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The use of pure oats (oats cultivated with special care to avoid gluten contamination

from wheat, rye, and barley) in the gluten-free diet (GFD) represents important nutritional

benefits for the celiac consumer. However, emerging evidence suggests that some oat

cultivars may contain wheat gliadin analog polypeptides. Consequently, it is necessary

to screen oats in terms of protein and epitope composition to be able to select safe

varieties for gluten-free applications. The overall aim of our study is to investigate

the variability of oat protein composition directly related to health-related and techno-

functional properties. Elements of an oat sample population representing 162 cultivated

varieties from 20 countries and the protein composition of resulting samples have been

characterized. Size distribution of the total protein extracts has been analyzed by size

exclusion-high performance liquid chromatography (SE-HPLC) while the 70% ethanol-

extracted proteins were analyzed by RP-HPLC. Protein extracts separated into three

main groups of fractions on the SE-HPLC column: polymeric proteins, avenins (both

containing three subgroups based on their size), and soluble proteins, representing

respectively 68.79–86.60, 8.86–27.72, and 2.89–11.85% of the total protein content.

The ratio of polymeric to monomeric proteins varied between 1.37 and 3.73. Seventy-

six reversed phase-HPLC-separated peaks have been differentiated from the ethanol

extractable proteins of the entire population. Their distribution among the cultivars

varied significantly, 6–23 peaks per cultivar. The number of appearances of peaks also

showed large variation: one peak has been found in 107 samples, while 15 peaks have

been identified, which appeared in less than five cultivars. An estimation method for

ranking the avenin-epitope content of the samples has been developed by using MS

spectrometric data of collected RP-HPLC peaks and bioinformatics methods. Using

ELISA methodology with the R5 antibody, a high number of the investigated samples

were found to be contaminated with wheat, barley, or rye.

Keywords: avenin, ELISA, HPLC, epitope prediction, celiac disease, oat
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INTRODUCTION

Celiac disease (CD) is an autoimmune disorder triggered by
the consumption of gluten proteins of, primarily, wheat, rye,
and barley in a part of the population with certain genetic
predispositions. The pathological processes induced by gluten in
these individuals cause villous atrophy in the small intestines.
The disease manifests in a range of symptoms from nutrient
malabsorption to reproduction problems. The prevalence of CD
is, on average, 1% worldwide, making it one of the most common
food-related adverse reactions. Currently, the only way to treat
CD is to adhere to a lifelong gluten-free diet (GFD) (1, 2). By
omitting staple cereals, a GFD represents a risk of decreased
intake of vitamins (predominantly, B group vitamins), important
minerals (zinc, magnesium, selenium, and iron), and dietary
fiber. The GFD is, generally, also accompanied by an excess
intake of proteins, fats and sugars. Thus, the GFD must always
be constructed with the help of a trained healthcare professional
to aim for nutritional balance (3, 4).

Consumption of oats carries a number of nutritional
benefits, including high contents of bioactive compounds
such as β-glucans and antioxidants along with vitamin E
and avenanthramides, as well as being an important source
of proteins, fats, vitamins, minerals, fibers, phenolic acids,
flavonoids, sterols, and phytic acid (5–8). Several clinical studies
confirm that the soluble fiber β-glucan is strongly related to
lowering blood cholesterol (LDL) levels (9–11). It can stimulate
the immune system as well and positively affects the functioning
of the human intestinal flora. Since oats are one of the best
sources of fatty acids among the cereals, especially linoleic acid
and low amounts of saturated fat, it plays a great role in reducing
the risk of cardiovascular diseases (12, 13). The Food and Drug
Administration of the United States of America has allowed a
health claim for an association between consumption of diet,
which is high in oatmeal, oat bran, or oat flour and has reduced
the risk of coronary heart disease. (14) This opened the era of
novel utilization of oats in human nutrition as a key component
in gluten-free diet (GFD) (15, 16) and as oat protein isolates, a
cheap and valuable protein source for the food industry (17).

The benefits of both applications of oats as human food
sources are directly related to the protein composition of the
oats used, producing these food products: the inclusion of oats
in the diet of celiac patients has been a controversial issue. Oats
are a less likely candidate to trigger CD due to their protein
composition. On the other hand, all of the important techno-
functional properties of oats are directly related to the ratio of
polymeric and monomeric proteins in the sample.

Wheat prolamins are the key players in the formulation of
CD, especially their α- and γ-gliadin subunits (18, 19). These
proteins contain a number of T cell stimulatory epitopes, mostly
in their repetitive regions (20–22). In the case of oats, the main
storage proteins are the 11S- and 12S-type globulins that consist
approximately 80% of the total protein content. The remaining
fractions are water-soluble albumins (14–20%) and the alcohol-
soluble prolamins, named avenins (4–14%), depending on the
genotype (23).

Oats are, in general, considered to have low CD-
triggering potential due to their lower prolamin content,
higher digestibility, and lower affinity to MHC (Major
Histocompatibility Complex) molecules associated with CD
compared with that of wheat prolamins (24).

A range of clinical studies has taken place to investigate
the safety of oats in the GFD. Despite inconsistent results,
a growing body of evidence concludes that the consumption
of oats in moderate amounts (20–25 g/day for children and
50–100 g/day for adults) is safe for most patients with celiac
in remission (25–29). A major problem of oat consumption
in the celiac context is that gluten contamination from other
gluten-containing cereals occurs frequently during conventional
agricultural and food-processing practices (30, 31). The problem
is being addressed in several countries by developing agricultural
and industrial procedures to produce oats free from gluten
contamination, referred to as pure oats (32–35). In line with the
findings described above, the inclusion of pure oats in the GFD
in moderate amounts is recommended by multiple countries,
including the EU (36), the U.S. (37), and Canada (38). The legal
gluten-free threshold of 20 mg/kg gluten applies to these oat
products as well.

Although pure oats are considered to be safe for most patients
with celiac, there are a number of studies suggesting that oats
may be able to trigger CD on their own, but only affected the
minority of the population with celiacs connected to individual
sensitivity and the condition of the intestine (39). In a study
by Lundin et al. (40), conducting a 12-week oat challenge, 18
out of 19 patients tolerated oats well. However, a single patient
developed complete villous atrophy. This patient produced T
cells that showed affinity to avenins and were used to identify two
avenin epitopes (PYPEQEEPF and PYPEQEQPF) that may have
been responsible for triggering villous atrophy. These results were
limited to this single patient, but they raised questions about the
presence of celiac-related epitopes in oat avenins.

