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Abstract—Bloom filters and their variants are widely used as
space-efficient probabilistic data structures for representing sets
and are very popular in networking applications. They support
fast element insertion and deletion, along with membership
queries with the drawback of false positives. Bloom filters can
be designed to match the false positive rates that are acceptable
for the application domain. However, in many applications, a
common engineering solution is to set the false positive rate very
small and ignore the existence of the very unlikely false positive
answers. This paper is devoted to close the gap between the
two design concepts of unlikely and not having false positives.
We propose a data structure called EGH filter that supports
the Bloom filter operations, and besides, it can guarantee false
positive free operations for a finite universe and a restricted
number of elements stored in the filter. We refer to the limited
universe and filter size as the false positive free zone of the filter.
We describe necessary conditions for the false-positive free zone
of a filter. We then generalize the filter to support the listing of
the elements through the use of counters rather than bits. We
detail networking applications of the filter and discuss potential
generalizations. We evaluate the performance of the filter in
comparison with the traditional Bloom filters. We also evaluate
the price in terms of memory that needs to be paid to guarantee
real false positive-free operations for having a deterministic
Bloom filter-like behavior. Our data structure is based on recently
developed combinatorial group testing techniques.

Index Terms—Computer networks, Data Structures, Software
defined networking.
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I. INTRODUCTION

Bloom filter [1] and its variants [2]–[8] are widely used data
structures allowing for an approximate representation of a set
( to answer membership queries of the form: is an element
G in (? Their immense popularity is due to enabling highly
versatile and seemingly endless application opportunities for
membership testing and a nice trade-off among running time,
space, error probability, and implementation complexity. Their
many computer and networking applications include caching,
filtering, monitoring, data synchronization [9]–[14].

A traditional Bloom filter (BF) is a binary array of length
< used to represent a set (, offering insertions and queries,
both of which are carried out by setting/checking only a small
number : of the < bits, where : � < [1]. The BF is initialized
with all bits set to zero. It has : hash functions, all of
which hash elements uniformly and independently in the range
{1, . . . , <}. In an insertion of an element G, the hash values
ℎ1 (G), ℎ2 (G), . . . , ℎ: (G) are computed and the corresponding
bits are set to 1. If a bit is already set to 1 then it must
remain set. Querying whether an element H is in ( is carried
out by computing the hash values ℎ1 (H), ℎ2 (H), . . . , ℎ: (H) and
checking if they are all set to 1. If so, then the query returns
that H ∈ (, otherwise it returns H ∉ (. The functionality
can be extended to support deletions by trading the bits for
appropriately sized counters in a variant called the Counting
Bloom Filter (CBF) [2]. By incorporating extra KEYSUM
and VALUESUM fields to accompany each counter, a scheme
named the Invertible Bloom Lookup Table (IBLT) [15] allows
for listing the items through looking for entries with a single
element and extracting them one by one.

By their very nature, Bloom filters may give a false positive
answer to a query operation, becoming probabilistic in this
sense. A false positive occurs when all the hash values
ℎ1 (H), ℎ2 (H), . . . , ℎ: (H) for some element H are set to 1 due
to some other elements, even though H itself has not been
previously inserted. Generally speaking, when tuning a Bloom
filter, one estimates the number of items = to be stored in
the filter and chooses an appropriately low false positive
probability p. Given these, the number of hash functions :
can be computed, and more importantly, the required filter
length < can be determined. While storing a fixed number of
elements, increasing the filter length reduces the possible false
positive probability obtained for the corresponding optimal
number of hash functions.

In practice, focusing on its great space savings and easy
computation, the very small false positive probability of the
Bloom filter is often ignored and simply regarded as none,
making the Bloom filter a practically false positive free
structure. However, it is only almost false positive free, and
false-positive can occur and might cause difficulties in the
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Fig. 1: The boundaries of the false positive free zone (FPFZ,
below the curves) of the EGH filter depending on the size of
the universe = and number of elements in the filter 3. Data
structure size is < bits.

application. With that motivation, we explore the idea: what
if we would like to have an actually false positive free
structure? Does it really require just a little extra space (and
implementation overhead) over a BF with a very small false
positive probability, or much more? Could we define some
conditions, under which the filter is guaranteed to avoid
false positives?

Generally, Bloom filters can cope with a finite or infinite
universe through using hash functions that map elements to
positions in the range {1, . . . , <}. Clearly, a strict requirement
to avoid false positives must restrict the universe to be finite
(a finite memory cannot distinguish between infinitely many
elements). Moreover, the possibility to satisfy this requirement
is affected by the number of elements being held in the filter.
For simplicity, the universe is restricted to * = {1, . . . , =3} for
the case when false positives are guaranteed to be avoided until
at most 3 elements are in the filter. In other words, if at most 3
elements from {1, . . . , =3} are inserted in the filter we can be
sure there are no false positives for queries of elements from
{1, . . . , =3}. Different values of 3 allow different maximal
universe size =3 . We refer to it as the false positive free zone
of the filter (see also Fig. 1). Note that 3 is assumed to be a
small number, e.g., $ (log =).

In this paper we describe how a false positive free data
structure could be devised while having a similarly simple con-
struction and the same lookup-per-operation performance in
the bit-probe model, assuming that the universe* := {1, . . . , =}
from which elements are taken is finite. The main idea is
to show the analogy between the BF and the widely studied
problem of non-adaptive Combinatorial Group Testing (CGT),
where the goal is to identify up to 3 defective elements
among a given range of items {1, . . . , =3} through as few
group tests as possible. As for hash functions, we use the
traditional division method. It is based on just division with
remainder by a prime number and is known to have modest
computational cost. We call the resulting data structure the
EGH filter (or shortly EGHF), as it is an adaptation of the
combinatorial group testing method described by Eppstein,
Goodrich, and Hirschberg [16]. First, we investigate the basic
version of the filter, which supports insertions and queries
only, and we focus later on the more general Counting Bloom
Filters that allow deleting elements. By maintaining counters
in a modified construction of the filter, we propose a fast

algorithm for listing the elements in the false-positive free
zone. It is based on some advanced algebraic computations
and runs in $ (poly(3 log(=3))) steps1, where 3 is the number
of elements in the represented set. Its main idea is to define
a system of equations where the roots will be the elements in
the filter. The equations’ coefficients are obtained as residues
of elementary symmetric polynomials, and the roots can be
found with the Bisection Method and the Sturm Sequence.
Finally, we evaluate the false positive free zone of the EGH
filters of practical sizes. Space and running-time analysis are
provided to measure the EGH filter’s performance compared
to a traditional BF. Furthermore, we show the large marginal
cost overhead that has to be paid in a transition from filters
with a small false positive probability to filters guaranteed to
have no false positives.

The rest of the paper is organized as follows. Section II de-
tails use cases focusing on networking applications. Section III
overviews related work. Next, Section IV describes the model.
Then, in Sections V and VI we propose the solutions that have
a false positive free zone. In Section VII, we evaluate the per-
formance of the proposed constructions. Section VIII discusses
flexibility and implementation. Finally Section IX concludes
the paper. For completeness the Appendix overviews existing
methods used in implementing the solutions.

II. NETWORK APPLICATIONS AND USE CASES

This section discusses four application scenarios to illustrate
the price in terms of memory needs to be paid to guarantee
real false positive-free operations for having a similarly simple
Bloom filter-like construction. Note that EGH of [16] imple-
ments the best known (deterministic) CGT construction.

A. Discovering Neighboring Cells in Radio Access Networks

In a Radio Access Network, the field is covered by base
stations and moving User Equipment (UE). Each UE connects
to one or multiple base stations. Two base stations are defined
overlapping if they have at least some minimum number of
� common UEs. When executing handover processes, each
base station (cell) should maintain the list of User Equipment
(UE), which overlaps with other cells to which such handovers
may be made. The problem is called the neighboring cell list
(NCL), where the goal is to continuously monitor the overlap-
ping base station pairs in a decentralized way with minimal
messages between them. Typically there are 100 − 1000 base
stations and roughly 10 − 100 moving UEs. On average,
each base station is connected to ≈ 100 moving UEs, and �

can equal � = 10, for instance.
In a naive approach, every base station sends its list of UEs

to every other base station. Note that the management overlay,
where the messages are sent, is a spanning tree. To reduce the
protocol overhead, the study [17] suggests implementing the
process in two steps: Step 1 gives a fast probabilistic guess on
which cells may be neighboring, while in Step 2 only these
candidate neighboring base stations pairs exchange their list
of UEs to compute the intersections correctly.

1Throughout this paper log denotes logarithm of base 2.
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In Step 1, the spanning tree established by the management
overlay is also used to aggregate the messages containing the
list of UEs. Here Bloom Filters are used because they have
bounded size and allow efficient computation of set unions and
intersections. More precisely, instead of sending the list of UEs
between every base station pairs, each base station that is a
leaf of the spanning tree sends a Bloom Filter containing its
list of UEs to its adjacent node in the spanning tree. If a base
station is an internal node of the spanning tree, it computes all
incoming Bloom Filters’ union and forwards the union Bloom
filter as an aggregated monitoring messages to their neighbors
in the spanning tree. This is repeated until every base station
receives information about every other base station through
these aggregated monitoring messages.

