
An identification system based on the explicit
isomorphism problem

Sándor Z. Kiss
Department of Algebra, Budapest
University of Technology and
Economics
kisspest@cs.elte.hu

Péter Kutas
School of Computer Science,
University of Birmingham
p.kutas@bham.ac.uk

Thursday 16th September, 2021

Abstract

We propose a new identification system based on algorithmic problems related to computing
isomorphisms between central simple algebras. We design a statistical zero knowledge pro-
tocol which relies on the hardness of computing isomorphisms between orders in division
algebras which generalizes a protocol by Hartung and Schnorr, which relies on the hardness
of integral equivalence of quadratic forms.

Keywords: Zero-knowledge proof, Central simple algebras, Computational complexity.

Mathematics Subject Classification: 11T71, 16Z05, 16K20.

1 Introduction

In this paper we propose an identification system based on an algorithmic problem related to
the following problem from computational algebra. Let A be a finite-dimensional associative
algebra over a field K. Let b1, . . . , bm be a basis of A. Then the products bibj can be expressed
as linear combinations of the basis elements: bibj = ∑m

k=1 γijkbk. The γijks are called structure
constants and we consider A to be given by a collection of structure constants. Assume that A
is isomorphic to Mn(K), the algebra of n times n matrices over K. The algorithmic task is to
compute an isomorphism between A and Mn(K). We will refer to this problem as the explicit
isomorphism problem.

This is a well studied problem in computational algebra [7], [21], [22], [24], [27]. It has con-
nections to arithmetic geometry [5], [6], [7], norm equations [22], parametrization of algebraic
varieties [16] and error-correcting codes [15]. The best known algorithm in the K = Q case is
due to Ivanyos, Rónyai and Schicho [22]. The algorithm uses an oracle for integer factorization
and the running time of the algorithm is polynomial in the size of the structure constants but
is exponential in the n (the degree of the matrix algebra) which implies that it is only practical
for very small n. The algorithm of [22] can also be used to compute isomorphisms between
division algebras by a reduction to the original explicit isomorphism problem. This reduction

1

on the other hand comes at the cost of squaring the dimension. To our knowledge the difficulty
of this problem has never been exploited for cryptographic purposes.

Hartung and Schnorr [17] proposed an identification system which relies on the difficulty
of finding an explicit equivalence of integral quadratic forms. In a sense our scheme can be
thought of as a higher degree generalization of the protocol in [17] as the equivalence problem
of rational quadratic forms is similar to the isomorphism problem of quaternion algebras.

We introduce new computational problems (e.g., the order isomorphism problem) which are
naturally harder problems than the above discussed explicit isomorphism problem. The com-
plexity of them is unclear at the moment but there is some evidence that due to their ”integral”
nature they are indeed harder.

The paper is organized as follows. In Section 2 we summarize all known results and compu-
tational assumptions which we will use later on. In Section 3 we give the detailed description
of our protocol and provide security proofs. Finally, in Section 4 we give a toy example of the
protocol described in Section 3.

2 Preliminaries

2.1 Theoretical background
In this subsection we give a brief overview of the theoretical results needed for the description
of our protocol. The reader is referred to [26, Chapter 12] on facts about central simple algebras.

Definition 1 ([26], p.44). A nonzero associative algebraA over a field K is simple if it has no nontrivial
two-sided ideals.

It is a well-known theorem of Wedderburn that every finite dimensional simple algebra over
a field K is isomorphic to a full matrix algebra over some division algebra whose center is an
extension of K.

Definition 2 ([26], p.224). A simple algebra A is called central simple over K if its center is exactly
K.

The tensor product of two finite-dimensional central simple K-algebras is again a central sim-
ple K-algebra. Two central simple algebras over K are Brauer equivalent if their underlying
division algebras are isomorphic (note that by Wedderburn’s theorem, a central simple algebra
is a full matrix algebra over a division algebra). Equivalence classes of central simple algebras
form a group under the tensor product, called the Brauer group of the field K. This implies
that in order to understand central simple algebras over a fixed field one has to understand the
division algebras over that field.

Definition 3 ([26], p.277). Let K be a field and let L be a cyclic extension of K (i.e., a Galois extension
whose Galois group is cyclic) of degree n . Let σ be a generator of the Galois group. Let a ∈ K. Then the
following algebra A is called a cyclic algebra:

1. un = a · 1

2. A = ⊕n−1
i=0 Lui

3. u−1lu = σ(l) for every l ∈ L

This algebra is denoted by (L|K, σ, a).

2

It is well known (see [26, Chapter 15]) that a cyclic algebra is a central simple algebra over K of
dimension n2. Moreover, the following is true:

Theorem 4. ([26], p.278) Let L be a cyclic extension of K and let a ∈ K \ {0}. A cyclic algebra
(L|K, σ, a) is isomorphic to Mn(K) if and only if a is a norm in the extension L|K.

We define orders in central simple algebras:

Definition 5 ([28], p.108). Let R be an integral domain with quotient field K. Let A be a central
simple K-algebra. A subring O of A is an order if it contains 1 and is a finitely generated R-module
which contains a K-basis of A (i.e., O⊗R K = A).

An order is called maximal, if it is maximal with respect to inclusion. Maximal orders are non-
commutative analogues of the ring of integers in algebraic number fields. For further details on
maximal orders the reader is referred to Reiner’s monograph [28].