According to the results of Silano et al. (41), laboratory and
clinical tests with a large number of patients and a control group
proved that differences can occur based on certain oat genotypes
and individual sensitivity of patients as well. In the tests,
duodenum segments derived from patient and control subjects
were examined by fluorescent microscopy after incubation with
protein extracts from different oat genotypes. Increased gliadin-
induced transglutaminase enzyme production was observed on
the segments incubated with protein extracts of wheat and certain
oat genotypes. This suggests that not only the contamination of
oats with other gluten-containing grains can cause problems, but
there are oat cultivars that contain protein sequences that are
low risk for patients with celiac. Based on the study of Real et al.
(42), there is a great variety of potential immune reactivity of oat
cultivars, which can generate a higher or lower degree of immune
response in patients with celiac disease.

The contradictory preclinical and clinical results and the
findings of research aimed at the genetic variability of avenin
immunoreactivity (41, 43) suggest that oat varieties are not
created equal in terms of their safety in CD. It has important
implications for pure oat production and highlights the
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importance of screening oat cultivars for the presence of celiac-
related avenin epitopes. Fric et al. (27) found that the monoclonal
antibody G12 developed for gluten detection (44, 45) cross-
reacts with some sequences in avenins, but these peptides were
considered irrelevant regarding the presence or absence of the
clinically proven toxic internationally agreed celiac epitopes.
The researchers suggested it may be a suitable tool for a fast,
high-throughput prescreening of oat varieties (46). However, the
G12 do not recognize the internationally confirmed oat avenin
epitopes (47), but the antibody response is well correlated with
the results of T cell proliferation and interferon γ release (46).
The results of the clinical studies did not support the in vitro
measures; the reasons could be that avenins did not contain any
proteolytically resistant peptides longer than 10 amino acids, and
avenin peptides have low-binding stability on HLA-DQ2.5 (48).

However, to obtain reliable information about the presence
of celiac-related epitopes, immunological results should
be accompanied by data on protein composition. The
current scientific status about the safety of oats does not
provide arguments to categorize certain oat cultivars as really
harmful regarding CD. LC-MS (liquid chromatography–mass
spectrometry) is the most important tool for the identification
and quantification of immunoreactive cereal proteins (49).
However, the quantification of gluten epitopes with this precise
method can still be limited due to the high cereal protein
polymorphism and an incomplete gluten database of oat
immune responsive proteins (50).

The overall aim of our study is to demonstrate the variability
of oat protein composition directly related to health-related and
techno-functional properties. In this first report, we summarize
our findings related to genetic factors in an international
population of different oat cultivars that have been analyzed
using a complex relatively fast and cost-effective protein
separation methodology, suitable for characterizing large sample
populations, and the resulting data have been evaluated, applying
published proteomic information.While the data collected in this
study on the overall protein composition, including the ratio of
polymeric to monomeric oat proteins, can be directly related to
functional properties, the results of the detailed analysis of avenin
proteins can help breeders to select oat lines with suitable storage
protein composition. The application of the same techniques,
monitoring the effects of growing conditions on the protein
composition of oat as well as the relationships between the
protein composition and the techno-functional properties, is in
progress and planned to be reported in subsequent publications.

MATERIALS AND METHODS

Plant Material
In this study, 162 oat cultivars and breeding material were
analyzed with different genetic backgrounds and places of origin,
37 from Australia, 2 from Belgium, 9 from Canada, 4 from Chile,
5 from China, 1 from England, 1 from Ecuador, 2 from Finland, 4
from Germany, 2 from Holland, 40 from Hungary, two different
regions and breeding backgrounds (Szeged and Martonvásár), 2
from Japan, 2 from New Zealand, 2 from Peru, 2 from Poland,
7 from South Africa, 5 from Sweden, 34 from USA, and 1 from

Uzbekistan. All of the names of the varieties are coded with the
first three letters of the origin plus a running number to comply
with proprietary issues and breeding licenses. For easier handling
and interpretation of the large dataset, eight subpopulations
(R1-R8) were created from all of the analyzed varieties, based
on, more or less, the geographic origin of the samples that
served as a basis of data evaluation (Supplementary Table 1).
The oat samples were derived from small plot field growing.
After harvest, samples were stored in a dry and cold warehouse.
The dehulling was made with Satake grain testing mill TM-
05 (Satake Engineering Co. Ltd., Japan), dedicated only to GF
grains, and grinding of hulled grains was carried out with a
Retsch MM 400 ball mill (Retsch GmbH, Germany) in a gluten-
free laboratory environment, which was monitored with the
R-Biopharm RIDASCREENRIDA R©QUICK Gliadin test stripes
(Art. No.: R7003).

Protein Content
The protein content of oat flours was determined by the Dumas
method (N × 5.95), an adaptation of the AOAC official method
(51) using an automated protein analyzer (LECO FP-528, USA).

Characterizing the Protein Composition of
Cultivars by Size Exclusion-High
Performance Liquid Chromatography
(SE-HPLC)
Size exclusion-high performance liquid chromatography analyses
have been carried out with three replicate injections from two
replicate extracts. A simplified version of the procedure of
Gupta et al. (52) was applied as a one-step extraction. Based
on preliminary studies, it was found that more than 95% of
the proteins of oats can be extracted by simply vortexing the
samples, so in contrast with the observations in the case of
wheat, there was no need for a second consecutive extraction
step using sonication The size exclusion-high performance liquid
chromatography (SE-HPLC) using the procedure of Batey et al.
(53) was used as modified by Larroque and Békés (54) with a
mixture of two stock buffer solutions: A (12 g of 0.2-M NaH2PO4

+ 500ml MQ H2O) and B (17 g of 0.2-M Na2HPHO4 + 500ml
ofMQH2O). The final SE buffer solution was prepared bymixing
90ml of solution A+ 110ml of solution B+ 600ml MQ H2O+

4-g SDS.
Single grains from different samples were placed in 2ml

Eppendorf tubes with a 72-mm-diameter steel ball bearing
placed on top of the grain. The tubes were lysed using
a Qiagen R©TissueLyser II (Qiagen GmbH, Germany) at 27
strokes/s frequency for 7min. Flour from each tube (10mg)
was weighed in fresh 2ml Eppendorf tubes, and 1ml of an SE-
HPLC extraction buffer was added to each tube. The tubes were
then vortexed, usingMOBIO Laboratories, Inc. Vortex-Genie R©2
at setting 6 for 30min. They were subsequently centrifuged
for 15min at 13,000 rpm, using Eppendorf Centrifuge 5424.
The supernatant was then aspirated using a 1ml syringe. The
supernatant was then passed through a 0.45µl filter into an
HPLC vial. The vials were placed in an Agilent Technologies 1200
series HPLC instrument and were analyzed using the following
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parameters: a Mobile Phase of 50% acetonitrile (ACN), HPLC
grade, with 0.1% trifluoroacetic acid (TFA) and 50% water HPLC
grade, with 0.1% trifluoroacetic acid (TFA) was used. The SE
column (Agilent AdvanceBio Sec 300A, 2.7 µl, 4.6 × 300mm)
was washed for 60min with 100% water to 100% acetonitrile and
stabilized for 1 h before commencing the analysis. The column
was used at room temperature, at 120-bar pressure; the injection
volume was 10 µl at a flow rate of 0.350 µl/min. The SE-HPLC
separation resulted in 10 peaks (P1-P10), polymeric globulin
proteins eluted first (P1-P5), avenins in P6 fraction, while the four
latest eluted little peaks (P7-P10) (integrated together) contained
the soluble non-avenin proteins.

