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Quantification of similarities between protein sequences or DNA/RNA strands is a (sub-)task that is
ubiquitously present in bioinformatics workflows, and is usually accomplished by pairwise comparisons
of sequences, utilizing simple (e.g. percent identity) or more intricate concepts (e.g. substitution scoring
matrices). Complex tasks (such as clustering) rely on a large number of pairwise comparisons under the
hood, instead of a direct quantification of set similarities. Based on our recently introduced framework
that enables multiple comparisons of binary molecular fingerprints (i.e., direct calculation of the similar-
ity of fingerprint sets), here we introduce novel symmetric similarity indices for analogous calculations
on sets of character sequences with more than two (t) possible items (e.g. DNA/RNA sequences with
t = 4, or protein sequences with t = 20). The features of these new indices are studied in detail with anal-
ysis of variance (ANOVA), and demonstrated with three case studies of protein/DNA sequences with vary-
ing degrees of similarity (or evolutionary proximity). The Python code for the extended many-item
similarity indices is publicly available at: https://github.com/ramirandaq/tn_Comparisons.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Much like molecular similarity is a key concept of cheminfor-
matics [1,2], the comparison of amino acid and nucleotide
sequences is a cornerstone of bioinformatics. Both are based on
the similarity principle, i.e. structurally similar molecules are pre-
sumed to exhibit similar properties and similar biological activi-
ties, and analogously, similar nucleotide or amino acid sequences
most often encode proteins with similar biological function.
Despite the common philosophical roots, the core methodologies
of cheminformatics and bioinformatics are quite different, partly
due to the different data representations of molecules vs. macro-
molecular sequences. Since small molecular structures were pri-
marily conceived as drawings on paper, their computational
representations were developed from scratch and refined over
the past decades, yielding a rich selection of file formats and binary
molecular fingerprints [3]. Molecular fingerprints offer–among
other advantages [4,5]–a direct way to quantify the similarity of
molecules, with the application of binary similarity metrics (yield-
ing pairwise similarity values usually in the [0;1] range, with a
value of 1 corresponding to identical objects/fingerprints). While
many such metrics exist [6], the past decades of practice have
cemented the Tanimoto coefficient as the most popular similarity
coefficient [7,8], despite its known shortcomings [9,10].

In contrast, the representation of macromolecular sequences
was quite straightforward from the start, as sequences of one-
letter monomer (amino acid or nucleotide) codes. Here, an addi-
tional task is finding the optimal alignment of two (or more)
sequences prior to evaluating their similarities. While the basics
of (global) sequence alignments have been established already in
the 19700s [11], decades of refinement have yielded local align-
ment algorithms, particularly BLAST (Basic Local Alignment Search
Tool) as today’s standard sequence alignment tool [12], and new
generation alignment algorithms are still being developed [13].
For quantifying the similarity between two aligned sequences, per-
cent identity values (for protein sequences, also percent similarity
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values) are used, together with the expectation value (E) of finding
an equivalent alignment by chance. Protein sequence alignments
can also be assessed by substitution scoring matrices, which con-
tain additive score contributions for each possible exchange of
amino acid A to amino acid B. (With Point Accepted Mutation
(PAM) matrices [14] and Blocks Substitution Matrices (BLOSUM)
being the most popular such tools [15].)

In our recent works with binary (molecular and other) finger-
prints, we have provided statistical findings that support the use
of the Tanimoto coefficient [8], but we could also identify some
coefficients, which are more advantageous in some circumstances,
e.g. for metabolomic [16] or protein–ligand interaction fingerprints
[17]. We have also introduced differential consistency analysis
(DCA), a rigorous mathematical framework to reveal consistencies
between any pair of similarity metrics [18]. Most importantly, in
the direct predecessors of this work, we introduced the idea of
comparing more than two molecules (i.e. groups/sets of molecules)
at a time, defined a series of extended similarity indices based on
this idea, and selected the best indices for further usage [19]. In a
companion paper, we have proven the computational advantage
of these new indices in assessing the similarity of large sets of
molecules, and provided illustrative examples for their usage in:
i) the selection of diverse compound sets, ii) clustering applica-
tions, and iii) assessing the compactness of clusters corresponding
to ligands of different pharmaceutical targets [20]. Much of this is
possible due to the unprecedented computational efficiency of our
indices in quantifying the similarities of sets with an arbitrary
number of objects.