In Step 2, each node takes the received Bloom filter and
computes the intersection with the list of UEs it is connected
to. It gives an upper-bound on the number of common UEs. It
is only an upper-bound because Bloom Filters are probabilis-
tic, and there might be false-positives. If the obtained upper
bound is at least �, the list of UEs is exchanged with all the
base stations that inserted UEs in the Bloom filter.

Note that we can use an EGH filter instead of a Bloom
filter in the monitoring message, thus Step 2 might be omitted
for many base station pairs where the received EGH filter
is in the false-positive free zone. The EU ID is 16-bit long;
thus, the size of the universe is =3 = 216 = 65536, and for
3 = 100 users, the required filter length is < = 105, implying
a message of ≈ 10KB, which was medium message size in an
early UMTS system. Note that, because of the block structure
of the EGH filter, their size can be different, depending on the
number of UEs, keeping EGH filter in the false-positive free
zone. Furthermore, EGH filters can be aggregated in the same
way as Bloom Filters, i.e., computing their Boolean OR. Note
that the union of two EGH filters will have many more items
(the size may double) and probably will not be in the false-
positive free zone anymore. Note that, unlike regular Bloom
filters, it is possible to compute the intersection of EGH filters
of different lengths.

The key benefit is that if the leaf nodes send EGH filters in
the false-positive free zone, Step 2 can be ignored between a
leaf node and its neighbor. Note that, at intermediate nodes, the
aggregated EGH filters provide a probabilistic data structure
in the same way and performance as Boom filters. Therefore,
by properly selecting the aggregation tree, many messages can
be saved in Step 2.

B. Encoding of Flow Attributes in SDN Switches
A recent study [18] describes Software-Defined Networking

(SDN) scenarios in which the exact encoding of small sets
is necessary to distinguish between classes of traffic with the
different required treatment. Each such traffic class is encoded
as a unique attribute carrying tag in the packet header. The
desired property is the ability to test whether the represented
set includes some queried attributes.

They deal with three scenarios. The first corresponds to
Internet Exchange Point (IXP), where multiple autonomous
systems (ASes) exchange traffic and interdomain routing infor-
mation. Here the tag encodes the set of advertising peers used

in the forwarding decision. The second is related to service
chaining, where the tag represents the set of middleboxes,
which must be traversed by the traffic flow. The third scenario
is in network policies where each traffic class is allowed to
access different network resources.

In all of these three applications, false positives should be
avoided, e.g., to prevent wrong forwarding of a packet, the
appliance of a redundant network function or illegal access to
a resource. With the EGH filter, if the tag is, for instance,
< = 100 bit long, with a variety of = = 606 pre-defined
attributes (fixed universe), false positives can be fully avoided
if each traffic class has at most 3 = 3 attributes. When
forwarding each packet, 9 bit-positions of the header need
to be checked (even for 3 attributes). This is itself a smaller
value than reading a binary representation of a single attribute
(10 = dlog2 606e). If a new attribute or new traffic appears
with more than 3 attributes, we need to increase the size of
the filter with new blocks to guarantee no false positives as
described in Sec. VIII-A.

C. Multicast Addressing

Another application for the EGH filter can be the in-packet
Bloom filter [19]. It is a new forwarding mechanism developed
for information-centric networking, where Bloom filters are
used to encode multicast trees in the packet header in a
stateless manner. The in-packet Bloom filters can effectively
represent a set of node or link IDs along the expected path.
Paths are often short. The study [20] overviews the forwarding
anomalies caused by false positives, such as packets storms,
forwarding loops, and flow duplication.

In [20] the AS-level topology graph was considered for < =

800, 1024. It has = ≤ 105 links today (fixed universe), which
can be in the FPFZ of an EGH filter for 3 = 6, 7. It is important
that forwarding each packet can be performed by examining
only 22-25 bit-positions (even if 7 links are included in the
filter). As a comparison, reading a binary representation of a
single link involves 17 = dlog2 105e bits.

D. Distributed Storage

Suppose we store multiple copies of the same dataset so
that each dataset is modified independently. Such a dataset can
be a general indexed database or version control to manage
the changes to documents, computer programs, large web
sites, etc. It is necessary to identify with low communication
overhead conflicts among the copies, which are the modified
parts’ intersection in the various copies.

To achieve such a reconciliation, each computer with a
copy of the dataset can send an EGH filter to each other.
The EGH filter contains the indices of the modified items, for
example, the line numbers in version control. The intersection
of the EGH filters describes the conflicted items, which require
special care. In this case, the universe is usually fixed, for
example, composed of the source code lines or regions in
the code. A false positive answer in the identification can
cause unnecessary extension of the process and redundant
communication. Furthermore, with frequent synchronizations,
the number of conflicted or even modified elements is typically
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small. Note that it is a typical application of IBLT [15];
however, unlike IBLT, the EGH filter cannot efficiently list the
elements outside the FPFZ. If too many elements are inserted,
the only way to list them is to test the EGH filter for every
element of the universe.

E. Early Detection of Botnet Attacks

In early detection of botnet attacks, the goal is to identify
communication patterns as a sign of communication between
the bots and the botnet controllers (called C&C servers) [21].
For example, a common technique is to hide C&C servers
behind an hourly-changing domain name. Bots algorithmically
generate and try to resolve a number of domains (with domain
generation algorithms - DGA), only one of which is registered
as the C&C server. Thus DGA behavior is characterized by
many, often repeating, failed DNS queries at multiple DNS
servers form the same IP address.

The application requires succinctly storing a set of sus-
picious IP addresses at each DNS server, which is sent
periodically to each other, and list the items in the possible
intersections of the sets. In this case, the universe is the set
of 32 bit IP addresses (i.e., = = 232 and fixed universe), and
because of the short monitoring period, the number of newly
infected IP addresses are typically small. A false positive
answer, in this case, means the wrong IP address is identified.

For example, assume that there are 8 = 1000 suspicious IP
addresses in each monitoring period, which is 8 ·32bit= 4KB to
send as a blacklist, while to find the intersection of two lists
has $ (8 log 8) time complexity. On the other hand, an EGH
filter of < = 1161 counters can detect up to 3 = 4 infected
items, with constant time element insertion in the filter, and
the intersection has $ (8) time complexity.

III. RELATED WORK

A. Background

This paper focuses on a data structure that supports proba-
bilistic membership testing, similar to Bloom filters, and has
a false positive free zone with a restriction on the number of
elements in the filter. In order to describe the novelty, let us
define the two widely investigated problems our data structure
jointly solves. First, Bloom filters consider the following
problem.

PROBABILISTIC MEMBERSHIP(p, <, :): Given a set (

which is a subset of a (finite or infinite) universe
*, design a data structure on < bits such that
membership queries of the form ”G ∈ (” can be
answered using : bitprobes with the probability of
false answers p.

Second, static membership testing is a deterministic data
structure on a finite number of elements in the universe. This
subproblem we are facing in the false positive free zone.

STATIC MEMBERSHIP(3, =, <, :): Given a set ( with at
most 3 elements, where ( is a subset of a finite
universe * = {1, . . . , =}, design a data structure on
< bits such that membership queries of the form
”G ∈ (” can be answered using : bitprobes without
giving false answers.

Adopting the notation of prior work [22]–[24], a
(3, =, <, :)-scheme is a storage scheme that stores any 3

elements of an =-bit-sized universe using < bits such that
membership queries can be answered using : probes. Such
a scheme can be either adaptive or non-adaptive, depending
on whether during the execution of a query, the results of
previous bit probes can be taken into account or not while
determining the later probes, respectively. In this work, we
consider non-adaptive schemes. For an arbitrary deterministic
non-adaptive scheme, we denote the minimum space < needed
for a (3, =, <, :)-scheme to exist by <(3, =, :), where false
positives are not allowed.

B. Previous Results in Probabilistic Membership Problem

First, let us mention randomized schemes dealing with the
static membership problem. A number of papers consider this
problem [25], [26], for a survey we refer the reader to [24].

Bloom filters and their variants [1]–[6], [27], [28] are by
far the most popular data structures allowing an approximate
representation of (. In Bloom filters to achieve an optimal false
positive rate p the number of hash functions : is proportional
to log 1

p . In [29] Bloom filters were improved to make : a
constant number independent of p.

Other solutions that use hashing for the static membership
problem have been proposed, including hash compaction [30],
cuckoo hashing [31] and multiset-representation [29].

The functions used by the EGH filter were previously
investigated in [32] for a fundamentally different goal of
reducing the computation time of the hash functions at lookup.

The functionality of a Bloom filter can be extended to
support deletions by trading the bits for appropriately sized
counters [2], called Counting Bloom Filter (CBF). By incor-
porating extra cells to accompany each counter, one can also
achieve listing of the items [15].

C. Previous Results in Static Membership Problem

In recent years a lot of work has been focused on the special
cases when either 3 or : is small. The capabilities of very few
bit probes are explored in [33] and [34]. A summary of most
of these results can be found in the survey [24].

There exist several deterministic schemes solving the static
membership problem. The most famous is the Fredman-
Komlós-Szemerédi scheme [35], which can perform queries in
an optimal $ (1) time in the word-RAM model. However, it re-
quires $ (=) space, which can be much larger than $ (32 log =)
for small 3.

