assembly (PDB: 1rf8 [57]). The interaction sites are shown by the same colours as interaction modes, and partner

proteins are displayed by grey surfaces. (B) The characteristics of the different binding modes, which are represented in panel A. The binding mode

landscape comprises a continuum of interaction behaviours, the major trends of which are illustrated by the distinct modes.

https://doi.org/10.1371/journal.pcbi.1007864.g005

Fig 6. Binding mode landscape for p53 interactions. The oligomerisation domain (residues 325–356, blue squares)

exhibits a strong preference for disorder-to-order transitions and forms stable tetramers (PDB:1c26) [36] and higher-

order structures. Short linear peptides (residues 378–386, orange diamonds) at the disordered C-terminal regulatory

region interact with sirtuin (PDB: 4zzj [37]) and the cyclin dependent kinase cyclin A (PDB:1h26 [38]) exhibit

heterogeneous binding modes. On the top of the binding mode landscape two context-sensitive regions are shown.

The disordered N-terminal transactivation region interacts with Mdm2 (PDB:1ycr [58]) via a short helical segment

(19–25 aa, lime dots). The beginning of the disordered C-terminal region folds into an α-helical conformation

(residues 278–285, green dots) to recognise DNA via a variety of dynamic binding modes (PDB: 2ady, [36]). The high

SAi
values for both regions indicate fuzzy interactions, which are strongly influenced by the cellular context. The

interaction sites are shown by the same colours as interaction modes, and partner proteins are displayed by grey

surfaces.

https://doi.org/10.1371/journal.pcbi.1007864.g006
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the oligomerisation domain (residues 325–356, bottom left on the landscape, Fig 6), which

forms stable tetramers (PDB:1c26) [36] and can be involved in higher-order structures. In con-

trast, the C-terminal region of p53 is predicted to remain disordered in the bound state, with-

out considerable ordering of the binding sites. This result is in agreement with the observation

that the C-terminal regulatory region of p53 interacts with sirtuin [37] and the cyclin-depen-

dent kinase cyclin A [38] through short disordered peptide motifs (residues 378–386, bottom
right on the landscape, Fig 6). The pDD and SAi

values of the motif in the p53 N-terminal trans-

activation domain that is responsible for the binding of mouse double minute 2 (Mdm2) (resi-

dues 19–26, top, middle of the landscape) indicate a large variability of binding modes. Indeed,

this segment is also engaged in interactions with the high mobility group box 1 (HMGB1) pro-

tein [39] and the transcriptional co-activators CREB-binding protein (CBP) and its homolog

p300 [40]. The DNA recognition helix (residues 278–285, top, middle of the landscape, Fig 6) is

predicted to have variable binding modes, which may be responsible for differential DNA rec-

ognition [36].

Discussion

It is increasingly recognized that a finely-tuned regulation of cellular pathways is enabled by a

wide variety of protein binding modes. Such binding modes involve a range of conformational

transition, from folding (ordering) to unfolding (disordering), and may vary with different

partners, cellular conditions or be modulated by post-translational modifications. In many

cases, protein regions sample different binding modes and alternate between structured and

disordered states in the bound forms. Previously, we had demonstrated that the continuum of

binding modes, the extent to which proteins undergo disorder-to-order transitions or remain

disordered, can be predicted from the sequence without specifying the binding partners [22].

Here we have asked how the context-dependent binding of proteins is encoded in their

amino acid sequences, and whether it is possible to predict the multiplicity of their possible

binding modes. We have shown that this goal can be achieved by defining the Shannon

entropy associated with the probabilities of the binding modes predicted by the FuzPred

method.

We have then discussed how the analysis of the binding modes and of their context-depen-

dence defines a binding mode landscape, which represents a continuum of interaction behav-

iours. The binding mode landscape shows how interactions can change with cellular

conditions, out of which we analysed a few distinct modes. The left and right sides of this land-

scape includes residues that are likely to adopt a specific interaction mode with many partners.

By contrast, in the top region of the landscape, high entropy values indicate a variety of con-

text-dependent binding modes.

Taken together, the results that we have reported illustrate how the FuzPred algorithm can

contribute to the current efforts to predict the binding behaviour of disordered proteins from

their amino acid sequences, without prior information on their partners. We anticipate that

our approach will facilitate the study of polymorphic, conditionally folding and disordered

binding regions, which sample a wide range of different binding modes that can be influenced

by the cellular conditions. These fuzzy regions often serve as regulatory switches in a variety of

cellular processes [41] and shift their binding modes upon post-translational modifications

[42], allosteric effects [43] or higher-order organisation [15, 19]. Context-dependent binding

modes impart functional variability on linear motifs, which are involved in multiple pathways

[44, 45]. Finally, predicting inducible interaction sites from sequences may also help identify

sites for small molecule interactions [46, 47].
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Methods

Datasets

Regions representing disorder-to-order binding mode (DORs, S1 Table). Disordered

regions (� 5 AA) in monomeric proteins, defined as residues with missing coordinates in the