Reversed-Phase High-Performance Liquid
Chromatography (RP-HPLC)
About 60mg oat flour was extracted using 70% ethanol and
vortexed in a horizontal vortex (Vortex-Genie R© 2, MO BIO
Laboratories, Inc., USA) at setting 6 for 30min. Samples
were centrifuged for 15min at 13,000 rpm g using Eppendorf
Centrifuge 5,424. The supernatant was aspirated with taking care
of the pellet and passed through a 0.45-µl filter into an HPLC
glass vial. The samples were prepared in triplicate and were
centrifuged for 20min at 15870× g. The supernatant was filtered
using a 0.45-µm filter. The protein extracts were separated using
Agilent 1200 LC Systems (Agilent Technologies, USA) by the
method of Larroque et al. (55). About 10 µl of extracts were
injected into a C18 reversed-phase ZORBAX 300SB-C18 column
(4.6mm × 150mm, 5µm, 300 Å, Agilent Technologies, USA),
maintained at 60◦C column temperature and at 50-bar column
pressure. The applied eluents were 67% ultrapure water (Buffer
A1) and 33% acetonitrile (Buffer B1), each containing 0.1% TFA
(HPLC grade, Sigma Aldrich). The separation was carried out
using a linear gradient from 33 to 80% Buffer B1 over 65min at a
flow rate of 1 ml/min.

RP-HPLC analyses have been carried out with three replicate
injections from two replicate extracts.

R-Biopharm RIDASCREEN R5 ELISA
Analyses
In order to detect gluten contamination from wheat, rye,
or barley, oat samples were analyzed with the R-Biopharm
RIDASCREEN R© Gliadin assay (catalog number: R7001, R5
monoclonal antibody, sandwich format, LoD: 0.5 mg/kg gliadin
or 1mg/kg gluten, LoQ: 2.5 mg/kg gliadin or 5 mg/kg gluten).
Extraction and the ELISA procedure were carried out in line
with the kit instructions, adapted to local laboratory equipment.
Briefly, 1 g of oat flour samples was weighed in 50 ml Falcon
tubes. About 10 ml Cocktail solution (R-Biopharm, catalog
number: R7016) was pipetted to each sample under a chemical
hood. After vortexing, the samples were incubated at 50◦C
for 40min in a shaking water bath (OLS Aqua Pro, Grant
Instruments, United Kingdom). After cooling the samples to
room temperature, 30 ml 80 V/V% ethanol was added to the
samples, followed by 1 h of shaking on a table-top shaker
(1,500 rpm, Vibrax VXR basic, IKA Werke, Germany). The
samples then were centrifuged for 10min at 2,500 × g at room

temperature (LISA, AFI, France). Supernatants were diluted
1:12.5 with the sample diluent solution provided to the kit
(the concentrate was pre-diluted prior to use according to the
kit manual). About 150 µl of kit standards and samples were
loaded to a transfer plate in duplicate. Finally, 100 µl of each
sample and standard was transferred to the ELISA plate with
a multichannel pipette. The plate was incubated for 30min at
room temperature and then was washed with the pre-diluted
wash buffer provided for the assay in line with the kit instructions
(ELx50 automatic plate washer, BioTek, USA). Then, 100 µl of
the pre-diluted conjugate was added to all wells followed by
30min of incubation at room temperature. After washing, 50 µl
substrate and 50 µl chromogen were added to all wells, and the
plate was incubated for 30min at room temperature covered by
aluminum foil. Finally, 100 µl of stop solution was added to all
the wells, and absorbance values were obtained at 450 nm using
a plate spectrophotometer (iMark, BioRad, USA). Data were
analyzed with the Microplate Manager 6 software (BioRad, USA)
using the cubic spline fit to create a standard curve. The results
were the subject of further calculations to obtain the reporting
unit of mg/kg gluten as per the kit instructions.

Prediction of Avenin-Epitope Levels
The immunodominant T cell epitopes of oat DQ2.5-ave-1a
(PYPEQEEPF), DQ2.5-ave-1b (PYPEQEQPF) (56, 57), DQ2.5-
ave-1c (PYPEQEQPI) (48), and DQ2.5-ave-2 (PYPEQQPF) were
predicted, and the epitope containing avenin levels in different
oat varieties was calculated based on the study by Tanner et al.
(58). Sollid et al. (47) determined the celiac disease–relevant,
internationally agreed T cell epitopes recognized by CD4+T cells,
namely, DQ2.5-ave-1a, DQ2.5-ave-1b, and DQ2.5-ave-1c. The
study of Tanner even included the DQ2.5-ave-2 that contained
only the minority of the investigated oat varieties, and the
prediction was made based on it.

Briefly, Tanner et al. carried out RP-HPLC analysis from
an Australian oat variety (cv. Wandering). The representative
RP- HPLC chromatogram of the purified oat protein sample
contained 18 well-defined RP peaks. RP-HPLC fractions were
collected from the purified avenin sample and using MALDI-
TOF-MS, and LC-MS/MS analysis of the chymotrypsin digested
samples was carried out for protein identification. RP-HPLC
analysis in this study has been carried out using the identical
protocol in the same laboratory by the same operators as reported
by Tanner et al. (58), resulting in matched elution profiles of
avenin peaks with the published data and those derived from
this study. The mass spectrometric information on the avenin
peaks eluted at certain retention times the work of Tanner has
been adopted to characterize the corresponding RP-HPLC peaks
in our study. The individual and cumulative amounts of avenin
proteins containing the four oat avenin T cell epitopes have
been determined by selecting and summing the peak intensities
based on the retention times of the peaks, expressed in [mg/100 g
avenin] units using the averagemolecular mass of avenin proteins
as 29 kDa (43) and with the molecular mass values of the four
avenin epitopes, calculated from their amino acid composition
and, finally, converted to [mg/100 g sample] units by multiplying
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the mg/100 g avenin values by the SE-HPLC-based avenin
content and by the protein content of the samples.