Theorem 6. (Noether-Skolem [26], p.230) Let A be a finite dimensional central simple K-algebra and
let B be a simple K-algebra. Let f , g : B → A be two K-algebra homomorphisms. Then there exists an
invertible element x ∈ A, such that f (b) = xg(b)x−1 for all b ∈ B.

2.2 Algorithmic background and computational assumptions

2.2.1 Known results

In this subsection we give a brief overview of the algorithmic history of the explicit isomor-
phism problem.

Let A be an associative algebra given by a collection of structure constants. It is a natural
algorithmic problem to compute the structure of A, i.e., compute its Jacobson radical rad A,
compute the Wedderburn decomposition of A/rad A and finally compute an explicit isomor-
phism between the simple components of A/rad A and Mni (Di) where the Dis are division
algebras over K and Mni (Di) denotes the algebra of ni × ni matrices over Di. The problem has
been studied for various fields K, including finite fields, the field of complex and real numbers,
global function fields and algebraic number fields. There exists a polynomial-time algorithm
for computing the radical of A over these fields [4]. There also exist efficient algorithms for
every task over finite fields [10], [30] and the field of real and complex numbers [9]. Finally,
when K = Fq(t), the field of rational functions over a finite field Fq, then there exist efficient
algorithms for computing Wedderburn decompositions [23] and for computing explicit isomor-
phisms between full matrix algebras over Fq(t) [21].

The case when K = Q is particularly interesting due to its applicability to various algo-
rithmic problems. Wedderburn decomposition can again be achieved in polynomial time [10],
but computing isomorphisms between central simple K-algebras is much harder. Rónyai [29]
showed that computing an explicit isomorphism between A (given by structure constants) and
M2(Q) is at least as hard as factoring integers. On the other hand, Ivanyos, Rónyai and Schi-
cho [22] proposed an algorithm to compute an isomorphism between A and Mn(Q) which is
allowed to call an oracle for factoring integers. The running time of the algorithm is polynomial
in the size of the structure constants, but it is exponential in n. More precisely, let m = n2 and
let

cm = γ
m
2

m

(
3
2

)m
2

m(m−1)
2 ,

where γm is Hermite’s constant. The last step of the algorithm from [22] generates roughly
cm

m linear combinations and checks whether any of them has rank 1 as a matrix. This number

3

is independent of the size of the structure constants, so when m is bounded, the algorithm is
technically a polynomial-time algorithm. However, when n ≥ 5 the search space is too large
for this computation to be achievable in reasonable amount of time. Making this algorithm
practical would be of immense number theoretical intereset as it would speed up n-descent of
elliptic curves [7] which is one of the most promising techniques for computing generators of
the Mordell-Weil group of elliptic curves.

In [22] the authors also study the isomorphism problem of division algebras. They reduce
the problem of finding explicit isomorphisms between division algebras of degree n over a
number field K to the explicit isomorphism problem between an algebra A and Mn2(K) [22,
Section 4]. Note that this suggests that the isomorphism problem of division algebras is harder
as it requires the solution of an explicit isomorphism problem for full matrix algebras of degree
n2 as opposed to n.

If A is given by a cyclic algebra presentation, then finding an isomorphism between A and
Mn(Q) is equivalent to solving a norm equation over a cyclic extension which is a classical hard
problem in computational number theory. Furthermore, there is no known polynomial-time
algorithm for computing a cyclic algebra presentation from a structure constant representation
when n ≥ 5. So it seems that the explicit isomorphism problem is harder than solving norm
equations in cyclic extensions.

It is a natural question to study related isomorphisms problems, such as the isomorphism
problem of orders in division algebras. This has not extensively been studied but there is some
evidence that this problem is harder than the previous problems considered. First, note that if
one can construct an isomorphism between two orders, then that extends to an isomorphism
of the underlying algebras (computing an order in an algebra is easy, one just multiplies the
basis elements with a suitable integer to make structure constants integral). The relation of
order isomorphism and algebra isomorphism is similar to the relation between finding inte-
ger solutions and rational solutions to a diophantine equation. The problem of equivalence of
quadratic forms is studied in [17] where they show that rational equivalence can be computed
by a polynomial-time algorithm which is allowed to call an oracle for factoring integers. On the
other hand, they also show that the problem of integral equivalence is NP-hard. This is simi-
lar as the relation between isomorphisms of division algebras and orders. This provides some
evidence that the order isomorphism problem is harder than, and extends the isomorphism
problem of algebras.

2.2.2 Computational assumptions

We list hard problems and list our computational assumptions which are needed for our scheme.
We start by restating the explicit isomorphism problem:

Problem 1. Let A be an algebra isomorphic to Mn(Q) given by structure constants. The Explicit
Isomorphism Problem (EIP) is to find an isomorphism between A and Mn(Q).

In order to be able to consider more general problems, we formalize isomorphism problems in
such a way that checking if a map is really and algebra isomorphism can be accomplished effi-
ciently. First we give a slightly different interpretation of the structure constant representation.
Let A be an algebra of dimension m over a field K. Then multiplication from the left by any
element a ∈ A is a K-linear map, thus can be described by an m×m matrix with entries from
K. This provides an embedding of A into the full matrix algebra Mm(K). This representation
of the algebra is called the (left-)regular representation. It is clear that specifying an algebra by a
collection of structure constants is exactly the same as providing its regular representation. An
isomorphism between algebras given by structure constants can be specified in various ways.

4

One way is to describe it as a vector space isomorphism. However, checking that it is also ring
isomorhism might be costly. Instead we consider both algebras given by their regular represen-
tation and then an isomorphism can be described as conjugation by a suitable matrix.