PDB were collected in crystal structures with resolution higher than 3 Å. Protein sequences

with post-translational modifications or non-standard amino acids were excluded. Structures

were also analysed for truncation artefacts. Sequence with >75% similarity were excluded

using the CD-hit program [48]. We then collected all available complex structures of disor-

dered regions with the same sequence by projecting them to their UniProt reference. In each

crystal structure, we assigned order or disorder for all residues of the disordered regions (Fig

1). In case at least 5 consecutive residues were observed with a well-defined conformation in

all complexes of the disordered regions were defined as DORs. In the DOR dataset, we only

included those sequences, where at least 1 residue mediated inter-molecular interaction

(within 4.5 Å from the interface). Homotypic interactions (dimerisation, oligomerisation)

were also considered as inter-molecular contacts. The DOR dataset contained 97 disordered

regions, which were represented in 331 complexes (535 chains) only in a disorder-to-order

binding mode.

Regions representing context-dependent binding modes (CDRs, S1 Table). Disordered

regions, which were structured or remained undetected in different complexes were assembled

in the CDR dataset. In case at least 5 consecutive residues were observed in more, than one

binding mode, and at least 1 residue mediated inter-molecular contacts in the ordered form it

was defined as a context-dependent region (CDR, Fig 1). The CDR dataset contained 96 disor-

dered regions, with alternative binding modes in 750 complex structures (1505 chains) (S1

Table).

Regions representing disorder-to-disorder transitions (DDRs, S1 Table). DDRs were

assembled from the PDB. We considered those regions, which were missing from both the

monomeric and the complex forms. We collected 338 regions with disorder-to-disorder bind-

ing modes representing 583 complexes (1419 chains) (S1 Table).

Regions representing fuzzy, disordered binding regions (DBRs, S1 Table). Regions that

exhibit conformational exchange in their bound states were assembled from the Fuzzy Com-

plexes Database v3.3 (http://protdyn-database.org) [25]. Out of the 92 disordered complexes

in FuzDB (evidenced by a range of experimental methods), we selected 56 regions, where PDB

structures of the complexes were available (S1 Table).

Quantifying binding modes

Computing pDO and pDD values for regions. Binding modes were characterised based on

whether protein regions tend to increase (pDO) or decrease order (pDD) upon interactions. The

simultaneous determination of the pDO and pDD probabilities provides a continuous scale for

the binding modes. To evaluate pDO(R) and pDD(R), the scoring function (Eq 2) was computed

for selected regions, based on the local bias in disorder [31], amino acid composition and

Kyte-Doolittle hydrophobicity [49] (S1 Text). Parameters of the scoring function were trained

to distinguish between disorder-to-order and disorder-to-disorder regions, but not including

context-dependent regions. The scoring function was evaluated in running windows ranging

from 5 to 9 residues around each residue, using the full protein sequence (Fig 2). These win-

dows represented the possible interaction sites, the length of the which was based on our ear-

lier analysis of disorder-to-order binding regions [22]. SF(Ri) was computed for each of these

sites (Eq 2, Extended methods) and pDO(Ri) was determined accordingly (Eq 1).
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Distributions the pDO and pDD values with different binding sites. Using running win-

dows from 5 to 9 residues provide 35 pDO(Ri) values in case all the possible binding sites could

be defined. The distribution of the pDO(Ri) values were computed in 10 bins between [0,1], rep-

resenting the whole spectrum of binding modes (Eq 4). The modality and width of the

{pDO(Ri)}N distribution informs on the number and preference of binding modes.

Shannon entropy of binding modes. The Shannon entropy associated with the

{pDO(Ri)}N distribution was calculated for each residue using frequencies of pDO(Ri) values.

Thus, the SAi
Shannon-entropy, similarly to the most likely binding mode pDO(Ai) character-

izes interactions of a residue. Low SAi
values reflect a preference for a distinguished binding

mode, whereas higher values indicate that the given residue can sample multiple binding

modes under different conditions. pDO(Ai) and SAi
inform whether a given residue tends to be

more or less ordered upon binding and to what extent this binding mode can be modulated by

the environment. The values of the Shannon entropy depend on the number of bins used for

the pDO(Ri) distribution. Using more bins (> 10) would require defining more binding sites,

including longer interfaces. This is, however, not typical for disordered proteins [50, 51] and

would decrease the local bias of the binding motifs.

We also eliminated potential artefacts owing the reduced number of hypothetical binding

sites at the N- and C-terminal regions as compared to the middle of the sequence (S2 Fig). We

did not find a significant difference between the Shannon entropies of the 10-residue long N-

and C- terminal regions as compared to 10 aa regions in the middle of the sequence analysing

2000 randomly selected human proteins (S2 Fig). At the same time, disorder predictions

exhibit strong differences between terminal and inner segments owing to the asymmetric envi-

ronment (S2 Fig).

Evaluation of performance. Receiver operating characteristic (ROC) curves were com-

puted using the R program. The true positive rate (TPR) was calculated as a function of the

false positive rate (FPR, sensitivity) using the experimentally observed disorder-to-order, dis-

order-to-disorder and context-dependent regions. The area-under-the-curve (AUC) was

determined by the R program. Only disordered residues were included in the distinct binding

mode classes.
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