Using proteomics data of Tanner in such a way is based on
the assumption that their data, which are based on the detailed
study on a single cultivar (cv. Wandering), is representative
for oat cultivars in general. The approach to the prediction of
epitopes from RP-HPLC data is strictly reliable when these data
would be supported and confirmed by amino acid sequence
data, demonstrating (at least in a representative number of
cultivars), the actual presence and amounts of intact avenin
epitope sequences in the distinguished HPLC peaks. With the
lack of such data, the predicted epitope levels can be interpreted
as the measure of the possible variation of epitope contents in the
cultivars in the sample population rather than the exact epitope
levels in the individual samples.

The cumulative amounts of the presumably immune reactive
avenin proteins per variety were determined and expressed as a
percentage of the sample mass by combining the peak data of RP-
and SE-HPLC separation and protein content of the samples.

Statistical Analyses
In the cases of both SE- and RP-HPLC analyses, mean values,Q3

standard deviation, and coefficient of variation have been
calculated based on the six replicate data derived from the three
replicate injections of two replicate extracts. The calculations
have been carried out using MS Excel functions. Sample groups
have been characterized by the variation of the above-mentioned
mean values of different protein compositional data. To avoid any
possible confusion, different notations are used for describing the
variation among the replicate measurements of a given sample
(mean, stdev, and cv) and the variation among the means of
different measurements in a group of samples (mean, stdev,
and cv).

In case of parameters derived more than one, standard
deviations were calculated based on the Gaussian error
propagation law (59) from the means and standard deviation
values (σ) from the individual parameters: in case of the
cumulative amount of epitopes, the geometrical mean of the four
standard deviations were used while the following equation was
used for the determination of the standard deviation of the avenin
levels in mg/100 g samples unit:

Q3 σamg/100 g sample = 10−4∗meanprotein∗
[

(σavenin)
2∗

∗(meancum.epitop)+ (σcum.epitop)
2∗(meanavenin)

2]0.5

RP-HPLC profiles of the samples have been compared using
pattern recognition techniques. The PATMATCH software (60)
has been used for matching the chromatograms and identifying
the corresponding peaks based on their elution time. Variation
of retention times of peaks observed among replicate analyses
and the minimum differences between the mean values of
individual peaks have been determined and used to match the
corresponding peaks from different samples. Similarity matrices
using the presence and absence of peaks with the same elution
time (S%) or with relative amounts of these individual peaks
(S’%) have been constructed, also applying the PATMATCH

software (60):

SA,B% = 100∗
(

2∗nA,B
nA + nB

)

S′A,B%= 100∗
(

2∗
∑i=1

nA,B ei

nA + nB

)

where nA and nB are the number of peaks in samples A and
B, nA,B is the number of peaks with identical elution times in
samples A and B, ei is a weighting factor describing the relative
intensity of peaks with identical elution time. Cluster analysis was
carried out applying the similarity matrices with the Morpheus R
package (https://software.broadinstitute.org/morpheus/).

ANOVA test and multiple comparisons of mean values
based on the least significant difference (LSD) by Student
t-test were carried out as implemented in the NCSS 2021
Statistical Software (2021), (NCSS, LLC. Kaysville, Utah,
USA, ncss.com/software/ncss).

RESULTS

Protein composition of the oat flour samples has been
characterized on two levels: distribution of the total protein
content after size-based separation was determined with SE-
HPLC, followed by the RP-HPLC-based determination of the
qualitative and quantitative composition of the avenin fraction.

SE-HPLC Analyses
More than 99% of the total amount of oat flour proteins has
been extracted in the first step of the extraction procedure of
Gupta et al. (52), without applying sonication. Comparison of
samples has been carried out, therefore, using this simplified
one-step procedure.

Three main protein groups have been detected based on the
SE-HPLC separation (Figure 1). The polymeric protein fraction
consisting of five well-defined peaks (P1–P5) with retention times
of 5.2, 6.4, 7.4, 7.9, 8.3min, respectively. The next main group is
the avenin-type proteins, labeled P6 in Figure 1 (retention time:
9.6min), while the third group, containing a rather complex mix
of the monomer globulin proteins (P7–P10), eluted in the region
of 10–12min. The elution profile of the 70% ethanol extract is
also shown in Figure 1, clearly indicating that the ethanol-soluble
proteins are eluted as one single peak (P6), analyzing the total
protein extract.

The reproducibility of the peak intensity measurements
has been monitored by calculating the mean, stdev, and cv
values for each peak from their six replicate analysis data
(Supplementary Table 2). Based on the averages of cv values
calculated from the data of the 6 replicates among the 162
samples, the overall errors for the polymeric, avenin, and non-
avenin monomeric protein groupmeasurements are 5.018, 6.016,
and 7.145%, respectively.

The distribution of the proteins among the three main groups
and inside of the polymeric fraction shows a well-defined trend
all around the 162 samples. The polymeric fraction represents
about three-quarters of the total protein content (Mean: 73.14%,
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FIGURE 1 | The typical SE-HPLC profile of the total oat protein extract (T) and

70% ethanol extract of oat flour (E). AU, absorbance units at 210 nm, P1-P5-

polymer fraction, P6-avenins, and P7-P10-monomer globulins.

min: 63.29%, max: 86.60%); the amount of the avenin fraction
is varied between 8.86 and 27.72% (mean: 19.38%), while the
amount of the monomeric globulin fraction is between 2.89 and
11.85% (mean: 7.29). In each sample, the relative amounts of the
five subfractions of the polymeric proteins show a P1< P2 > P3
>> P4≫ P5 trend.

Comparing the relative distribution of the proteins in the
different geographic regions (R1-R8), it was found (Table 1)
that the total amount of polymeric proteins and its distribution
among the five subfractions (with the exception of P2), the
amount of monomeric globulin proteins, and the ratio of the
polymeric to monomeric globulin proteins, show significant
differences among the eight geographic groups.

Compared to the data in the rest of the geographic groups,
the highest amount of polymeric proteins (means: 75.10 and
74.65%) and polymeric tomonomeric protein ratio (means: 11.89
and 13.47%) were found in the R1 and R7, respectively. The
cause of these values derived from significantly higher amounts
of P1 fraction found in the R1 and R7 groups (means: 25.65
and 17.35%, respectively.), compensated only partly with the
significantly lower values of P3 (6.29 and 8.94%, respectively) in
these groups.

Beyond the apparently uniform avenin levels observed at the
comparison of mean values in the different geographic groups,
some extremely low (AUS05: 8.86%) and extremely high (AUS14:
27.72%) avenin contents were observed, for example, in the R1
sample group. These cultivars could have great potential to be
applied to nutrition-related breeding programs.