Problem 2. Let A,B be isomorphic division algebras of dimension n2 over Q given by their regular
representation. The Division Algebra Isomorphism Problem is to find an invertible matrix M ∈
Mn2(Q) such that B = M−1AM.

The Noether-Skolem theorem implies the existence of a suitable M. Now we state the order
isomorphism problem:

Problem 3. LetA,B be isomorphic division algebras of dimension n2 over Q and let ΓA, ΓB be orders in
A and B respectively. The Order Isomorphism Problem is to find an invertible matrix M ∈ Mn2(Q)
such that ΓB = M−1ΓAM.

Finally we consider a slightly more general version of the order isomorphism problem when
we require the conjugating matrix to be integral.

Problem 4. Let A,B be isomorphic division algebras of dimension n2 over Q and let ΓA, ΓB be orders
in A and B respectively. The Integer Order Isomorphism Problem is to find an invertible matrix
M ∈ Mn2(Z) with det(M) = ±1 such that ΓB = M−1ΓAM.

Analogies suggest that Problem 4 is the hardest amongst these problems. An example of Prob-
lem 4 for central simple algebras of degree two (i.e., quaternion algebras) is given in Section 4
as part of the toy example of our protocol.

In [22] it is shown that if two central simple algebras are isomorphic then there exists an
isomorphism that can be represented by a matrix of polynomial size. However, it is not ob-
vious that the statement also holds for orders. This motivates the definition of the following
algorithmic problem:

Problem 5. Let A,B be isomorphic division algebras of dimension n2 over Q and let ΓA, ΓB be orders
in A and B respectively. The Integer Order Isomorphism Problem With Restricted Coefficients is
to find an invertible matrix M ∈ Mn2(Z) with det(M) = ±1 such that ΓB = M−1ΓAM and every
entry ai,j of M one has that |ai,j| < t for some constant t.

Our main protocol will rely on the hardness of this problem.

Lemma 7. Problem 5 is in NP.

Proof. Let ΓA and ΓB be orders such that ΓB = M−1ΓAM and M ∈ Mn2(Z) with det(M) = ±1.
Then we show that M is a polynomial-time witness for Problem 5. First, one checks that M
has integer coefficients which are bounded in absolute value by t and has determinant equal
to ±1. Then one computes the M−1bM for every basis element and computes the coefficient of
the above matrices in this basis by solving a system of linear equations. If the coefficients are
integers and the transition matrix has determinant±1, then M indeed induces an isomorphism.
In other words, one has to check that the Z-lattice generated by the elements M−1bM is equal
to ΓA which is an instance of equality of lattices.

2.3 Interactive Proof systems
In this section we give a short survey about interactive proof systems and zero knowledge
protocols. We follow [8], which contains an excellent summary about identification schemes.
An interactive proof system consists of two participants: the prover and the verifier. The aim

5

of the prover is to convince the verifier that he knows some secret information, which is called
prover’s secret. During the whole process the prover and the verifier send and receive messages
from each other and both of them perform some computations. The communication between
the prover and the verifier consists of challenges by the verifier and responses by the prover. In
general, the prover begins and the verifier finishes the protocol. The verifier accepts or rejects
depending on the prover’s answers to all of the verifier’s challenges.

For an interactive proof system, there are the following two requirements. ([8], p.118.)

1. Completeness. If the prover knows the prover’s secret, then the verifier will always accept
the prover’s proof.

2. Soundness. If the prover can convince the verifier with reasonable probability, then he
knows the prover’s secret.

A prover or a verifier is called honest prover or honest verifier if he follows the steps specified
in the protocol; otherwise he is called dishonest or fraudulent prover or verifier.

Now, we give a formal definition for the zero-knowledge property (see [8], subsection 4.2.3.)
We denote the algorithm of the honest prover by P, the algorithm of the honest verifier by V, and
the algorithm of an arbitrary verifier by V∗. Note that V∗ can be a fraudulent verifier. We denote
an interactive proof system, including the interaction between P and V by (P, V). Assume that
the interactive proof takes n steps. In each step a message is sent, and we can assume that
the prover starts with the first step. Let m1, m3, . . . be the messages sent from the prover to
the verifier and let m2, m4, . . . be the messages sent from the verifier to the prover, where mi
denotes the message sent in the i-th step. We define the transcript of the joint computation of P
and V∗ the common input x of (P, V) by trP,V∗(x) = (m1, m2, . . . , mn), where trP,V∗(x) is called
an accepting transcript if V∗ accepts after the last step.

For a given verifier V∗, an algorithm S which generates valid accepting transcripts for
(P, V∗) without communicating with the real prover P is called a simulator. The simulator
does not know and cannot determine the prover’s secret, and it plays the role of P during the
protocol.

Definition 8 ([8], Definition 4.6). An interactive proof system (P, V) is zero-knowledge if there is
a probabilistic simulator S(V∗, x), running in expected polynomial time, for which every verifier V∗

outputs on input x an accepting transcript t of P and V∗ such that these simulated transcripts are
distributed in the same way as if they were generated by the honest prover P and V∗.

Informally, we say an interactive proof system is zero-knowledge if whatever the verifier can
efficiently compute after interacting with the prover, can be efficiently simulated without in-
teraction. The generating of transcripts includes random choices. It follows that we have a
probability distribution on the set of accepting transcripts. The last condition of the definition
means that the probability distribution of the transcripts which are generated by S and V∗ is
the same as if they were generated by the honest prover P and V∗. If this distribution is not the
same but statistically close to each other, then the interactive proof system is called statistical
zero-knowledge.