In this work, we generalize this formalism even further, intro-
ducing extended many-item–or (t,n)–similarity indices to compare
any number of objects n, containing any finite number t of categor-
ical variables. Realizing the prospective applications in bioinfor-
matics, we showcase the usage of the new similarity indices on
protein families and subfamilies relevant for current medicinal
chemistry, using their DNA (t = 4), and amino acid (t = 20)
sequences. We also introduce a simple amino acid categorization
scheme to account for sidechains of similar character (t = 8). A
thorough literature search reveals that related approaches are
scarce: ‘‘integer coding” is sporadically used and definitely not
for uncovering (macro)molecular similarities. Terms such as ‘‘non-
binary similarity coefficients” usually refer to the use of (pairwise)
similarity metrics for ordinal (integer) or continuous data [21,22].
Further uses appear in the distantly related fields of process control
[23,24], feature selection [25] and multicriteria decision making
[26]. Therefore, our work presents the first approach to directly
compare arbitrarily large sets of DNA and amino acid sequences.
Hence, we suggest a terminology of (t,n)-comparisons, i.e. the com-
parison of n objects (sequences) containing t possible characters, as
an extension of: i) (2,2)-comparisons, the ‘‘traditional approach”
for the pairwise comparison of binary (molecular) fingerprints,
and ii) (2,n)-comparisons, our recent generalization to compare
an arbitrary number n of such binary fingerprints [19,20]. More
specifically for DNA and amino acids, these are (4, n)- and (20,
n)-comparisons, as demonstrated in the case studies that are
included in the present work
2. Theory

First, let us introduce some elements of notation. As explained
before, we will use the term (t,n)-comparison for a comparison of
n sequences, each containing m characters from a set of t items.
An alternative term that we use here (also in the title) are ‘‘ex-
tended many-item comparisons”, with ‘‘extended” meaning that
we are comparing more than two objects (sequences)
3629
simultaneously (in contrast to pairwise comparisons) and ‘‘many-
item” meaning that there are more than two possible characters
in each position of the sequences

As a reference, the pairwise comparison of binary sequences, i.e.
(2,2)-comparisons are used ubiquitously in cheminformatics to
define the similarity of molecules by comparing their binary fin-
gerprints (sequences of zeros and ones). In this case, each bit posi-
tion can contribute to the occurrence of four events: (1,1), (1,0),
(0,1) and (0,0), which are summed in the counters a, b, c and d,
respectively. Binary similarity metrics are then defined with the
use of these counters (e.g. the popular Tanimoto coefficient is given
as a / (a + b + c)). Notice that the counters a and d express similarity
of the two sequences, while b and c express dissimilarity in the
given positions. Our core idea for the generalization of similarity
metrics for the comparison of more sequences (i.e. (2,n)-
comparisons), is that even for arbitrarily large sets of compared
objects, we can classify each bit position as a similarity or dissim-
ilarity counter. For example, if we compare ten sequences and
there are eight co-occurring 1 bits (and two 0 bits) in a given posi-
tion, that will contribute to the similarity, while five co-occurring 1
bits (and five 0 bits) will contribute to the dissimilarity of the ten
objects. In our recent work, we provide a systematic approach to
the classification of positions into similarity and dissimilarity
counters, using an indicator we have termed Dn(k)=|2k-n| and a
coincidence threshold c [19]. In this work, we take this generaliza-
tion one step further by allowing an arbitrary number of t different
characters, instead of two.