RP-HPLC Analysis
The RP-HPLC patterns and peak distributions showed great
variation in the number and composition of different avenin
polypeptides, indicating the extent of genetic and proteomic

diversity in this large oat population (Supplementary Table 3).
In the 162 oat samples, 76 distinct peaks have been matched by
the PATMACH software in the 25.75- to 47.25-min elution time
interval using a 0.10-min window to identify the corresponding
peaks in the different chromatograms. It means that, if the
differences in retention times of a particular peak in different
samples were lower than 0.10 min, then the peaks have been
evaluated as identical peaks. Using this procedure, the number
of peaks in a given sample has been determined, indicating
a large variation between 6 and 18 peaks (Mean: 10). This
variation in the number of separated peaks can be explained by
the variability of the resolution of RP-HPLC technique as the
function of the amounts of proteins in a peak: the individual
peaks in certain cases might contain more than one protein
type (as it was shown in the work of Tanner et al. (58),
characterizing individual RP-HPLC peaks by using the mass
spectrometric methodology.

As it was observed in previous studies (for example, Tanner
et al., 2019), most of the avenin polypeptides are eluted in two
elution time intervals: 20 peaks have been found in the 25.75-32-
min interval and 37 in the 38–47.25-min interval, representing
the 45.58 and 48.42% of the total avenin content, respectively.

The number of appearances of a peak with a given retention
time in different samples was found to be extremely variable.
There are three peaks with the retention times of 25.75, 34.50, and
35.00min found only in three cultivars, namely in US12, HUN25,
and CAN06; 17 peaks have been identified, which appeared in less
than 6 samples, while the peak with the retention of 42.39min
was found in 107 samples.

The level of large polymorphism of avenin polypeptides in the
sample population investigated in this study is well demonstrated
by the S% similarity matrix (not shown) and the cluster analysis
diagram (Supplementary Figure 1). Based on the dendrogram,
six clusters (A to F) can be identified characteristically containing
or missing certain peaks indicated in Table 2 with bold or
with italics, respectively. As the color scale of the diagram
clearly indicates, similarities among samples in the cluster are
significantly larger than those in any other clusters. The list of the
clusters for the different samples is indicated in the last column
of Supplementary Table 3.

Some interesting observations can be made, investigating the
distribution of samples in the different clusters based on their
origin (Table 2). While the samples in R2, R5, and R8 groups are
scattered in different clusters, most of the samples in R6 group are
together in Cluster C, the ones in R3 either C, D, or E, but not in A
or B cluster; 18 from the 40 samples in R7 can be found in Cluster
F, and 36 from the 39 samples in R1 are located in Cluster A.

Differences among the avenin composition of the samples
are significantly enlarged if the amounts of the different
peaks are used in similarity calculation (S’%) instead of the
presence/absence-based comparison (S%). Expression levels of
avenins with the same retention times in different samples have
been found largely not uniform among the peaks.

The reproducibility of the peak intensity measurements has
been monitored through the 1,530 peaks found in the whole
sample population by calculating the mean, stdev, and cv values
for each peak from their six replicate analysis data, resulting
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TABLE 1 | Statistical analysis on the variation of the size-based distribution of the total proteins of oats samples among the different geographic regions.Q1

Q2
SE-HPLC Region R1 R2 R3 R4 R5 R6 R7 R8 F p

fraction n 39 11 43 7 7 7 40 8

P1 mean 25.65 14.74 15.52 15.57 16.30 14.48 17.35 14.01 34.54 0.0000

(b) (a) (a) (a) (a) (a) (a) (a)

min 14.92 11.30 10.31 14.03 15.14 12.45 11.63 10.48

max 39.25 17.30 20.62 18.74 17.35 15.79 23.79 16.38

Sd 5.34 1.99 2.76 1.71 0.83 1.08 3.08 2.14

P2 mean 34.67 35.92 36.65 35.25 35.36 35.67 35.05 35.97 0.43 0.8799

(a) (a) (a) (a) (a) (a) (a) (a)

min 13.37 31.14 30.70 32.80 32.73 32.85 7.37 32.06

max 47.80 39.32 42.16 39.52 39.26 37.12 49.52 39.33

Sd 6.01 2.29 2.19 2.50 2.06 1.55 8.92 3.10

P3 mean 6.29 13.51 12.88 12.43 13.86 10.55 8.94 13.79 12.24 0.0000

(a) (b) (b) (b) (b) (ab) (a) (b)

min 3.56 11.35 6.43 10.40 12.13 9.43 3.19 10.31

max 12.91 16.26 17.39 13.95 15.28 12.19 34.22 18.87

Sd 2.32 1.79 2.48 1.39 1.09 1.00 6.81 2.44

P4 mean 3.77 2.17 2.20 2.23 2.17 2.40 4.81 2.34 4.80 0.0001

(ab) (a) (a) (a) (a) (a) (b) (a)

min 0.26 1.93 1.61 2.04 1.96 2.22 2.23 1.94

max 8.31 2.55 3.00 2.46 2.33 2.58 9.56 2.95

Sd 1.33 0.20 0.30 0.18 0.14 0.16 0.46 0.37

P5 mean 4.73 5.16 5.23 5.29 5.15 5.70 8.50 5.55 6.93 0.0000

(a) (a) (a) (a) (a) (a) (b) (a)

min 1.94 4.58 3.81 4.84 4.65 5.28 2.93 4.60

max 6.61 6.05 7.13 5.85 5.54 6.13 19.99 7.00

Sd 1.22 0.48 0.72 0.43 0.33 0.38 0.52 0.87

mean 75.10 71.50 72.47 70.77 72.84 68.79 74.65 71.66 4.15 0.0003

Polymers (c) (ab) (b) (ab) (b) (a) (c) (ab)

min 66.13 68.76 63.29 66.56 70.39 65.52 64.27 67.67

(P1–P5) max 84.02 74.35 80.23 73.32 76.19 71.08 86.60 76.84

Sd 4.36 1.63 3.52 2.72 1.92 2.01 5.25 3.44

mean 18.32 19.84 19.85 20.33 19.78 21.88 18.98 20.09 1.66 0.1240

Avenins (a) (a) (a) (a) (a) (a) (a) (a)

min 8.86 17.61 14.65 18.61 17.87 20.30 10.08 16.89

(P6) max 27.72 23.23 26.62 22.47 21.27 23.56 27.06 24.31

Sd 3.97 1.85 2.54 1.64 1.25 1.44 3.79 2.81

mean 6.56 8.66 7.67 8.90 7.39 9.32 6.37 8.25 7.21 0.0000

Monomers (a) (b) (ab) (b) (ab) (b) (a) (b)

min 4.08 6.69 4.28 7.66 5.94 8.60 2.89 5.47

(P7–P10) max 9.47 11.85 10.88 10.99 8.98 10.92 10.23 10.35

Sd 1.24 1.37 1.65 1.25 1.05 0.90 2.18 1.56

Polymer mean 11.89 8.44 10.00 8.10 10.06 7.45 13.47 9.05 6.70 0.0000

to (bc) (a) (b) (a) (b) (a) (c) (ab)

monomer min 7.35 5.89 6.27 6.05 7.84 6.00 6.41 6.63

ratio max 19.39 10.49 18.29 9.33 12.82 8.25 27.82 14.04

Sd 2.68 1.27 2.77 1.28 1.69 0.83 5.55 2.32

P values highlighted in red-bold indicate significant differences among groups. Different letters indicate significantly different mean values based on Student t-test (p < 0.05).