The statistical distance between two discrete random variables X and Y is defined by

∆(X, Y) =
1
2 ∑

k
|P(X = k)−P(Y = k)| ,

where k runs through all the objects which X or Y can assume and P(E) denote the probability
of an event E. Let N be a natural number. We say two sets XN , YN of random variables are

6

statistically close if their statitistical distance is negligible for N → ∞. More precisely, if

∆(XN ,YN) = O
(

1
p(N)

)
for every polynomial p(x) ([11], section 3.2.2).

Definition 9 ([11], Def. 4.3.4). An interactive proof system (P, V) is statistical zero-knowledge if there
is a probabilistic simulator S(V∗, x), running in expected polynomial time, for which every verifier V∗

outputs on input x an accepting transcript t of P and V∗ such that the distribution of these simulated
transcripts is statistically close to that of they were generated by the honest prover P and V∗.

3 Description of the protocol

In this section we describe two zero knowledge protocols, which rely on the hardness of Prob-
lem 4.

3.1 A generic protocol
Lemma 7 shows that Problem 4 is in NP. In [14] it is proven that every NP language admits a
zero knowledge proof. In particular, this implies that one can construct an identification system
whose security relies on Problem 4. However, this is a purely theoretical result and the result-
ing protocol is inefficient. In the next subsection we propose a more direct approach which is
potentially more efficient. This comes at the price that the zero knowledge property relies on a
heuristic and not directly on Problem 4.

3.2 The protocol
In this subsection we give a high level description of the protocol and in the next subsection we
provide details for key generation and interactions. Our protocol is based on Problem 5.

The public key consists of two orders Γ0, Γ1 given by their regular representation (i.e., they
are each given by n2 matrices in Mn2(Q) which form an integral basis of the respective order).
The secret key is a matrix M ∈ Mn2(Z) with Γ1 = M−1Γ0M. We denote the isomorphism
corresponding to M by φ. Note that by a random isomorphism we mean conjugation by a
suitable random integer matrix. We will specify the details of this in the next subsection.

Remark 10. When Γ0 possesses nontrivial automorphisms it might happen that Γ0 = Γ1, i.e.,
M induces an automorphism (which may be a concern since automorphisms are rare and are
potentially easier to find than general isomorphisms). However, one can easily check if this
is the case by deciding whether the representing n2 × n2 matrices of Γ0 and Γ1 generate the
same Z-lattice in Mn2(Q). In this case one should generate a new M. Note however, that the
probability of a randomly chosen isomorphism to be an automorphism is negligible.

The steps of the protocol are as follows:

Protocol 1. 1. The prover chooses a random r ∈ {0, 1} and a random isomorphism ψ : Γr → Γ for
some Γ and sends the regular representation of Γ corresponding to a random basis to the verifier.

2. The verifier sends a random one-bit challenge i ∈ {0, 1} to the prover.

7

3. The prover computes

δ =

ψ, if r = i

ψ ◦ φ−1, if r = 0, i = 1
ψ ◦ φ, if r = 1, i = 0.

The prover sends the isomorphism δ to the verifier.

4. The verifier accepts if Γ = δ(Γi).

The first message is a commitment by the prover that he knows an isomorphism. The second
message is the challenge by the verifier. If the challenge sent by the verifier is the same as the
prover’s selection, then the prover has to open the commitment and unfold ψ. If not, then the
verifier has to show his secret in encrypted form, by providing ψ ◦ φ−1 or ψ ◦ φ.

Remark 11. Note that Protocol 1 is similar to Protocol 2 in [12] based on the graph isomorphism
problem. Furthermore, Protocol 2 in [12] is simpler than Protocol 1 because in the first step the
prover sets r = 1 and he does not use random selection as in Protocol 1.

3.3 Details of the protocol
In this subsection we discuss the execution of the protocol and the key generation in more detail.

Constructing orders in division algebras First we show how to construct division algebras of
degree p over Q where p is a prime number.

1. Find a cyclic Galois extension L of Q of degree p. Let the generator of the Galois group be
σ.

2. Find an integer b which is not in the image of the norm map from L to Q.

3. Output the cyclic algebra (L|Q, σ, b).

Now we give a brief description on how to carry out each individual step. For the first step find
an integer l such that ϕ(l) (where ϕ denotes Euler’s totient fucntion) is divisible by p. Then the
lth cyclotomic field Q(εl) contains a subfield which is Galois over Q and has degree p since the
extension Q(εl)|Q is abelian and thus all its subgroups are normal subgroups. This field can be
constructed by taking the fixed field of an appropriate subgroup of Gal(Q(εl)|Q).

The second step can be accomplished by choosing a small random b (between 1 and 100 for
example) and checking whether b is in the image of the norm map. One has to check whether b is
represented locally at every prime dividing the discriminant of the norm form which is easy as b
is small and the discriminant of the form is small as well (this is important as one needs to factor
b and the discriminant of the norm form). This procedure is essentially the basis of detecting
division algebras locally which is described in [20, Section 6]. The main component their is the
computation of a maximal order. Once a maximal order is computed one can determine its local
indices by factoring its discriminant. The probability of success is high as the image of the norm
map is a subgroup of infinite index in Q. We give an example of generating a division algebra
together with an order in Section 4.2