In general, this design problem is also often called combi-
natorial group testing (CGT) in the literature [36]. The idea
of group testing dates back to World War II when millions
of blood samples were analyzed to detect syphilis in the US
military. It was suggested to pool the blood samples to reduce
the number of tests. The problem is called non adaptive CGT
if the probing is performed simultaneously without knowing
the result of other tests. The goal is to identify defective items
among a given set of items through as few tests as possible.
The special case 3 = 1 is called a separating system [37]. The
problem to find exactly 3 defectives is to design 3-separable
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matrices [36]. A dual notion in combinatorics is called 3-
cover-free families [38], [39], superimposed codes or /��A
codes [40]. Finding up to 3 items is related to the design of
3-disjunct matrices [36]. Recent works described the Shifting
Bloom Filter (ShBF), a data structure relying on the encoding
of auxiliary information in set representation for allowing
membership, association, and multiplicity queries [41]. For
instance, auxiliary information can be used as an offset for
the bits selected to be set in the filter. In another recent work,
a technique to reduce the number of hash functions in Bloom
filter constructions was proposed [42]. With some similarity
to our approach, the method relies on computing a single hash
value for an element. Then, bits in the filter are associated with
the element based on computing the remainder in dividing the
hash value modulo some prime numbers.

D. Previous Works on Reducing False Positives in Bloom
Filters

Schemes have been suggested to improve the error-memory
trade-off of the Bloom filter and the CBF. The regular CBF
simply represents counters with a fixed number of bits per
counter (typically four). More efficient representations have
been suggested, benefitting from typically low counter values,
not using the counters’ most significant bits. The ML-HCBF
(MultiLayer Hashed CBF) [43] relies on a hierarchical com-
pression where more bits are assigned to the least significant
bits of the counters. Similarly, the VL-CBF (Variable Length
CBF) [44] relies on Huffman coding to describe counters
with a variable number of bits. Another approach is to rely
on more than a single Bloom filter to improve accuracy.
Lim et al. [45] proposed for the case of a finite universe
maintaining two Bloom filters, representing a set ( and its
complement (2 . Since Bloom filters have no false negatives,
it is necessarily correct if only one of the filters provides a
positive answer. If both provide a positive answer, both options
should be examined. The Cross-checking Bloom filter [46] is
an architecture for reducing false positives that includes a main
filter and cross-checking part with two filters. Cross-checking
is accessed to validate a positive answer to the main part. The
two cross-checking filters are programmed each with a subset
of two disjoint sets that together compose the represented set.

Other studies [47], [48] suggested reducing the false pos-
itives by allocating a different number of hash functions to
elements based on the query popularity. While the approach
can be helpful for a skewed query distribution, maintaining the
used number of hash functions per element can be challenging.
Another technique makes use of fingerprints [49], [50]. Upon
element insertion, a fingerprint is stored in hash locations. This
enables a careful counter examination counter upon a query.

While the above approaches to reduce false positives main-
tain the property of no false negatives, other schemes allow
false negatives to achieve this reduction in false positives. The
Retouched Bloom filter [51] does so by clearing some of the
bits that have earlier been set. Approaches are suggested to
select the bits to be cleared, such as selecting randomly or
focusing on those that do not imply many false negatives.
Likewise, the Generalized Bloom filter [52] maintains two

groups of hash functions. Upon an element insertion, bits
pointed by the first group are set, and those by the second
are cleared. A query of an element requires matching some
bits that have to be 0s and others 1s.

IV. PROBLEM DEFINITION: IDENTIFYING ELEMENTS
THROUGH GROUP TESTING

In this paper we deal with two functionality variants: the
basic EGH filter should support insert and query; the
advanced EGH filter should support insert, query, delete
and list.

Definition 1: The data structure filter can store a set of
elements of the universe * in a binary array of < bits, where
a set of functions ℎ8 : * → {1, . . . , <} for 8 = 1, . . . , : are
used to represent each element G.

Inserting an element G ∈ * in a filter ( means setting the
bits at positions ℎ1 (G), ℎ2 (G), . . . , ℎ: (G) to one.

Querying whether an element H is in ( means returning
H ∈ ( if bits at positions ℎ1 (H), ℎ2 (H), . . . , ℎ: (H) are
all set to 1, otherwise returning H ∉ (.

The code of the element G is an < bit long binary vector
with ones only in positions ℎ8 (G) for 8 = 1, . . . , : . We say
that a code of element H is contained in the filter if the
filter has bit 1 at positions ℎ8 (H) for 8 = 1, . . . , : . Filters
can provide $ (1) lookup-per-operation complexity in the bit-
probe model. In the traditional Bloom filter the functions
ℎ8s are pseudo-random hash functions. In the EGH filter
having a false positive-free zone we replace {ℎ1, ℎ2, . . . , ℎ: }
with functions {ℎ̂1, ℎ̂2, . . . , ℎ̂: } such that there is no false
positive in the membership testing for a given finite universe
*3 = {1, . . . , =3} as long as the number of elements stored in
the filter is at most a pre-defined threshold 3. Formally:

Definition 2: The false positive free zone of a filter allows
a universe of size =3 for 3 = 1, . . . , 3<0G , if for any filter
( ⊆ *3 and |( | ≤ 3 the query operator of an element H ∈ *3
always returns the true answer, where *3 = {1, . . . , =3}.

For simplicity we refer to =3 as =. For a filter with =

elements in the universe we define a code matrix " . It is
an < × = binary matrix, where each column corresponds to a
code of an element in the universe.

The binary array of the filter ( is the Boolean sum (bitwise
OR) of the columns of " corresponding to the elements of (.
A false positive occurs when the Boolean sum of 3 columns
contains another column. This should be avoided.

This problem was widely investigated in the context of non-
adaptive Combinatorial Group Testing (CGT). The primary
goal of a CGT construction is to identify up to 3 defective
elements among a given set through as few group tests as
possible. Formally,

Given:a finite universe * = {1, . . . , =} and a (positive
integer) maximum number of defective elements 3.

Find: an < × = binary matrix " , where the union or
Boolean sum (or bitwise OR) of any up to 3 columns
does not contain any other column.

Note that, in the matrix " the rows correspond to the group
tests and the columns to the elements. An entry of the matrix
indexed (8, 9) is equal to 1 if the 8th test contains the 9 th
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element, and 0 otherwise. Such matrices are called 3-disjunct
matrices, and they are sufficient to unambiguously identify all
3 faulty elements and constitute the basis for non-adaptive
combinatorial search algorithms and binary 3-superimposed
codes. To avoid false positives when having at most 3 elements
in the EGH filter, we need to ensure that the code matrix is
3-disjunct 2. Formally we have the following.

Claim 1: A necessary and sufficient condition to avoid false
positives in a filter having at most 3 elements from the universe
{1, . . . , =} is that the corresponding < × = code matrix is 3-
disjunct.
Namely false positive-free operations require the codes as-
signed to each element to be 3-disjunct non-adaptive CGT
codes. Ruszinkó [53] gave a lower bound on the size of the
3-disjunct matrices which can be applied to our scenario. Later
it was improved by Füredi [54].

Claim 2: For any false positive free filter

<(3, =) ≥ 0.25
32

log(3) log(=) , (1)

where <(3, =) denotes the space < needed for = elements in
the false positive free zone and at most 3 elements in the filter.
The first asymptotically optimal 3-disjunct matrix construction
was given by Hwang and Sós [55], while the shortest real-
world problem size non-adaptive CGT codes were developed
by Eppstein, Goodrich and Hirschberg [16], which we utilize
in the EGH filter.

V. BASIC EGH FILTER WITH FALSE POSITIVE FREE ZONE

A. Data Structure Construction

The proposed EGH filter data structure is based on the
combinatorial group testing method described by Eppstein,
Goodrich, and Hirschberg [16, Section 2]. The essence of their
solution is to use the Chinese Remainder Theorem [56] and
solve a CGT problem by finding a solution to a system of
linear congruences.

Let * be the set of the integers in the interval [1, . . . , =].
Let 3 be the maximal number of inserted elements for which
the false positive free zone is guaranteed. The first : primes
are selected {?1 = 2, ?2 = 3, . . . , ?: } (e.g., by the sieve of
Eratosthenes), such that their product % is at least =3 , i.e.,

=3 ≤ % =

:∏
8=1

?8 , (2)

while their sum

< =

:∑
8=1

?8 ,

denotes the length of the codes. In the EGH filter the simple
functions ℎ̂8 for 8 = 1, . . . , : are defined as

ℎ̂8 (G) = G (mod ?8) +
8−1∑
9=1

? 9 . (3)

2Note that there is a weaker CGT construction called 3-separable, where
the bitwise OR of up to arbitrary 3 codes are to be distinct from each other.
Note that distinct codes are not enough to avoid false positives, but we also
need the property that the codes do not contain each other.

Note that the code consists of : blocks, where the 8th block
has ?8 bits all zero except for one position, which is G

(mod ?8) for an element G. In other words, the code is a radix
block representation of the remainders after division with ?8
(an example appears in Section V-B). The codes generated
by the construction were proved to be 3-disjunct, meaning
that the bitwise OR of any up to 3 codes does not contain
any other code. In order to better understand the solution,
we present the proof for that property with our terminology
and notations. First we summarize the well known Chinese
Remainder Theorem [56]. Let ?1, . . . , ?: be pairwise-coprime
integers and 01, . . . , 0: be arbitrary integers. The theorem
states that the following system of simultaneous congruences

G ≡ 08 (mod ?8), 8 ∈ {1, . . . , :} (4)

has a unique solution for G modulo % =
∏:
8=1 ?8 . The solution

can be found through the following method [57]. For each
1 ≤ 8 ≤ : the integers ?8 and

∏
9≠8 ? 9 are necessarily coprime.