in a 7.18% for the average value for the cv values. The r2

value between elution times and cv values of peak intensities
of peaks eluted at a given elution time was found to be 0.0036,

while a strong negative correlation was found between the peak
intensities, and their reproducibility (r2 = 0.7934): in the 10–
15% peak intensity interval, the cv values are smaller than 6%,
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while in 6, 7 and 10, 11% in the 5–10 and 10–15% intensity
intervals, respectively.

Predicting the Amount of Celiac-Related
Oat Epitope-Containing Components
Applying the data provided by Tanner et al. (58) for the
composition of avenin fraction of the oat variety cv., the amounts
of the celiac-related oat epitope-containing components of the
162 oat samples have been predicted based on their RP-HPLC
analysis results.

Six dominant peaks were identified, containing conserved
avenin types: peak 3 (R.T. = 28.133min) in 43 samples, peak 6
(R.T. = 30.465min) in 80 samples, peak 8 (R.T. = 31.152min)
in 60 samples, peak 15 (R.T. = 44.158min) in 36 samples, peak
16.2 (R.T. = 44.408min) in 48 samples, and peak 16.3 (R.T.
= 44.914min) in 79 samples. Peak 3 contained the gliadin-like
avenin (L0L6J0), peak 6 contained, also, a gliadin-like avenin
(L0L6K1), peak 8 contained an Asat-Prolamin10 protein and
a 23539 Da avenin (Q09072), peak 15 contained an avenin-F
protein, with an alternative name celiac immunoreactive protein
2 or gamma-avenin-3 (Q09097) and an Asat-Prolamin71 protein,
peak 16 contained an avenin (I4EP54), a gliadin-like avenin
(L0L6J0), and an Asat-Prolamin15 protein. In the case of peaks
3, 6, and 8, the predominant avenin epitope is the DQ2.5-ave-
1a (PYPEQEEPF), in peak 15, the DQ2.5-ave-1b (PYPEQEQPF)
and DQ2.5-ave-1c (PYPEQEQPI), while, in peak 16, all the above
mentioned three avenin epitopes occurred.

The individual and cumulated amounts of avenin epitopes
have been determined by selecting and summing the RP-HPLC
data according to their retention time, and then converting the
resulting values to epitope contents based on their molecular
mass. Finally, these values in [mg/100g total avenin] have
been converted to [mg/100 g sample] units. Mean values,
standard deviations, and cv values were calculated from the six
replicate RP-measurements together with the protein content
of the samples and six replicate SE-HPLC data for avenin
content in case of the conversion to [mg/100 g sample] unit –
(Supplementary Table 4).

Satisfactory reproducibility has been observed for the
individual and cumulated epitope levels (average cv values
calculated for the 162 samples for the DQ2.5-ave1a, DQ2.5-
ave11b, and DQ2.5-ave1c epitopes and for their cumulated value:
0.096, 0.067, 0.082. and 0.063, respectively). The cv values for
the avenin levels expressed in [mg/100 g sample] units varied
between 0.003 and 0.129 with an average of 0.062.

R5 ELISA
For the pure oat line development study, a small population
consisting of 32 Australian and 35 Hungarian samples
(Supplementary Table 5) was selected from the basic population
for ELISA testing. Samples were selected to cover a wide range
of crude protein content using samples with sufficient available
amounts. The presence of potential gluten contamination
from other cereals was tested with the R5 ELISA method of
R-Biopharm. Based on the results of this test, 19 Australian
and 24 Hungarian samples of the investigated oat varieties were
uncontaminated, thus, deemed appropriate for the requirements
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of pure oat cultivation in terms of purity. Our results confirm
that gluten contamination of oats is a serious problem and
must be carefully addressed when providing seeds for growing
pure oats.

DISCUSSION

The aim of our work was to carry out a high-throughput
analytical screening completed with immune analytic
measurements to develop a reliable prediction method for
estimating the amount of avenin proteins and those that contain
celiac-related epitopes. This special prediction method utilizes
the combined application of SE- and RP-HPLC separation of the
total protein content of the oat flour samples and differentiates
the absolute levels of the four main avenin epitopes of the
samples, and also provides the celiac-related epitope, containing
avenin content in the oat flour (g/100 g).

Most of the oat-related research in the last 10 years
concentrated on avenins, debating on their harmfulness in
relation to celiac disease. Meanwhile, oats started to be
recognized as a healthy and nutritious cereal, containing
a high concentration of soluble fiber (β-glucan) and being
dense in nutrients. It has physiological benefits like reducing
hyperglycemia, hyperinsulinemia, and hypercholesterolemia,
and several other benefits are discussed in several reviews like the
one by Ibrahim et al. (61).

Interestingly, no application of SE-HPLC on characterizing
oat proteins is reported in the critical work of Sunilkumar
and Tareke (62), which reviewed the analytical methods for
measurement of oat proteins by covering 2,000 works published
between 1970 and 2015.

However, the application of size-related analytical techniques
like SE-HPLC has a large potential to be used in selecting oat lines
for industrial ingredient use (61).

In the scientific literature, there are many useful high-
throughput studies on the methods developed to estimate the
immunoreactivity of oat avenins and the availability of safe oat
varieties for patients with celiac. A combined method using
RP-HPLC and electrophoresis of oat avenins has been reported
earlier (63), and the utility of the RP-HPLC for the identification
of oat varieties has been demonstrated (64). It has also been
suggested that RP-HPLC of alcohol-soluble storage protein
fractions would be useful for selecting oat varieties with reduced
immunogenicity for patients with CD (42). Giménez et al. (65)
differentiated 120 oat cultivars from five geographical origins
based on RP-HPLC peak profiles of avenins, combined with G12
competitive ELISA. The researchers confirmed that the RP-HPLC
technique is useful to establish groups of varieties, differing in
degree of storage proteins with low immunoreactivity for patients
with CD, but not sufficient to uniquely identify the different
varieties of the set (65). Schalk et al. (66) presented well-defined
gluten protein fractions and types of wheat, rye, barley, and oat
flours using mixtures of four cultivars each to account for the
genetic variability between different cultivars, including the most
relevant cultivars in Germany 2012.