8

Random Isomorphisms Now we generate a random nonsingular n× n integer matrix M =
(ai,j) in some probability distribution similarly as in [17]. Let t be a security parameter and we
choose ai,j ∈ (−t, t) uniformly at random and independently from each other for 1 < i 6= n.
Then we compute the minors correspond to a1,j for every 1 ≤ j ≤ n (these are the entries in
the first column of the adjoint matrix M−1 · det(M)). We denote these minors by b1,1, . . . , b1,n.
Furthermore, we can compute the entries of the first row of M by solving the following linear
diophantine equation:

n

∑
i=1

a1,ib1,i = 1,

which is the greatest common divisor of b1,1, . . . , b1,n. We can compute the greatest common
divisor by using the extended euclidean algorithm. If the greatest common divisor is not equal
to 1, then repeat the process with some new ai,j, 1 < i ≤ n. We compute a short solution in eu-
clidean 2-norm of the above equation by using the LLL algorithm [18]. The random distribution
of these matrices is denoted by Dt(M). Formally, we have the following algorithm.

Algorithm 1 Computation of a random nonsingular integer matrix M = (ai,j)

choose ai,j ∈ (−t, t), i 6= 1 uniformly at random and independently from each other
For j = 1 to n
compute b1,j, which is the minor corresponds to a1,j.
compute gcd(b1,1 . . . , b1,n)
If gcd(b1,1, . . . , b1,n) 6= 1
repeat with a new ai,j ∈ (−t, t), i 6= 1.
Else compute a1,i by solving ∑n

i=1 a1,ib1,i = 1 = gcd(b1,1 . . . , b1,n).
reduce (a1,1, . . . , a1,n) by the LLL algorithm
return M

Remark 12. To find a random integer matrix we follow the algorithm of Hartung and Schnorr
[17]. One can also generate random isomorphisms by using matrices over Q.

The distribution of such random matrices is not necessarily uniform; actually we do not
know the distribution exactly. Thus we do not know the distribution of the products and in-
verses of these matrices as well. We assume that these distributions statistically close. More
precisely, we have the following heuristic.

Heuristic 1. If the random matrices A1, A2 A3 and A4 are independent and distributed according to
Dt(Ai) (i = 1, 2, 3, 4 resp.) then the distributions of A1 and A1 A2, A1 A3, A4 A1 and A1 A−1

4 are
statistically close to each other.

Remark 13. We have not checked this assumption experimentally yet, however, a similar as-
sumption is made for integral quadratic forms in [17] and integral quadratic forms correspond
to norm forms of orders of quaternion algebras.

Fix an order Γ0 given by its regular representation and choose a random matrix M is of distri-
bution Dt(M) applying the above process. Compute Γ1 = M−1Γ0M. The public key is (Γ0, Γ1),
the private key is M.

9

Choosing parameters When choosing parameters we consider two types of attacks. One pos-
sible attack is to guess the secret isomorphism, i.e., guess the entries of the matrix M as verifying
whether a certain M suffices can be accomplished in polynomial time. Another possible attack
is to compute an isomorphism between the underlying division algebras. We stress that it is
an open problem whether an isomorphism between the underlying division algebras can be
applied to computing an isomorphism of orders. Nevertheless, Problem 2 is a potentially easier
problem for which there exists an algorithm with a clear complexity analysis [22].

We suggest to use orders division algebras of degree 5 and the bound for a random isomor-
phism to be 100. In this setting orders are represented by 25× 25 matrices thus and so is the
secret isomorphism. This implies that searching thorough all possible 25 × 25 matrices with
entries between -100 and 100 is clearly not feasible. In order to compute an isomorphism of the
underlying division algebras one has to compute an isomorphism of full matrix algebras of de-
gree 25 [22, Section 4] which is infeasible as discussed in Section 2.1. Choosing the degree to be
5 comes from the fact that lower degree algebras might have better algorithms as the algorithm
from [22] (such as [27], [16]).

Remark 14. Note that the parameters we propose allow an adversary to factor the discriminant
of the orders. However, we would like to emphasize that Problem 5 is still hard even when one
knows the factorization of the discriminant. The most costly part of the algorithm from [22] is
the exhaustive search component not the factoring of the discriminant.

3.4 Security of Protocol 1

The verifier accepts the proof of a fraudulent prover with probability 1
2 . Iterating the protocol

k times independently and sequentially, the probability of the cheating can be reduced to 2−k.
On the other hand, the only information a honest prover provides to the verifier is the fact that
he knows an isomorphism between the two orders.
Completeness It is clear that if r = i, then δ(Γi) = ψ(Γi) = Γ and if N ∈ Mn2(Z) is the ma-
trix corresponds to ψ, then N−1Γi N = Γ and the verifier will accept. If r = 0, i = 1, then
(ψ ◦ φ−1)(Γ1) = ψ(φ−1(Γ1)) = ψ(Γ0) = Γ for some Γ. More precisely, (M−1N)−1Γ1(M−1N) =
N−1(MΓ1M−1)N = N−1Γ0N = Γ, thus the verifier will accept. Finally, if r = 1, i = 0,
then (ψ ◦ φ)(Γ0) = ψ(φ(Γ0)) = ψ(Γ1) = Γ for some Γ. More precisely, (MN)−1Γ0(MN) =
N−1(M−1Γ0M)N = N−1Γ1N = Γ, thus the verifier will accept. These facts impliy that if the
prover knows φ, and both the prover and the verifier follow the protocol, then the verifier will
always accept.
Soundness We prove that if P∗ is a fraudulent prover, then the verifier V will reject with prob-
ability at least 1

2 . If any P∗ can convince the verifier with both challenges i = 0, 1, then clearly
there exist N0, N1 ∈ Mn2(Z) such that N−1

0 Γ0N0 = Γ and N−1
1 Γ1N1 = Γ. Then we have

N−1
0 Γ0N0 = N−1

1 Γ1N1 and so Γ1 = (N−1
1 N0)

−1Γ0(N−1
1 N0) which gives another integral isomor-

phism between Γ0 and Γ1 i.e., another private key. It follows that at most one of the challenges
may lead to acceptance. Hence, with probability at least 1

2 , the verifier will then reject.