In the more general (t,n)-comparisons we have sequences
formed by X1;X2; � � � ;Xt distinct characters (it is arbitrary how we
choose to represent these characters, they can be numbers, letters,
etc.). In this work we will only discuss the ‘‘democratic matching”
case, meaning that matching k characters of type Xp is equivalent
to matching k characters of type Xq. This means that we can
directly study similarity indices, which yield the following form
for (2,n)-comparisons:

s ¼
X

i
Gi

gi1 aþ d; bþ cð Þ
gi2 aþ d; bþ cð Þ

� �
ð1Þ

where the terms a + d and b + c are the counts over the similar-
ity and dissimilarity counters, respectively, as introduced in our
recent work for (2,n)-comparisons [19,20]. (Briefly, a + d and
b + c are the numbers of sequence positions where the frequency
of either ones or zeros is above/below a predefined confidence
threshold c, respectively, see also below.) In particular, formula
(1) holds for the SM (simple matching), RT (Rogers-Tanimoto),
SS2 (Sokal-Sneath), CT1, CT2 (Consonni-Todeschini), and AC
(Austin-Colwell) indices.

The first step is counting, for each position of the sequences, the
number of matches for each type of character. To fix ideas, let us
consider the following case of five short DNA-sequences:

F1 ¼ CGCTACAAð Þ
F2 ¼ AACAGCACð Þ
F3 ¼ CGCTCAACð Þ
F4 ¼ AACCACAAð Þ
F5 ¼ AGCTTCATð Þ

ð2Þ

We can write up a general coincidence matrix as follows:
1
 2
 3
 4
 5
 6
 7
 8
A
 3
 2
 0
 1
 2
 1
 5
 2

C
 2
 0
 5
 1
 1
 4
 0
 2

G
 0
 3
 0
 0
 1
 0
 0
 0

T
 0
 0
 0
 3
 1
 0
 0
 1
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where the columns label the position (b), and the rows label the
type of character (j). Each entry in this table corresponds to kj�b, that
is, the number of times that character j appears in the position b.

The next step is to assign a coincidence value to each bit posi-
tion. As we follow the philosophy to maximize the final similarity,
we assign to each position the column maximum. That is, from the
previous table we can extract the reduced coincidence vector:
1
 2
 3
 4
 5
 6
 7
 8
Coincidence
 3
 3
 5
 3
 2
 4
 5
 2
In other words, denoting the coincidence over bit b by kb:

kb ¼ maxj kj�b

� � ð3Þ
Notice that, by definition (and if there are no gaps in the com-

pared sequences):

n
t

l m
6 kb 6 n ð4Þ

where xd e is the ceiling function.
Now, for each kb we calculate the indicator Dt�nðkbÞ that will

enable us to classify the various possible values of kb as either sim-
ilarity or dissimilarity counters:

Dt�nðkbÞ ¼ tkb � n ð5Þ
According to Eq. (4), possible values of this indicator will be in

the following range:

t � nmodtð Þmodt � Dt�nðkbÞ � nðt � 1Þ ð6Þ
This means that the coincidence threshold to classify the vari-

ous possible values of kb as either similarity or dissimilarity coun-
ters, c, will have to be in the range:

t � nmodtð Þmodt � c < nðt � 1Þ ð7Þ
Thus, if we want to maximize the similarity in the end, we must

choose the following coincidence threshold:

c ¼ t � nmodtð Þmodt ð8Þ
We note that 2� nmod2ð Þmod2 ¼ nmod2, which was the

expression we used in the t = 2 (binary molecular fingerprints) case
[19]. In the present case, c ¼ 4� 5mod4ð Þmod4 ¼ 3.

In general, a kb value will indicate similarity if:

Dt�nðkbÞ > c ð9Þ
and dissimilarity if:

Dt�nðkbÞ � c ð10Þ
Now we define the counters. A counter Ct�nðkÞ will count the

number of times a given k appears in the set of all kb. In the exam-
ple, we have been following so far, we have:

C4�5ð5Þ ¼ 2;C4�5ð4Þ ¼ 1;C4�5ð3Þ ¼ 3;C4�5ð2Þ ¼ 2 ð11Þ
Notice that with this new definition we will have n� n

t

� �
coun-

ters. Also, as expected, the sum of all the counters is equal to the
length of the sequences (m).