In the first step for each 1 ≤ 8 ≤ : , the modular multiplicative
inverse of

∏
9≠8 ? 9 modulo ?8 is found. Namely, for each 1 ≤

8 ≤ : the following congruences are solved:

@8 ·
∏
9≠8

? 9 ≡ 1 (mod ?8).

By using the extended Euclidean algorithm integers A8 and @8
satisfying A8 · ?8 = 1 + @8 ·

∏
9≠8 ? 9 can be found.

Then, choosing 48 = @8
∏
9≠8 ? 9 , G can be constructed as

G =

:∑
8=1

0848 (mod %), (5)

which satisfies the congruences (4). Algorithm 1 provides a
more formal description of this key method.

Algorithm 1: CHINESEREMAINDER

Input: ?1, . . . , ?: , and 01, . . . , 0:
begin

1 for 8 = 1 to : do
2 #8 =

∏
9≠8 ? 9

3 Find the modular multiplicative inverse:
@8 = #

−1
8
(mod ?8)

return G =
∑:
8=1 08@8#8 (mod ?1?2 · · · ?: ).

The following lemma shows the correctness of the above
construction.

Lemma 1: The EGH filter has a false positive free zone with
at most 3 elements in the filter for universe * = {1, . . . , =} if

= ≤ 3

√√√ :∏
9=1

? 9 , (6)

which can be written as

3 ≤
log

:∏
9=1
? 9

log =
=

:∑
9=1

log ? 9

log =
. (7)

Proof [16]: Recall that the EGH filter consists of :
blocks, each of them assigned to a prime ? 9 , where 9 =
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1, . . . , : . For all : blocks, the bit that corresponds to the
remainder of G (mod ? 9 ) is set to 1 in the EGH filter. We
assume there is a set of codes ( belonging to no more than
3 elements, and the EGH filter composed of the bitwise OR
of the corresponding codes has bit 1 for the remainders of G
(mod ? 9 ) for every prime 9 = 1, . . . , : . For items G, H ∈ * let
us define the function %(G, H) as follows:

%(G, H) =
∏

9=1,...,: |G≡H mod ? 9

? 9 .

In other words, %(G, H) is the product of all the generator
primes ? 9 in which G and H cannot be distinguished, as
both have the same remainder. Intuitively, %(G, H) shows the
similarity between the codes of G and H. We have G ≡ H

mod %(G, H).
Assume by contradiction that the EGH filter wrongly indi-

cates on the membership of an element G ∉ (. Note that every
1 bit of G is covered and thus every ? 9 appears at least once
in one of these products %(G, H) for some H ∈ (, and because
of Eq. (2) we have∏

H∈(
%(G, H) ≥

:∏
9=1

? 9 ≥ =3 .

Moreover, there are at most 3 elements in ( leading to the
fact

max
H∈(

%(G, H) ≥ 3
√
=3 = = .

Therefore, there exists at least one element in the EGH filter
(denoted as H′) for which %(G, H′) ≥ =. By construction, H′ is
congruent to the same values to which G is congruent modulo
each of the ? 9 ’s in %(G, H′). By the Chinese Remainder
Theorem, the solution to these common congruences is unique
modulo the least common multiple of these ? 9 ’s, which is
%(G, H′) itself, since the ? 9 ’s are relatively prime to each other.
Therefore, G must be equal to H′ modulo a number that is at
least =, and since both G and H′ are positive integers ≤ =, we
obtain G = H′ which contradicts the fact that G ∉ (.

We consider the space and time requirements of the EGH
filter. We can rely on a result from [16], showing that for
given 3 and =, the inequality of (7) can be satisfied with
:∑
9=1
? 9 = $ (32 log =) and ?: ≤ d23 log(=)e. Note that EGH

filter memory size is given by the sum of prime values.
Namely, to have a false positive-free zone over = elements in
the universe and maximum 3 elements in the filter, we have
<(3, =) = $ (32 log =).

We can also estimate the number of primes needed. This
number implies the number of required memory accesses :
upon element insertion of a query.

Claim 3: The number of bit access at membership testing
is at most

: ≤ b23 ln =c
lnb23 ln =c

(
1 + 1.2762

lnb23 ln =c

)
+ 1 , (8)

for = ≥ 7.

Proof: The number of bit accesses in the EGH filter
equals to the number of primes such that Eq. (6) is met. Taking
the logarithm of both sides of Eq. (6) we have

ln = ≤ 1
3

:∑
9=1

ln ? 9 .

Note that
:∑
9=1

ln ? 9 can be expressed with the Chebyshev

function, \ (G) = ∑
? 9 ≤G

ln ? 9 , where G = ?: is the :-th largest

prime. Since are searching for the smallest : such that the
above inequality holds, we have

3 ln = ≥ \ (?:−1) .

Next, we use \ (G) ≥ G
2 for G > 4 [16]. Note that, since = ≥ 7,

the prime ?:−1 is at least 5. Putting the above two together
for the largest prime we have

?:−1 ≤ b23 ln =c .

To complete the proof we apply the prime counting function,
c(G), which is the number of primes less than or equal to G.
For c(G) we use the bound of [58] that states for G ≥ 2

c(G) < G

ln G

(
1 + 1.2762

ln G

)
. (9)

Finally we substitute G = b23 ln =c to get the bound on : − 1.
The above argument is a variant of Thm. 1 of [16].

B. Illustrative example of EGH Filter

Now let us construct an EGH Filter that has a false positive
free zone over a universe of size =2 = 48 when at most 3 = 2
elements can be in the filter. First, a set of prime integers
should be selected such that their product is at least =3 = 482 =

2304. Multiplying the first five primes 2, 3, 5, 7, and 11, we get
% = 2310, which results in codes of length 2+3+5+7+11 = 28
bits. We have five simple functions by Eq. (3), namely ℎ̂1 (G) =
G mod 2, ℎ̂2 (G) = G (mod 3) + 2, ℎ̂3 (G) = G (mod 5) + 5,
ℎ̂4 (G) = G (mod 7) + 10 and ℎ̂5 (G) = G (mod 11) + 17.

Table I shows the codes obtained, which are composed of
5 blocks. The matrix is of size 28× 48 such that the columns
refer to the =2 = 48 elements * = {1, . . . , 48} and each
column describes the 2 + 3 + 5 + 7 + 11 = 28 bits for each
element with a single set bit in each of the five blocks, with
the lengths of the primes ?1 = 2, ?2 = 3, ?3 = 5, ?4 = 7 and
?5 = 11, respectively. A block of length ?8 refers to the hash
values 0, 1, . . . , ?8 − 1. The first (leftmost) column refers to
the element G = 1. For 8 ∈ [1, 5] we have G (mod ?8) = 1,
thus along this column the first bit is set in each of the
blocks. Similarly, the last (rightmost) column corresponds to
the element G = 48 implying G (mod 2) = 0, G (mod 3) = 0, G
(mod 5) = 3, G (mod 7) = 6, G (mod 11) = 4, that results in
a bit-vector 10 100 00010 0000001 00001000000. Accordingly,
for this column in the five blocks, the bits with a value of one
are the first, first, fourth, seventh, and fifth. More generally,

for * = {1, . . . , =} the matrix is of size
( :∑
9=1
? 9

)
× = such that

column 8 describes the values of 8 modulo each of the primes
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TABLE I: Example of a 2-disjunct matrix with 48 columns and 28
rows. The column vectors are the codes of the elements. We have five
simple functions by Eq. (3), namely ℎ̂1 (G) = G mod 2, ℎ̂2 (G) = G

(mod 3) + 2, ℎ̂3 (G) = G (mod 5) + 5, ℎ̂4 (G) = G (mod 7) + 10 and
ℎ̂5 (G) = G (mod 11) + 17.

=2 = 48

item ID: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ?
1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 ?

2
=

31 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

?
3
=

5

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

?
4
=

7

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

?
5
=

11

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

?1, . . . , ?: through : blocks with a single bit set in each of
them.

With the use of the above codes of 28 bits, the allowed
universe size is determined by the number of allowed elements
3. While for 3 = 2 we explained that the size is =2 = 48, it
increases to =1 = 2310 for 3 = 1 and decreases to =3 = 13 for
3 = 3, as (=1)1 = 2310, (=3)3 = 2197 ≤ 2310.

C. False Positives Outside the False Positive Free Zone for a
Large Universe

So far in the paper, we showed that there would be no
false positives if the universe is the set of integers between
1, . . . , =, and there are at most 3 elements in the filter. In
this section, we will investigate what is the false probability
if these conditions do not hold. To have an analogy to Bloom
filters and give simple formulas we will assume a situation
when we are way out of this false positive free zone, namely
the universe is 1, . . . , =′ =

∏:
9=1 ? 9 , and 3 ′ the number of

elements in the filter is an arbitrary positive number.
The false positive rate of the Bloom filter is [1], [10]

P ��
5 0;B4 =

(
1 −

(
1 − 1

<

) :3′) :
≈

(
1 − 4−:3′/<

) :
, (10)

which is minimal if the number of hash functions is : ≈
<
3′ ln 2, where 3 ′ is the number of inserted elements.