Proposition 15. Under Heuristic 1, Protocol 1 is statistical zero knowledge.

Proof. According to Theorem 2 in [13] and in [19], it is enough to prove the proposition for
honest verifier. Let O denote the set of orders given by their regular representations and let H
denote the set of isomorphisms from Γ0 to Γ and from Γ1 to Γ. The set of accepting transcripts is

{(Γ, i, δ) ∈ O× {0, 1} × H : δ(Γi) = Γ}.

We describe a simulator S, which satisfies the desired properties.

10

Algorithm 2 Simulator S

transcript S(algorithm of V, Γ0 and Γ1 given by regular representations)
choose a random s ∈ {0, 1} and an isomorphism δ̂ from Γs at random according to Dt(Γs).
Γ̂← δ̂(Γs)
choose an isomorphism η from Γ̂ at random according to Dt(Γ̂).
Γ
′ ← η(Γ̂)

choose an isomorphism θ from Γ̂ at random according to Dt(Γ̂).
Γ
′′ ← θ(Γ̂)

i← V(Γ
′
)

If s = i
return (Γ

′
, s, η ◦ δ̂)

If s 6= i
return (Γ

′′
, s, θ ◦ δ̂)

The simulator S uses the verifier V to get the challenge i and it tries to find out i in advance. If
S was successful in guessing i, he can provide a valid transcript (Γ̂, s, η ◦ δ̂). Now we prove that
under Heuristic 1, the distribution of the simulator’s output is statistically close to an output
coming from an interaction between a honest prover P and an honest verifier V. It is clear
from the definition of S that the distribution of s is the same as the challenge i coming from the
interaction between P and V in the protocol. Define K, N1, N2 by K−1ΓsK = Γ̂, N−1

1 Γ̂N1 = Γ
′
,

N−1
2 Γ̂N2 = Γ

′′
, respectively. If i = s, then the output of P is K ∈ Dt(K) and the output of

S is KN1, where N1 ∈ Dt(N1). According to Heuristic 1, the distribution of K and KN1 are
statistically close to each other. If i 6= s, then the output of P is KM−1 or MK and the output
of S is KN2, where M ∈ Dt(M), K ∈ Dt(K) and N2 ∈ Dt(N2). According to Heuristic 1, the
distribution of KM−1, MK and KN2 are statistically close to each other. Thus the outputs of P
and S are statistically close and so Protocol 1 is statistically zero knowledge under Heuristic 1.

Remark 16. The proof of the zero knowledge property of the protocol is reminiscent of the zero
knowledge property of the classical interactive proof system based on graph isomorphisms.
However, in the case of graph isomorphisms, if you consider the product of two random iso-
morphisms it is indistinguishable from a random isomorphism chosen from the same distribu-
tion (i.e., selecting a unformly random element of the symmetric group). However, if one looks
at the composition of two order isomorphisms, the corresponding conjugating matrices multi-
ply which will have a different distribution. This is why we have to modify the simulator and
can only claim statistical zero knowledge similarly to [17].

Finally, we briefly comment on the impact of the proposed protocol. Problem 5 is related
to well-studied number theoretical problems and is somewhat connected to computational as-
sumptions reminiscent of lattice-based and multivariate assumptions. This provides some mo-
tivation that Problem 5 is hard even for a quantum computer. Furthermore, if one could extend
our protocol to be able to handle arbitrarily large challenges, one could build digital signature
schemes which could have competitive signing and verification speed. The reason for this is
that by choosing a larger division algebra, one could potentially choose the conjugating matrix
M to have small entries which enables fast matrix multiplication. Note that the key sizes will
still be very large. Thus we believe that this paper could potentially be a starting point for a
new line of post-quantum schemes.

11

4 A toy example

4.1 Identification scheme
In this subsection we give a concrete example of our identification scheme. This is just a small
example meant to provide some clarity, so the parameters used are not meant to provide suffi-
cient security.

Let A be the quaternion algebra with quaternion basis 1, u, v, uv where u2 = −1, v2 =
3, uv + vu = 0. Let O1 be the Z-lattice generated by 1, u, v, uv. It is clear that O1 is also a ring,
thus it is an order in A. First we compute the regular representation of O1:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

0 0 3 0
0 0 0 −3
1 0 0 0
0 −1 0 0

 ,

0 0 0 3
0 0 3 0
0 1 0 0
1 0 0 0

 .

Now we construct an order O2 isomorphic to O1 by first choosing a random matrix B and
computing a random basis of O2 = B−1O1B. Here we choose the following matrix:

B =

−1 −5 −1 −5
10 3 14 14
10 4 15 0
7 9 9 18

 .

The regular representation of O2 is given by the following matrices:
22823 25756 24424 127163
−426 −488 −453 −2410
−15106 −17043 −16168 −84136
−1110 −1252 −1188 −6183

 ,

−236067 −749009 −241581 −1276977

4408 14188 4479 24201
156222 495551 159890 844853
11510 36424 11794 62093

 ,

−700782 −1036680 −856635 −2353415

13175 19601 16073 44639
463691 685895 566827 1557060
34088 50397 41679 114354

 ,

−434287 −941658 −509832 −1628214

8154 17819 9546 30876
287358 623010 337355 1077234
21144 45786 24834 79133

 .