Souza and co-workers revealed that avenin patterns of the
examined oat cultivars are not distributed equally based on the
place of origin (67). Previous papers reported the connection
between oat prolamins and disease resistance genes. Gimenez
et al. (65) pointed out that, according to this correlated variation,
environmental and breeding factors caused non-random avenin
profile variability. The study aimed to evaluate how variable
avenin protein patterns of different oat cultivars are linked
with low avenin content. Colgrave et al. (68) developed a high-
throughput and sensitive approach to identify the possible source
of gluten-like proteins in the view of contamination of GF grain.
It reveals that the examined commercial oat flour samples were,
in fact, contaminated by trace amounts of wheat.

Based on the results of our study, the high variability of avenin
fraction composition and biodiversity of cultivated oat varieties
are in agreement with the results of several research groups who
are experts of this field.

The key avenin peptides that stimulate the pathogenic
gluten-specific T cells in patients with CD in vivo have been
defined (48, 69). These peptides contain the immunodominant
T cell epitopes DQ2.5-ave-1a (PYPEQEEPF), DQ2.5-ave-1b
(PYPEQEQPF), DQ2.5-ave-1c (PYPEQEQPI), and DQ2.5-ave-
2 (PYPEQQPF) with close sequence homology to barley T
cell epitopes immunoreactive in CD such as DQ2.5-hor-3a
(PIPEQPQPY) (69). Londono et al. (70) investigated 13 Avena
species, and no perfect gluten epitopes were found in avenins;
besides this, none of the R5 and G12 antibodies recognition
sites were found. The ELISA assay is a widely used method
that gives quantified information about the contamination level
and traces the possible source of gluten-like proteins in cereal
crops. ELISA R5 shows no cross-reactivity to oats and can,
therefore, be used to assess wheat, rye, or barley contamination
in oats. The study of Comino and co-workers allowed the
classification of oat varieties into three groups based on their
degree of affinity for the G12 antibody: a highly reactive group
is not safe for patients with celiacs; the moderate recognition
group is not recommended, and one with no reactivity is a
potential celiac safe group (46, 71). However, oat avenin extracts
usually have a low G12 antibody response, the G12 reactivity
well correlates with the results of T cell proliferation and
interferon γ release. A direct correlation of the reactivity with
G12 and the immunogenicity of the different prolamins were
observed (72). In contrast, a comprehensive study by Londono
and co-workers proved (70) that the signals of R5 and G12
should not be interpreted as differences in immunogenicity of
oat varieties because of the lack of antibody recognition sites
in avenins.

However, some preclinical studies working with cell cultures
revealed differences in the immunogenicity of the different oat
genotypes (46, 72); the results of the clinical investigations and
data with organ culture system did not correlate, and refuted
them (73, 74). Based on their results, oats do not display in vitro
activities related to CD pathogenesis, and the T-cell reactivity
could be below the threshold for clinical relevance, and it affects
only a minority of patients. Besides this, researchers elaborated
on the real CD-toxicity of the oat CD-immunogenic epitopes
(48) and concluded that these have high-protease sensitivity
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TABLE 3 | Variation of the amounts of celiac-related avenin epitopes among 106 oat samples.

DQ2.5- ave-1a DQ2.5- ave-1b DQ2.5- ave-1a DQ2.5- ave2 cumulative amount of celiac related

avenin epitopes

mg/100g avenin mg/100g sample

Mean 1501.28 676.72 585.2 18.55 2763.2 84.92

min 0 0 0 0 103.84 2.20

max 3753.64 1651.76 1651.76 39.16 6900.52 270.60

StDev 859.76 419.76 432.52 14.09 1427.8 55.44

C.V. 0.57 0.62 0.74 0.76 0.52 0.65

TABLE 4 | ANOVA comparison on the predicted celiac-related avenin epitope contents of samples in the eight regions of origin. Q1

mg/100g avenin mg/100g sample

Group n DQ2.5-ave-1a DQ2.5-ave-1b DQ2.5-ave-1c DQ2.5-ave-1a + DQ2.5-ave-1b +

DQ2.5-ave-1c + DQ2.5-ave2

R1 39 1441.00 (ab) 513.48 (a) 349.36 (a) 2304.28 (a) 47.52 (a)

R2 11 1744.60 (b) 697.84 (a) 552.64 (b) 2995.08 (ab) 96.36 (ab)

R3 43 1769.24 (b) 755.04 (a) 714.56 (bc) 3239.72 (b) 106.04 (ab)

R4 7 1930.72 (b) 841.72 (a) 830.72 (c) 3603.16 (b) 123.64 (b)

R5 7 1216.16 (a) 592.68 (a) 557.04 (b) 2365.88 (a) 82.28 (ab)

R6 7 1522.84 (ab) 722.04 (a) 658.24 (b) 2903.56 (ab) 102.64 (ab)

R7 40 1079.76 (a) 696.96 (a) 614.68 (b) 2392.28 (a) 77.88 (ab)

R8 8 1981.32 (b) 807.40 (a) 680.24 (b) 3468.96 (b) 117.92 (b)

F-Ratio 3.0997 1.4139 2.8668 2.5627 5.6672

p 0.0044 0.2034 0.0077 0.0159 0.0001

Different letters indicate significantly different mean values based on Student t-test (p < 0.05). P values highlighted in red-bold indicate significant differences among groups.

(22) and a relatively low HLA-binding capacity (48). Another
research group has also demonstrated the sensitivity of avenins
to proteolytic enzymes; DQ2.5-ave-1a and DQ2.5-ave-1c were
completely digested by pepsin, trypsin, and chymotrypsin. The
DQ2.5-ave-1b was proteolyzed by brush border enzymes (mostly
by the prolylendopeptidase) (74). The susceptibility of oat
avenins to proteolysis corresponds to their low-proline content
(an average of 6% in avenins) (74). Both factors, together,
significantly reduce the immunoreactivity of avenins and thus
of oat-based foods. These findings were confirmed by the study
of Hardy and co-workers in a large-scale oat challenge proved
that the ingestion of oat is safe for patients with celiac without
intestinal damage and serological relapse.

Because pure oat consumption carries a low risk for patients,
the researchers declare that the strict control of production
systems of pure oat is of utmost importance, and the regular
follow-up of the patients with CD is recommended. Based
on the R5 R-Biopharm RIDASCREEN R© Gliadin assay of the
selected subpopulation showed that 35% of the samples were
contaminated. This highlights the necessity of improving the
pure oat line and developing very sensitive and specific analytical
methods for the sake of food safety.