As a direct consequence of the Chinese Remainder Theorem
we have (see also Lemma 2 in [42] for two primes):

Property 1: Let ?1, . . . , ?: be a set of pairwise co-prime
numbers, and let / denote uniformly distributed non-negative
integer random variable over the range [1,∏:

9=1 ? 9 ]. The
variables -8 := (/ mod ?8) (1 ≤ 8 ≤ :) are mutually
independent.

The probability of a false positive over universe 1, . . . , =′
given 3 ′ elements in the filter satisfies

P ���
5 0;B4 <

:∏
8=1

(
1 −

(
1 − 1

?8

)3′)
. (11)

To be more precise, the right-hand side is the probability that
an arbitrary element D of the universe will give a positive
answer for membership testing of an EGH filter composed
as follows: we previously inserted into an empty filter 3 ′ ele-
ments that are uniformly distributed and mutually independent
elements of the universe. Note that, here we can precisely
quantify the difference between the left- and the right-hand
side of the inequality, that is a typically very small value
representing the probability of a positive answer because the

last random element is actually in the filter, i.e., 1−
(
1 − 1

=′

)3′
.

Next, we describe an upper estimation of the right-hand side
of (11), and thus, also for the probability P ���

5 0;B4
. Assume that

we choose the first : primes for ?1, . . . , ?: . In the next step
by applying (twice) the well known inequality between the
arithmetic and geometric mean we obtain

:∏
8=1

(
1 −

(
1 − 1

?8

)3′ )
≤

(∑:
8=1

(
1 −

(
1 − 1

?8

)3′ )
:

) :

≤
(
1 −

(
:

√√√
:∏
8=1

(
1 − 1

?8

))3′ ) :
.

Using also the well known estimation [59, formula (3.27)] that
if G ≥ 3 then ∏

?≤G

(
1 − 1

?

)
≥ 0.09

log G
,

we obtain that(
1 −

(
:

√√√
:∏
8=1

(
1 − 1

?8

))3′ ) :
<

(
1 −

(
:

√
0.09

log ?:

)3′ ) :
<

(
1 −

(
:

√
1

12 log ?:

)3′ ) :
<

(
1 −

( 1
:
√

12(log : + log(log : + log log : + 8))

)3′ ) :
.

For the last inequality we are using the fact that [60] for : > 1
we have ?: < : (log : + log log : + 8).

VI. ACCURATE LISTING OF ELEMENTS

The EGH filter data structure can be easily extended to
support deletions by using an array of counters (rather than
bits), of dlog 3e bits each, as in the Counting Bloom Filter
(CBF) [2]. Here, 3 is the maximum number of elements
inserted in the filter. This makes the EGH structure taking
$ (32 log = log 3) space. In this variant, inserting an element
G is done by incrementing the counters ℎ̂8 (G) by 1 for
8 = 1, . . . , : . Note that Claim 3 gives an upper bound on : ,
which is the number of counter values modification at element
insertion. Deletion of an item H that had previously been
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inserted is carried out by decrementing the : corresponding
counters by 1.

The key benefit is that if the EGH filter is in the False
Positive Free Zone, listing the elements can be done in a
deterministic way. This section will provide an efficient algo-
rithm for accurately listing the elements; however, it requires
maintaining counters instead of bits. The main idea is to
define a system of equations whose roots in modular arithmetic
G1, . . . , G3 are exactly the elements in the filter. Unfortunately,
we need counters to define such a system of equations, because
roughly speaking we need to know how many times G1, . . . , G3
has a residue of a given prime. Note that an accurate listing
of the elements of a basic EGH filter (without counters) is
also possible; however, we are not aware of any efficient
algorithm. One obvious algorithm is to iterate through the
universe {1, . . . , =} and perform membership testing for each
entry. We can also try to guess the counter values with a brute-
force searching all possible counter values. It is trivial for
3 = 1, 2, and can be efficient for small 3.

In the rest of the section, we explain how to define a system
of equations where the roots are the elements in modular
arithmetic. We show how to solve the equations through
algebraic computations to list the elements in the filter. Our
algorithm that runs in $ (poly(3 log(=))) steps for listing the
elements, where 3 is the number of elements in the filter.

Before we explain our approach for general 3, let us first
explain the special cases of 3 = 1 and 3 = 2.

A. Algorithms for Listing 3 = 1, 2 Elements in the EGH Filter

The situation for 3 = 1 is simple because Algorithm 1
(The Chinese Remainder) solves the problem based on the
remainders of the single element for each of the primes.

For 3 = 2 let H8,1 and H8,2 be the remainder of G1
and G2 for the prime ?8 for 8 ∈ [1, :] respectively, where
?1 · ?2 · · · ?: > =2. The task is to compute two integers
G1, G2 ∈ [1, =] resulting in these remainders. The method
is based on the fact that the Chinese remainders provide a
ring homomorphism. In other words, the operations +,−,×
can be swapped with forming remainders. More precisely, let
G1, G2, satisfying G1 (mod ?8) = H8,1 and G2 (mod ?8) = H8,2,
be two elements in the filter. Then the remainder of G1 + G2
(mod ?8) is H8,1 + H8,2 (mod ?8). A similar fact is valid for
G1 × G2 and for G1 − G2. Please observe that in advance we
know the remainders {H8,1, H8,2} only as a set, and cannot
associate one of the numbers with a specific remainder. As
a result (H8,1− H8,2)2 (mod ?8) is congruent to I8 := (G1−G2)2
(mod ?8) for every 1 ≤ 8 ≤ : . Even if we swap H8,1 and
H8,2 we get the same values of I8 after squaring. In other
words, this symmetric function is invariant for swapping the
remainders of G1 and G2. On the other hand from the residues
I8 we can obtain I := (G1 − G2)2 (mod ?1 · ?2 · · · ?: ) by
solving the corresponding system of congruences by using the
Chinese Remainder Theorem, and we know that I is a square
of an integer because G1 and G2 are both in [1, =], thus their
difference cannot be more than =, hence I ≤ =2, thus we have
an equality in the previous congruence i.e., I = (G1 − G2)2.
Next we need to find the square root of the integer I. This

can be done with Newton-iteration or binary search for large
=. Let D be the positive square root of I, and assuming that
G1 > G2 we have G1 − G2 = D. On the other hand it is clear that
G1 + G2 ≡ H8,1 + H8,2 (mod ?8) for 1 ≤ 8 ≤ : . We solve this
system of congruences by applying Algorithm 1. As G1 and
G2 are both in [1, =], we get that both G1 − G2 and G1 + G2 are
at most 2= < =2, thus we have an equality in our congruences
provided by the Chinese Remainder method.

B. An Illustrative Example of the Algorithm for Listing two
Elements in the EGH Filter

To illustrate how this idea works for 3 = 2 we give an
example. Assume that we have = = 14 items, and we would
like to describe a set of two of them (G1 and G2). Our task is
to identify these items. To do this we have to choose coprime
integers say ?1 = 2, ?2 = 3, ?3 = 5 and ?4 = 7, which clearly
satisfy % = 210 > 196 = =2. The remainders are H1,1 = 0,
H2,1 = 0, H3,1 = 1, H4,1 = 6 and H1,2 = 0, H2,2 = 1, H3,2 =

4, H4,2 = 4. The values of I8’s are 0, 1, 4, 4. By using the
Chinese Remainder Theorem (Algorithm 1) we obtain that
I ≡ 4 (mod 210) thus D = 2.

By (Algorithm 1) we get that G1 − G2 ≡ 2 (mod 210).
Similarly G1 + G2 ≡ 10 (mod 210). As 210 > =2 = 196 it
follows that G1 − G2 = 2 and G1 + G2 = 10. Solving this system
of linear equations we obtain that G1 = 6 and G2 = 4 as desired.

C. Algorithm to List 3 Elements in the EGH Filter

In this subsection, we explain how to define for a general
3, a system of equations whose roots are the elements of the
filter. Then we provide an approach to solve the system for
obtaining the list of elements. We make use of the theory
of elementary symmetric polynomials. We use the following
property of polynomials [61]: given a polynomial ?(I), where
U8 denotes its coefficients and G8s are the roots of ?(I), i.e.,

?(I) = I3 + . . . + U3−1I + U3 = (I − G1) . . . (I − G3), (12)

then we have

U8 = (−1)8f8 (G1, . . . , G3), (13)

where f8 (G1, . . . , G3) for 8 ∈ [1, 3] is called the 8th elementary
symmetric polynomial of G1, . . . , G3 and can be computed by
Algorithm 2 [62].

The obtained elementary symmetric polynomial for < ∈
[1, 3] is

f
(3)
< = f

(3)
< (G1, . . . , G3) =

∑
1≤ 91< 92<...< 9<≤3

G 91 · . . . · G 9< .

The following algorithm computes the elementary symmetric
polynomials all together.