The regular representation of O1 and O2 is part of the public key, the matrix B is secret. Now
the prover chooses a random matrix C and computes O3 = C−1O2C. Here we choose

C =

−4 −1 −1 −4
13 9 3 6
2 9 15 13
3 13 12 5

 .

The the prover sends over a random basis of O3, in our case this will be the following:
308953146301 655710307003 579155375644 361329662174
−383835331750 −814637386699 −719527537820 −448906551540
476972774120 1012308722844 894120520149 557833493285
−332130522360 −704901082168 −622603073690 −388436279011

 ,

12

587711341384 1356738677803 1237179068072 755461309928
−730157244630 −1685576756090 −1537039017600 −938565435976
907329516990 2094581071851 1910000731132 1166307849683
−631800895590 −1458519943242 −1329991087710 −812135315774

 ,

735180739907 1574065359241 1394017791570 866716597474
−913369378520 −1955577756259 −1731891356960 −1076786103514
1134997980115 2430097676536 2152133892443 1338067692447
−790333311240 −1692150272837 −1498595710360 −931736874191

 ,

981143888960 2111674730047 1869491446440 1157041030470
−1218947580410 −2623489619892 −2322607428900 −1437477610080
1514724572734 3260078004908 2886186911608 1786280805793
−1054748385480 −2270090596754 −2009738956870 −1243841177300

 .

Remark 17. Note that the matrices corresponding to O3 have larger coefficients than the matrices
corresponding to O2. This is an example of the phenomenon explained at the end of Remark 16.

Now the prover chooses a random bit b. If b = 0, then the prover reveals the matrix C. In
this case the verifier first computes C−1O2C (i.e., conjugates the given four matrices by C). Then
the verifier accepts if the given four matrices of generate the same Z-lattice as the given four
matrices (i.e., checks that the transition matrix is an integer matrix with determinant 1 or −1).
If b = 1, then the prover reveals BC and the verifier checks in a similar fashion.

4.2 Generating division algebras and orders
We provide an example of how to generate division algebras and orders in them. The outline
will be the following. We find a cyclic extension K of Q and then an element b ∈ Q for which
the cyclic algebra A = (K|Q, σ, b) is a division algebra. Then we provide an order in A.

In order to make our life easier we will look for a cyclic algebra of degree 5, i.e., a field K

which is a Galois extension of Q is of degree 5. Since 5 is a prime number, A = (K|Q, σ, b) is
a division algebra if and only if b is not a norm in the extension K|Q. We are looking for K as
a subfield of a certain cyclotomic field because cyclotomic extensions are Abelian hence every
subfield of them is automatically a Galois extension of Q.

Since ϕ(11) = 10, the 11th cyclotomic field contains a subfield K of degree 5 over Q which is
the splitting field of the polynomial x5 − 11x4 + 44x3 − 77x2 + 55x− 11. The Galois group of K

over Q is cyclic because every group of order 5 is cyclic. Now we need to find a b which is not
a norm in the extension K|Q. Checking that a certain b is a norm or not can be accomplished
efficiently using [20, Section 6] if one can factor b. In this setting b does not need to be large and
most b-s aren’t norms so this can actually be done by guessing easily. Using the computational
algebra system MAGMA [2] one can compute that b = 2 is not a norm. The discussion so far
implies that A = (K|Q, σ, 2) is a division algebra.

Let u ∈ A be such that u5 = 2 (which is given by the definition of a cyclic algebra). Then
the set ∑4

i=0 Oui where O is the ring of integers of K is an order. Indeed, it is full Z-lattice and
a subring of A which contains 1. Alternatively, one can also generate an order by selecting a
Q-basis of A containing 1 and multiply every basis element with a suitable integer to make
structure constants integral.
Remark 18. This method easily generalizes to constructing division algebras of square-free de-
gree. Indeed, the tensor product of division algebras of coprime degrees is again a division
algebra [26].
Remark 19. We do not see any security risk in setting this exact division algebra as a global
parameter (i.e., this division algebra can be used in any protocol execution).

13

Acknowledgement. We would like to thank the anonymous reviewers for the careful read-
ing and the helpful suggestions which have improved the quality of this paper considerably.
Sándor Z. Kiss was supported by the Hungarian National Research, Development and Innova-
tion Office - NKFIH, Grants No. K109789, K129335, K115288. Sándor Z. Kiss was supported
by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the
ÚNKP-18-4 New National Excellence Program of the Ministry of Human Capacities. Sándor Z.
Kiss was supported by the ÚNKP-19-4 New National Excellence Program of the Ministry for
Innovation and Technology. Supported by the ÚNKP-20-5 New National Excellence Program
of the Ministry for Innovation and Technology from the source of the National Research, De-
velopment and Innovation Fund. Péter Kutas was supported by an EPSRC New Investigator
grant (EP/S01361X/1).

References

[1] M. Bellare, P. Rogaway: Random oracles are practical: A paradigm for designing efficient
protocols; Proceedings of the 1st ACM conference on Computer and Communications
Security, Fairfax, Virginia (1993), 62–73.

[2] Bosma, Wieb, John Cannon, and Catherine Playoust. ”The Magma algebra system I: The
user language.” Journal of Symbolic Computation 24.3-4 (1997): 235-265.