All observations described above were derived from a
reasonably large study where the carefully executed experiments
were carried out with 2 × 3 replicates. The resulting

data have been thoroughly analyzed statistically, taking into
consideration the non-trivial characteristics of cumulative and
complex parameters, where the actual results were derived from
several independent measurements with experimental errors.
The reproducibility of the two chromatographic separations, as
well as the final cumulative results, seems to be satisfactory with
the relative errors being under 12%.

These positive experimental characteristics, however, do
not avoid two principal limitations of the prediction method
introduced here:

i. The reliability of the predicted information derived from this
prediction process strongly depends on the validity of the
assumption that the proteomic data (derived from the analysis
of one single cultivar) are representative of oat cultivars in
general. The predicted epitope levels should be validated by
detailed proteomic analysis to avoid this limitation. With the
lack of such validation, the predicted epitope levels can be
interpreted as the measure of the possible variation of epitope
contents in the cultivars in the sample population rather than
the exact epitope levels in the individual samples.

ii. Because of the limited resolution of the RP-HPLC separation
of avenin proteins, some oat polypeptides co-elute, producing
false-positive results. Therefore, the predicted epitope levels
have to be interpreted as upper limits.
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In this study, large qualitative and quantitative differences
have been observed in the avenin composition of the samples
investigated: both the individual and cumulative amounts of the
four oat avenin epitopes show large variation.

Analyzing the data, the most important observation is that,
while certain cultivars do not contain all the four different
epitopes, there is no variety among the 106 samples not
containing any DQ2.5-ave epitopes.

Data shown in Table 3 were calculated from the mean
values of replicate measurements (Supplementary Table 4); the
average amount of the DQ2.5-ave-1a epitope in the samples
is more than double compared with those of DQ2.5-ave-1b or
DQ2.5-ave-1c epitopes (1501.28, 676.72, and 585.20 mg/sample),
respectively. The number of cultivars where the presence of the
individual epitopes has been demonstrated (Table 3) shows the
same sequence: 104, 100, 93, and 3. The amount of DQ2.5-
ave2 epitope in the three samples (US14, US31, and HUN13)
where this epitope is present is marginal (34.75, 9.20, and 11.70
(mg/100 g sample)], respectively. Huge variation in the levels
of the individual epitopes has been found, with larger than 0.5
cv values for each epitope class. The cumulative amount of
epitope content in the samples varied between 2.20 and 270mg
in the 100 g sample with a strongly asymmetric distribution
(Supplementary Figure 2), with the maximum number of 46
cultivars (28.40%), containing 26–50 mg/100 g epitopes. Two
cultivars have been found with epitope levels of less than 5
mg/100 g (HUN31 and AUS04); these rarely found low levels
could be utilized in breeding for healthy oat varieties.

As the results of the large variation of epitope levels in
the whole sample population, significant differences among
the origin-based subgroups can be observed (Table 4) for the
amounts of DQ2.5-ave-1a and DQ2.5-ave-1c, but not for DQ2.5-
ave-1b. The highest F value (5.6672) was found for the cumulative
epitope levels data expressed as [mg/100 g sample] what can
be explained by the fact that these values do not only derive
from the variation in avenin composition, but they are varied
by the total amount of avenin proteins as well as the protein
content of the samples. The comparison of mean values, in this
case, shows significantly lower levels in the Australian samples
(47.52 mg/100 g sample) compared with the South African
and South American samples (117.92 and 123.61 mg/100 g
samples), respectively.

The celiac-related epitope content of an oat sample is
determined by its avenin composition, but the relative expression
levels of both avenin- and non-avenin-type polypeptides can
overwrite the ranking of the overall epitope levels in the samples,
as it is illustrated in Figure 2: In the samples in the circled
interval of the figure, the epitope levels expressed in mg/100 g
avenin protein unit are misleading, underestimating the amount
of epitopes taken by the consumed oat.

As it is well established for all cereal crops, including oats, both
the protein content and protein composition are highly affected
by the growing conditions, including both environmental and
agrotechnical factors. Based on an unpublished large project
carried out in our laboratory, investigating the alteration of
the protein composition of 180 oat cultivars under rainfed and
irrigated conditions, protein content of the samples of the same

FIGURE 2 | Demonstrating the importance of expression levels of avenin and

non-avenin proteins in the ranking of relative celiac epitope amounts of oat

samples by the comparison of ranking samples based on the amount of

celiac-related epitopes expressed in (mg/100 g avenin) and (mg/100 g sample)

units. Relative celiac-related epitope levels in samples in the red circle are

largely underestimated by the simple comparisons of the epitope levels in the

samples, not taking into account the total protein content and its avenin

content. Circled data with red and green indicate under- and overestimated

epitope levels using [mg/100 g avenin] units, respectively, not considering the

contribution of protein content and avenin content of the sample.

cultivar can be altered by 15 relative percentages while the ratio
of polymeric and avenin proteins can vary by 38 relative percent
caused by the water availability.

The observation illustrated in Figure 2 underlines the need for
quantitative characterization of the overall protein composition
rather than simply concentrating on the avenin composition,
estimating the celiac-related epitope content of oat samples.

CONCLUSION

Utilization of oats lines for human consumption requires the
use of a reliable methodology of monitoring the presence and
quantity of epitope-containing components in the samples,
and a better understanding of chemical composition and
technological properties is needed. Both of these aspects require
the active use of quantitative protein analytical techniques for the
characterization of the whole spectra of oats proteins, albumins,
globulins, prolamins, and glutelins. The application of detailed
protein composition data has huge potential both in evaluating
oats-breeding lines in the pre-breeding selection phase and in
monitoring oats-containing products in the food industry.

The combination of SE- and RP-HPLC methodology with
active use of available proteomic data seems to be a satisfactory
tool for these types of applications. Relating SE-HPLC-related
quantitative protein analytical data to functional properties of
oat samples like water and oil-binding capacity, emulsifying
and foaming properties and even rheological properties of oats-
containing doughs are in progress to utilize the data collected in
this study.

Despite these valid and serious above mentioned limitations
of the prediction method developed in this work, our view is that,
with the lack of any other (better) relatively high throughput and

Frontiers in Nutrition | www.frontiersin.org 11 September 2021 | Volume 8 | Article 702352

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

Gell et al. Protein and Epitope Characteristics of Oat

cheap method, what is applicable to large sample populations—
the method is suitable to be used as a preselection screening tool
in oat breeding in its present form already. Ongoing attempts to
carry out further individual RP peak proteomic validation studies
on different oat varieties, hopefully, will make our prediction
method much more accurate in the future.
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