For example for 3 = 3 we have

f1 (G1, G2, G3) = G1 + G2 + G3 , (14)
f2 (G1, G2, G3) = G1G2 + G1G3 + G2G3 , (15)

f3 (G1, G2, G3) = G1G2G3 . (16)

Next, we explain how to define for a general 3, a system of
equations in modular arithmetic whose roots are the elements
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Algorithm 2: ELEMENTARYSYMMETRICPOLYNOMI-
ALS

Input: G1, . . . , G3
Result: f1 (G1, . . . , G3), . . . , f3 (G1, . . . , G3)
begin

1 f
(8)
0 := 1, for 8 = 1, . . . 3 − 1

2 f
(8)
9

= 0, for all 9 > 8

3 f
(1)
1 = G1

4 for 8 = 2 to 3 do
5 for 9 = 1 to 8 do
6 f

(8)
9

= f
(8−1)
9

+ G8f (8−1)
9−1

in the filter. Let ?1, . . . , ?: be distinct primes. We choose
the ?8s such that Eq. (7) holds, i.e. =3 ≤ % =

∏:
8=1 ?8 . Let

H8,1, . . . , H8,3 be the remainders modulo ?8 of the 3 ≤ =

elements G1, . . . , G3 from (. The task is to find numbers
G1, . . . , G3 which satisfy the following systems of congruences:

G1 ≡ H8,1 (mod ?8), . . . , G3 ≡ H8,3 (mod ?8)

for all 8 ∈ [1, :].
Note that in the advanced filter we have counters instead

of bits, thus we know how many elements lie in each residue
class, which is necessary to generate vector H8,1, . . . , H8,3 if
3 > 2. It follows that with Algorithm 2 we can calcu-
late the residues of the elementary symmetric polynomials
of G1, . . . , G3 modulo all the ?8s. For 9 = 1, . . . , 3 let
f9 (G1, . . . , G3) denote the 9 th elementary symmetric poly-
nomial of G1, . . . , G3 . It follows from the properties of the
congruences that the following hold

f9 (G1, . . . , G3) ≡ f9 (H1,1, . . . , H1,3) (mod ?1) ,
...

f9 (G1, . . . , G3) ≡ f9 (H:,1, . . . , H:,3) (mod ?: ) ,

for every 9 = 1, . . . , 3. Note that on the right hand side we
have constants. We define

0
( 9)
8
≡ f9 (H8,1, . . . , H8,3) (mod ?8) (17)

so that we can substitute it to have the following 3× : system
of equations

f1 (G1, . . . , G3) ≡ 0 (1)1 (mod ?1), . . . , f1 (G1, . . . , G3) ≡ 0 (1): (mod ?: ),
...

f3 (G1, . . . , G3) ≡ 0 (3)1 (mod ?1), . . . , f3 (G1, . . . , G3) ≡ 0 (3): (mod ?: ).

We can run Algorithm 1, applying Chinese Remainder
Theorem for each row of the above equations to obtain

� 9 := CHINESEREMAINDER(0 ( 9)1 , . . . , 0
( 9)
:
, ?1, . . . , ?: ) ,

(18)
for 9 = 1, . . . 3. Next we have the following system of
equations f1 (G1, . . . , G3) ≡ �1 (mod %) ,

...

f3 (G1, . . . , G3) ≡ �3 (mod %) .

It is clear from the definition of f9 (G1, . . . , G3) that

f9 (G1, . . . , G3) ≤
(
3

9

)
= 9 =

(
3

3 − 9

)
= 9 ≤ 33− 9= 9

≤ =3− 9= 9 = =3 . (19)

From % ≥ =3 , f9 (G1, . . . , G3) ≤ =3 and the uniqueness part
of the Chinese Remainder Theorem it follows that the above
congruences for the � 9 can be stated as equalities, i.e

f1 (G1, . . . , G3) = �1, . . . , f3 (G1, . . . , G3) = �3 .

Recall that according to Eq. (12) and (13) the roots of the
polynomial

5 (I) = I3 − f1 (G1, . . . , G3)I3−1

+ f2 (G1, . . . , G3)I3−2 − · · · + (−1)3f3 (G1, . . . , G3)

are actually G1, . . . , G3 . This means that in order to list the
elements we need to find the roots of the polynomial

5 (I) = I3 − �1I
3−1 + �2I

3−2 − .... + (−1)3�3 . (20)

It can be done with standard mathematical algorithms,
such as the Root Finder method of Heindel [63] based on
the Bisection Method [64] and the Sturm Sequence [61].
Roughly speaking, this technique first isolates the roots of
the polynomial with the help of a theorem of Sturm and then
finds them by the Bisection method. We overview these known
methods in the Appendix.

Algorithm 3: LISTEGHFILTER

Input: H8,1, . . . , H8,3 for all 1 ≤ 8 ≤ : , ?1, . . . , ?:
begin

1 for 9 = 1 to 3 do
2 for 8 = 1 to : do
3 0

( 9)
8

:= f9 (H8,1, . . . , H8,3) (mod ?8)
4 � 9 :=

CHINESEREMAINDER(0 ( 9)1 , . . . , 0
( 9)
:
, ?1, . . . , ?: )

5 Set 5 (I) = I3 +∑3
C=1 (−1)C �C I3−C

6 Compute (G1, G2, . . . , G3) = ROOTFINDER( 5 (I), 0, %)

To summarize the above we have the following LISTEGH-
FILTER algorithm shown in Algorithm 3. In the inner loop we
compute 0 ( 9)

8
by Eq. (17) for 8 = 1, . . . , : and 9 = 1, . . . , 3,

which is the ?8 remainder of the 9 th elementary symmetric
polynomials after substituting H8,1, . . . , H8,3 . In the outer loop
this gives the � 9s with the Chinese remaindering process as
in Eq. (18). Then we build up our polynomial 5 (I) and find
its roots by using the ROOTFINDER method.

Theorem 1: The LISTEGHFILTER algorithm finds the ele-
ments stored in the EGH filter using $ (310 log3 =) bit opera-
tions3.

3Theorem 3.1 in [65] provides a faster but more complex algorithm than
the Sturm Sequence that finds the items at the Boolean cost $̃ (33 log3 =) .
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Proof: The algorithm contains three steps. The first step
computes the elementary symmetric polynomials; in the sec-
ond step, it uses the Chinese Remainder Theorem, and finally,
it determines the roots of the corresponding polynomial.

In Algorithm 2 we compute the elementary symmetric
polynomials recursively. To get the A th elementary symmetric
polynomial one needs A−1 additions and A−1 multiplications in
Algorithm 2. Thus we can compute all elementary symmetric
polynomials by using 1 + . . . + (3 − 1) additions and mul-
tiplications. As G1, . . . , G3 ≤ =, one addition needs $ (log =)
bit operations, and one multiplication requires $ (log2 =) bit
operations. Accordingly, the total cost of Algorithm 2 is
$ (32 log2 =) bit operations.

In the next step, we compute the residues of the elementary
symmetric polynomials f9 (H8,1, . . . , H8,3) (mod ?8), (1 ≤ 8 ≤
:) (1 ≤ 9 ≤ 3). We have : × 3 such residues. Obviously,
: ≤ 3 log =. As noted before the ?8s are (the first) distinct
prime numbers. It follows from [16] that ?: = $ (3 log =).
By (19), to compute all residues one requires at most $ (3 ×
: × log(=3) × log(3 log =)) = $ (33 log2 =(log 3 + log log =)) =
$ (33+Y (log =)2+Y) bit operations.

We analyze the Chinese remaindering process (Algo-
rithm 1). Chinese remaindering requires $ (log2 %) bit opera-
tions [66]. Obviously, ?8 ≤ =, it follows that

log % =

:∑
8=1

log ?8 < : log ?:

= $ ((3 log = · (log 3 + log log =))
= $ ((3 log =)1+Y).

Since the number of systems of congruences is 3, computing
the � 9s in the LISTEGHFILTER needs $ (3 · (3 log =)2+Y) bit
operations. In the last step, we have to determine the roots of
the polynomial 5 (I). For a polynomial 5 (I) = 03I

3 + . . . +
01I + 00 let  =

∑3
8=0 |08 |, which is called the 1 - norm of the

polynomial 5 (I).
Coefficients of our polynomial are at most =3 , which implies

that  ≤ 3=3 . By [67] the running time of RootFinder is
$ (310 + 37 log3  ) (see Theorem 8 and the remark following
it in [67]). We have to use the Bisection method at most
3 − 1 times, which requires $ (3 log =) operations, because
the length of each interval is at most =. Thus the total cost
to determine all roots requires at most $ (310 + 310 log3 = +
3 log =) = $ (310 log3 =) bit operations. This implies that the
total cost of the LISTEGHFILTER algorithm is $ (32 log2 = +
33+Y log2+Y = + 310 log3 =) = $ (310 log3 =) bit operations.

VII. NUMERICAL EVALUATION

We perform experiments to examine the performance of
the EGH filter under different scenarios. We have released
the C++ source code of our implementation for the EGH
filter construction and the algorithm for listing elements4.
We compare it with existing Bloom-filter based solutions and
focus on the amount of memory, the universe size, the obtained
probability for false positives (if exist), and the number of
memory accesses. While we focus on small 3, we also evaluate

4https://github.com/jtapolcai/egh filter
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Fig. 2: The EGH filter’s length depending on the size of the
false-positive free zone [1, =3].

the performance for larger 3 values to further understand the
solution’s cost in practice.