[3] Castel, P. (2013). Solving quadratic equations in dimension 5 or more without factoring.
The Open Book Series, 1(1), 213-233.

[4] A. M. Cohen, G. Ivanyos, D. B. Wales: Finding the radical of an algebra of linear trans-
formations; Journal of Pure and Applied Algebra 117-118 (1997), 177–193.

[5] J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, M. Stoll: Explicit n-descent on elliptic
curves I. Algebra; Journal für die reine und angewandte Mathematik 615 (2008), 121–155.

[6] J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, M. Stoll: Explicit n-descent on elliptic
curves II. Geometry; Journal für die reine und angewandte Mathematik 632 (2009), 63–
84.

[7] J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, M. Stoll: Explicit n-descent on elliptic
curves III. Algorithms; Mathematics of Computation 84 (2015), 895–922.

[8] H. Delfs, H. Knebl: Introduction to Cryptography; 3rd ed., Springer, 2015.

[9] W. M. Eberly: Decompositions of algebras over R and C; Computational Complexity 1
(1991), 207–230.

[10] K. Friedl, L. Rónyai: Polynomial time solutions of some problems in computational al-
gebra; Proceedings of the 17th annual ACM symposium on Theory of Computing, Prov-
idence, Rhode Island (1985), 153–162.

[11] O. Goldreich: Foundations of cryptography I: Basic tools, Cambridge University Press,
2001.

[12] O. Goldreich, S. Micali, A. Wigderson: Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems; Journal of the ACM 38 (1991),
690–728.

14

[13] O. Goldreich, A. Sahai, S. Vadhan: Honest-Verifier Statistical Zero-Knowledge Equals
General Statistical Zero-Knowledge; STOC ’98: Proceedings of the thirtieth annual ACM
symposium on Theory of computing (May 1998), 399–408.

[14] S. Goldwasser, S. Micali, C. Rackoff: The knowledge complexity of interactive proof
systems; SIAM Journal on Computing 18 (1989), 186–208.

[15] J. Gómez-Torrecillas, F. J. Lobillo, G. Navarro: A New Perspective of Cyclicity in Convo-
lutional Codes; IEEE Transactions on Information Theory 62 (2016), 2702–2706.

[16] W. A. de Graaf, M. Harrison, J. Pı́lnikova, J. Schicho: A Lie algebra method for rational
parametrization of Severi-Brauer surfaces; Journal of Algebra 303 (2006), 514–529.

[17] R. J. Hartung, C. P. Schnorr: Identification and signatures based on NP-hard problems of
indefinite quadratic forms; Journal of Mathematical Cryptology 2 (2008), 327–341.

[18] G. Havas, B.S. Majewski, K.R. Matthews: Extended GCD and Hermite normal form al-
gorithms via lattice basis reduction, Exp. Math. 7, No. 2, (1998), 125–136. Addenda and
errata: Extended GCD and Hermite normal form algorithms via lattice basis reduction,
Exp. Math. 8, No. 2, (1999), 205.

[19] P. Hubácek, A. Rosen, M. Vald: An Efficiency-Preserving Transformation from Honest-
Verifier Statistical Zero-Knowledge to Statistical Zero-Knowledge; In: Nielsen J., Rijmen
V. (eds) Advances in Cryptology – EUROCRYPT 2018. EUROCRYPT 2018. Lecture Notes
in Computer Science, vol 10822. Springer, Cham.

[20] G. Ivanyos: Algorithms for algebras over global field; Ph. D. thesis, Hungarian Academy
of Sciences 1996.

[21] G. Ivanyos, P. Kutas, L. Rónyai: Computing explicit isomorphisms with full matrix alge-
bras over Fq(x), Foundations of Computational Mathematics 18 (2018), 381–397.

[22] G. Ivanyos, L. Rónyai, J. Schicho: Splitting full matrix algebras over algebraic number
fields; Journal of Algebra 354 (2012), 211–223.

[23] G. Ivanyos, L. Rónyai, Á. Szántó: Decomposition of algebras over Fq(x1, ..., xm); Appli-
cable Algebra in Engineering, Communication and Computing 5 (1994), 71–90.

[24] P. Kutas: Splitting quaternion algebras over quadratic number fields, to appear in Journal
of Symbolic Computation (2018), https://doi.org/10.1016/j.jsc.2018.08.002.

[25] A. K. Lenstra, H. W. Lenstra, and L. Lovász. ”Factoring polynomials with rational coef-
ficients.” Mathematische Annalen 261.4 (1982): 515-534.

[26] R. S. Pierce, Associative algebras, Springer-Verlag, 1982.

[27] J. Pı́lniková: Trivializing a central simple algebra of degree 4 over the rational numbers;
Journal of Symbolic Computation 42 (2007), 579–586.

[28] I. Reiner: Maximal orders; Academic Press, 1975.

[29] L. Rónyai: Simple algebras are difficult; Proceedings of the 19th Annual ACM Sympo-
sium on the Theory of Computing, New York (1987), 398–408.

[30] L. Rónyai: Computing the structure of finite algebras; Journal of Symbolic Computation
9 (1990), 355–373.

15

https://doi.org/10.1016/j.jsc.2018.08.002

	Introduction
	Preliminaries
	Theoretical background
	Algorithmic background and computational assumptions
	Known results
	Computational assumptions

	Interactive Proof systems

	Description of the protocol
	A generic protocol
	The protocol
	Details of the protocol
	Security of Protocol 1

	A toy example
	Identification scheme
	Generating division algebras and orders