First, we evaluate the universe size that allows the false
positive free zone (FPFZ) of the EGH filter for different
number of stored items 3. We implemented the Eppstein-
Goodrich-Hirschberg (EGH) filter, as described in Section V.
The sequence of prime numbers (i.e. ?1 = 2, ?2 = 3, ?3 = 5,
etc.) is generated via the sieve of Eratosthenes. To have a
FPFZ of a given 3 and =3 we add prime numbers until∏:
8=1 ?8 ≥ (=3)3 holds. This gives us an EGH filter length

of < =
∑:
8=1 ?8 bits where : is the number of prime numbers.

In Table II, we describe, for various values of 3, the universe
size =3 that allows keeping up to 3 elements from the universe
without false positives for < ≤ 440. For example, an EGH
filter of length < = 440 has a false positive free zone for
universe of {1, . . . , =5 = 18100} with at most 3 = 5 elements
in the filter. To perform a membership query, we need to test
17 positions in the filter, as the first 17 primes will sum up
to at least 440 and are required to allow such false positive
free zone. As a comparison, reading such 5 elements in binary
representation would require 75 bit-access (5 · dlog2 18100e).
The table also shows the ability of larger filters (with their
corresponding overhead) to allow larger universe size = and
set size 3. For instance, access to 20 positions in a filter of 639
bits, would allow representing 3 = 6 elements from a universe
size of =6 = 28700 or 3 = 9 among =9 = 937.

Fig. 2 shows the number of bits needed in the EGH filter
to have a false positive free zone for 3 ∈ {1, 5, 20, 50} and
a universe size that ranges from 10 to 105. The number of
bits increases in a logarithmic fashion for a fixed 3 as a
function of the order of magnitude of the universe size. For
example, for 3 = 5 as many as 281 bits are required for a
universe of size 1670, and 440 bits for a universe of size
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TABLE II: The size of the false positive free zone =3 of the EGH filter with up to 3 elements for different memory size (of < bits). The
filter makes use of : primes, such that ?: is the last of them. See also Fig. 1 as a graphical representation.

: ?:< FPFZ
1 2 2 =1 = 2
2 3 5 =1 = 6
3 5 10 =1 = 30
4 7 17 =1 = 210

5 11 28

=1 = 2310
=2 = 48

6 13 41

=1 = 30000
=2 = 173

7 17 58

=1 = 511000
=2 = 714
=3 = 79

8 19 77

=1 = 9.7·106

=2 = 3110
=3 = 213

9 23 10
0

=1 = 2.2·108

=2 = 14900
=3 = 606
=4 = 122

10 29 12
9

=1 = 6.5·109

=2 = 80400
=3 = 1860
=4 = 283

?:< FPFZ

?
11

=
31

16
0

=1 = 2.01·1011

=2 = 448000
=3 = 5850
=4 = 669
=5 = 182

?
12

=
37

19
7

=1 = 7.42·1012

=2 = 2.72·106

=3 = 19500
=4 = 1650
=5 = 375

?
13

=
41

23
8

=1 = 3.04·1014

=2 = 1.74·107

=3 = 67300
=4 = 4180
=5 = 788
=6 = 259

?
14

=
43

28
1

=1 = 1.31·1016

=2 = 1.14·108

=3 = 236000
=4 = 10700
=5 = 1670
=6 = 485

?:< FPFZ

?
15

=
47

32
8

=1 = 6.15·1017

=2 = 7.84·108

=3 = 850000
=4 = 28000
=5 = 3610
=6 = 922
=7 = 348

?
16

=
53

38
1

=1 = 3.26·1019

=2 = 5.71·109

=3 = 3.19·106

=4 = 75600
=5 = 7990
=6 = 1790
=7 = 613

?
17

=
59

44
0

=1 = 1.92·1021

=2 = 4.38·1010

=3 = 1.24·107

=4 = 209000
=5 = 18100
=6 = 3530
=7 = 1100
=8 = 458

?:< FPFZ

?
18

=
61

50
1

=2 = 3.42·1011

=3 = 4.89·107

=4 = 585000
=5 = 41100
=6 = 7000
=7 = 1980
=8 = 765

?
19

=
67

56
8

=2 = 2.80·1012

=3 = 1.99·108

=4 = 1.67·106

=5 = 95300
=6 = 14100
=7 = 3600
=8 = 1290
=9 = 584

?
20

=
71

63
9

=3 = 8.23·108

=4 = 4.86·106

=5 = 224000
=6 = 28700
=7 = 6620
=8 = 2200
=9 = 937

?:< FPFZ

?
21

=
73

71
2

=3 = 3.44·109

=4 = 1.42·107

=5 = 527000
=6 = 58700
=7 = 12200
=8 = 3770
=9 = 1510
=10 = 726

?
22

=
79

79
1

=4 = 4.24·107

=5 = 1.26·106

=6 = 122000
=7 = 22800
=8 = 6510
=9 = 2450
=10 = 1120

?
23

=
83

87
4

=4 = 1.28·108

=5 = 3.06·106

=6 = 254000
=7 = 42900
=8 = 11300
=9 = 4010
=10 = 1750

?:< FPFZ

?
24

=
89

96
3

=5 = 7.50·106

=6 = 536000
=7 = 81400
=8 = 19800
=9 = 6600
=10 = 2740
=11 = 1330

?
25

=
97

10
60

=6 = 1.15·106

=7 = 157000
=8 = 35100
=9 = 11000
=10 = 4330
=11 = 2020
=12 = 1070

?
26

=
10

1
11

61

=5 = 4.71·107

=6 = 2.48·106

=7 = 303000
=8 = 62500
=9 = 18300
=10 = 6870
=11 = 3080
=12 = 1570
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Fig. 3: Beyond the false positive free zone: The false positive rate of the EGH and the Bloom filters for various filter length
<, and size of universe =.

18100. The theoretical lower bound on the size < of the 3-
disjunct matrices by Claim 2 (from Section IV) is also shown
on the charts with dashed lines. Filling this relatively large
gap between the lower bound and the constructions is a long-
standing open problem in CGT.5

In our C++ implementation of the list operation for ad-
vanced EGH filter, we have used large precision numbers for
the ROOTFINDER algorithm, although the 64-bit long long
should also be enough in practice. See Fig. 4 for the running
time of listing 3 elements of universe = on a commodity laptop
with Intel i5 2.5Ghz commodity processor.

Next, we compared the EGH filter with the Bloom filter
(BF). To illustrate the EGH filter’s benefits, we computed the
false positive probability of the BF with the same size < and
the same number of hash functions : as in the EGH filter with
the FPFZ. The results are shown in Table III. The false-positive
probability of the BF is not negligible, especially for small 3,
where EGH in the FPFZ completely avoids false positives.
We also added the minimal false positives of the BF obtained
when an optimal number of hash functions are used.

5Note that a randomized CGT construction cannot be transformed into
simple {ℎ̂1, ℎ̂2, . . . , ℎ̂: } functions in the context of the EGH filter.

Fig. 3 shows the false positive rate of EGH and Bloom
filters for two filter lengths < = 197 and < = 501 bits. The
solid curves are the false positive rate of the BF computed
by Eq. (10) for an optimal number of hash functions, and
the same number as for the EGH filter. The dotted curve
shows the false positive rate outside the false positive free
zone (FPFZ), computed by Eq. (11). The false positive is
slightly larger for EGH outside of the FPFZ, especially for
small 3, which we pay to have an FPFZ. We also measured
the false positives for a fixed universe for different values of
3. We did it by generating 109 filters with 3 elements and
selected a random element, not in the filter. For each such
instance, we tested if the filter gives a false positive or not.
Recall the false positive rate is guaranteed to be zero in the
FPFZ; however, surprisingly, a larger zone was actually free
of false positives. For example in the < = 501 bit long filter
the universe * = {1, . . . , 6996} (=6 = 6996) has an FPFZ
till 3 = 6, while in 109 randomly generated queries, there
were no false positives when 3 was at most 9. In general,
the false positive rate increases in a similar way for EGH and
BF as more and more elements are inserted into the filter. On
the charts, we can also see how the false positive free zone
depends on the size of the universe. It is because smaller =
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TABLE III: The false positive probability p of the Bloom filter for
the same size < and the number of bit lookups : and the number of
elements in the filter 3 as the EGH filter allowing a universe size of
at least =3 = 100, 200, 500. The last two columns correspond to the
Bloom filter with optimal number of hash functions.

input EGH BF Optimal BF
3 < : =3 p :OPT p
1 17 4 209 .00215 12 .000364
2 41 6 173 .00028 15 .00006
3 77 8 213 .000028 18 .000004
4 100 9 122 .000022 18 .000006
5 160 11 182 1.30·10−6 23 2.22·10−7

10 440 17 134 4.03·10−9 31 6.77·10−10

20 1264 27 104 4.13·10−13 44 6.58·10−14

2 58 7 714 .000022 21 .000001
3 77 8 213 .000028 18 .000004
4 129 10 283 1.88·10−6 23 1.19·10−7

5 197 12 375 1.10·10−7 28 6.33·10−9

10 501 18 202 4.39·10−10 35 3.61·10−11

20 1593 30 211 8.03·10−16 56 2.44·10−17

1 28 5 2310 .000127 20 .0000018
3 100 9 606 2.41·10−6 24 1.21·10−7

4 160 11 669 1.60·10−7 28 4.79·10−9

5 238 13 788 8.50·10−9 33 1.23·10−10

10 712 21 726 3.61·10−13 50 1.43·10−15

20 2127 34 562 Y 74 Y
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Fig. 4: Runtime of the decoding algorithm with 95% confi-
dence intervals of 1000 measurements.

and larger 3 can also meet the same bound of
∏:
8=1 ?8 ≥ =3 .

VIII. DISCUSSION

A. Flexibility

Compared to the traditional BF an important advantage of
the EGH filter is that the function ℎ̂8 is the same for any filter,
not depending on its length. In other words, the EGH filter
has a block structure; and for a longer EGH filter, we need
to add more blocks while keeping the previous blocks as they
are. This allows great flexibility because the Bloom filter size
can be dynamically changed without recomputing the filter. To
reduce the length, we need to erase the last blocks. Sometimes
filter length has to be increased, allowing a false positive free
zone for a larger set. We can increase length by adding blocks
that refer to new primes values while maintaining existing filter
blocks. The computation of the new filter can be simplified by
computing only its value for the added blocks and relying on
previous values of the existing blocks.

B. Tradeoff between Memory and False Positive Guarantees

There is a clear tradeoff between the implied false positive
free zone to the amount of memory allocated to the filter. An

example for this tradeoff was shown early through the various
curves in Fig. 1. The memory consumption $ (32 log = log 3)
bits of the EGH filter has a monotonically increasing cost
(in bits) for adding one to the upper bound 3 on the set
size. Memory should be allocated based on the typical size of
the represented set when membership queries are performed.
Consider a distribution (q0, q1, q2, . . .) such that

∑
8≥0 q8 = 1

and q8 ∈ [0, 1] describes the probability of the set ( to
be of size |( | = 8 upon a query. The distribution can be
implied by typical set size. Clearly, there is no point in
increasing 3 from some 8 to 8 + 1 if there are no queries
when |( | = 8 + 1 (namely q8+1 = 0). In addition to this
distribution, the selection of the filter size should take into
account the false positive probability beyond the false positive
free zone as analyzed in Section V-C as a function of the
filter length. Let %���

5 0;B4
(<, 8) denote the implied false positive

probability with a construction of < bits (with some first :
primes) representing a set of size 8. Consider a fixed universe
of size = and assume the guarantee of no false positives for a
query has some value , implied by the particular system.
One possible guideline can be selecting 3 such the value
(, ·∑8∈[0,3 ] q8) +

∑
8≥3+1 q8 · (1− %���5 0;B4

(<(3, =), 8)) is large
in comparison with the memory cost <(3, =).

C. Implementation Issues
Another advantage of the EGH filter in comparison with

Bloom filters is the reduced hash computation cost. Typically
the hash functions are either computationally intensive (like
the cryptographic hash functions such as MD5) or have good
randomness (e.g., CRC32, FNV, BKDR). The randomness is
important to have a low false-positive rate. In EGH, we need to
perform only a simple division with the remainder operation.
Moreover, the same function ℎ̂8 in an EGH filter is used if 8 ≤
: . This means, the functions {ℎ̂1, ℎ̂2, . . . , ℎ̂: } can be hardware-
implemented, or in assembly for software implementations.
The EGH filter size defines the required number of functions.

IX. CONCLUSION

In this paper, we described the EGH filter to represent sets
while avoiding false positives when constraints on the universe
size and the represented set size hold. The proposed approach
is an adaptation of a known non-adaptive combinatorial group
testing scheme. The used functions are deterministic, fast,
and simple to calculate, enabling a superior lookup perfor-
mance compared to Bloom filters. We also extended the
model through counters, supporting deletions, and efficient
listing of the elements. The fast listing of the elements is
performed by finding the roots of a system of equations
in modular arithmetic. Our approach is based on traditional
number-theoretical techniques such as the Chinese Remainder
Theorem, the Bisection Method, and the Sturm Sequence. We
examined the performance of the new approach. The paper
aims to connect two heavily researched fields: Bloom filters
and Combinatorial Group Testing. While we showed how such
a connection could allow false-positive free zones with their
unique properties, we demonstrated that there could be a high
memory overhead for the guarantee to prevent false positives
while preserving the basic Bloom filter access properties.
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APPENDIX

We give a short overview of the main known tools we make
use of. First, we describe the well-known Bisection method
[64], which is useful to find a root of a polynomial (with some
required level of accuracy). Let 5 be a polynomial for the
real variable I and consider the equation 5 (I) = 0. Let [0, 1]
be an interval and assume that 5 (0) and 5 (1) have opposite
signs. Since 5 is continuous on [0, 1], the Intermediate Value
Theorem implies that there exists an A ∈ [0, 1], such that
5 (A) = 0. At each step we divide the interval into two smaller
intervals by computing the midpoint 2 = (0 + 1)/2 of the
interval and the value 5 (2). If 5 (2) = 0 then 2 is a root of
5 . Otherwise either 5 (0) and 5 (2) have opposite signs and
[0, 2] contains a root, or 5 (2) and 5 (1) have opposite signs
and [2, 1] contains a root. We select the subinterval, which
contains a root as the new interval to be used in the next step.
Note that the size of the interval that contains a root of 5 is
reduced by half at each step. The above process is continued
until the interval is sufficiently small, smaller than some pre-
defined threshold Y. Pseudo-code is given in Algorithm 4.

Algorithm 4: BISECTIONMETHOD [64]
Input: Polynomial 5 , range [0, 1], accuracy Y

1 while 1−0
2 > Y do

2 Compute 2 = 0+1
2 and 3 = 5 (2) · 5 (0)

3 if 3 < 0 then
4 1 := 2
5 if 3 > 0 then
6 0 := 2
7 if 3 = 0 then
8 break

return 2

We also need some facts about Sturm sequences [61]. By
applying the Euclidean algorithm to compute the greatest
common divisor of 50 (I) = 5 (I) and 51 (I) = 5

′ (I) it is
easy to obtain a Sturm sequence. In particular, by taking
successively the remainders with polynomial division and
change their signs. See also Algorithm 5 for the pseudo-code.
The algorithm terminates, because the degree sequence of 5

′
8
s

is decreasing. Finally, the obtained sequence of polynomials
have the following property

50 (I) = @1 (I) 51 (I) − 52 (I),
51 (I) = @2 (I) 52 (I) − 53 (I),

...

5<−2 (I) = @<−1 (I) 5<−1 (I) − 5< (I),
5<−1 (I) = @< (I) 5< (I).

where @8+1 (I) is the quotient of the polynomial long division
of 58 (I) by 58+1 (I).

Algorithm 5: STURMSEQUENCE [61]
Input: A polynomial 5 (I) with integral coefficients
Result: A Sturm sequence of polinomials

50 (I), 51 (I), . . . , 5< (I)
1 50 (I) = 5 (I)
2 51 (I) = 5

′ (I)
3 for 8 = 2 to < do
4 58 (I) := the remainder of the polynomial long division

of 58−2 (I) by 58−1 (I) .

Let 50 (I) = 5 (I), 51 (I), . . . , 5< (I) be a Sturm sequence,
where 5 (I) has no repeated roots, and let l(I) denote the
number of sign changes (ignoring zeroes) in the sequence
5 (I), 51 (I), . . . , 5< (I). Sturm’s theorem states that if 5 (0) ≠ 0
and 5 (1) ≠ 0, then the number of distinct roots of 5 in the
interval (0, 1] is equal to l(0) − l(1).

Algorithm 6: ROOTFINDER [63]
Input: polynomial 5 (I) with integral coefficients, range

[0, 1]
1 50 (I), . . . , 5< (I) := STURMSEQUENCE( 5 (I))
2 Calculate l(0) − l(1).
3 if l(0) − l(1) = 0 then
4 There is no root in (0, 1)
5 if l(0) − l(1) = 1 then
6 Find the only root by the BISECTIONMETHOD

7 if l(0) − l(1) > 1 then
8 Calculate 2 = 0+1

2 and goto step 2 and repeat this
process to the intervals (0, 2) and (2, 1)

If there is given a polynomial with integral coefficients and
with no repeated integral roots which lie in the interval [0, 1],
then we can find all the roots of this polynomial by combining
the Bisection method and Sturm theorem in the following way.
Consider the intervals [0, (0+1)/2] and [(0+1)/2, 1]. Apply
Sturm’s Theorem and calculate the number of roots in both
intervals. Choose one in which there is at least one root, e.g.,
[0, (0 + 1)/2] and divide it into two equal parts by taking
its halving point, and calculate the number of roots in both
of these smaller intervals. Repeat these steps until one of the
subintervals will contain only one root. We can find this root
by the Bisection method. Dividing the original polynomial
by the corresponding linear polynomial. We can repeat this
process and obtain all the roots of the original polynomial.
More formally, we have the following algorithm.
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of the MTA Lendület Program and the Google Faculty Award in 2012,
Microsoft Azure Research Award in 2018. He is a TPC member of leading
conferences, e.g., IEEE INFOCOM 2012-, and the general chair of ACM
SIGCOMM 2018.

Lajos Rónyai is a research professor with the
Institute of Computer Science and Control, Eötvös
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