We classify each counter as similarity or dissimilarity counters
according to Eqs. (9) and (10), so:

C4�5 5ð Þ is a similarity counter
C4�5ð4Þ is a similarity counter
C4�5ð3Þ is a similarity counter

C4�5ð2Þ is a dissimilarity counter

ð12Þ
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Analogously to the t = 2 case, certain counters might indicate a
stronger measure of similarity/dissimilarity, e.g. in our example,
C4�5ð5Þ (the same character repeating in all 5 sequences at the same
position) is stronger than C4�5ð3Þ (the same character repeating in 3
out of 5 sequences at the same position). We can use suitable
weighting functions to reflect this, using the natural generalization
of the weight functions used in the t = 2 case [19], namely:

f s Dt�nðkÞ
� 	 ¼ Dt�nðkÞ

nðt � 1Þ ð13Þ

f d Dt�nðkÞ
� 	 ¼ 1� Dt�nðkÞ � t � nmodtð Þmodt

nðt � 1Þ ð14Þ

Now we have all the necessary ingredients to calculate the sim-
ilarity indices. In the case of the weighted simple matching (or
Sokal-Michener) index, for instance:

SM4�5 w ¼
P

sf s DnðkÞ
� 	

CnðkÞP
sf s DnðkÞ

� 	
CnðkÞ þ

P
df d DnðkÞ

� 	
CnðkÞ

ð15Þ

SM4�5 w ¼ f s D4�5ð5Þ
� 	

C4�5ð5Þ þ f s D4�5ð4Þ
� 	

C4�5ð4Þ þ f s D4�5ð3Þ
� 	

C4�5ð3Þ
f s D4�5ð5Þ
� 	

C4�5ð5Þ þ f s D4�5ð4Þ
� 	

C4�5ð4Þ þ f s D4�5ð3Þ
� 	

C4�5ð3Þ þ f d D4�5ð2Þ
� 	

C4�5ð2Þ

ð16Þ

SM4�5 w ¼ 1:0� 2þ 0:733� 1þ 0:467� 3
1:0� 2þ 0:733� 1þ 0:467� 3þ 1:0� 2

¼ 4:133
6:133

¼ 0:674 ð17Þ

Analogously as for the (2,n) similarity metrics, we can choose to
omit the weighting schemes from the denominator and define the
non-weighted analogs of the similarity indices, e.g. for the SM
index:

SM4�5 nw ¼
P

sf s DnðkÞ
� 	

CnðkÞP
sCnðkÞ þ

P
dCnðkÞ

ð18Þ

SM4�5 nw ¼ f s D4�5ð5Þ
� 	

C4�5ð5Þ þ f s D4�5ð4Þ
� 	

C4�5ð4Þ þ f s D4�5ð3Þ
� 	

C4�5ð3Þ
C4�5ð5Þ þ C4�5ð4Þ þ C4�5ð3Þ þ C4�5ð2Þ

ð19Þ

SM4�5 nw ¼ 1:0� 2þ 0:733� 1þ 0:467� 3
2þ 1þ 3þ 2

¼ 4:133
8

¼ 0:517 ð20Þ
The weighted and non-weighted formulas for each of the avail-

able similarity metrics are collected in Appendix 1.
An additional part of the formalism that is especially important

for DNA and protein sequences is the question of how we handle
gaps in a set of aligned sequences. In our approach, positions with
a majority of gap (-) characters are omitted from further analysis
(they are regarded neither as similarity, nor as dissimilarity coun-
ters), but a position with a smaller number of gaps can still be con-
sidered as a similarity or dissimilarity counter. More precisely:
whenever we have a bit position for which the maximum number
of identical ‘‘physical” (non-gap) characters is less than n

t , then we
ignore that position, as it does not contain enough information to
say if it conveys similarity or dissimilarity.

3. Results

3.1. Individual index variations

In order to explore how the extended many-item similarity
metrics behave for different input data, we have generated random
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four-item (t = 4) character sequences of various lengths (m = 10,
100, 1000 and 100 000) and calculated the extended similarity val-
ues for various numbers of compared objects (n), according to both
the weighted (w) and non-weighted (nw) formulas. In each case,
we randomly generated 16 sequences. First, let us study how the
average (of the absolute value) |s| of the comparisons with an indi-
vidual index s changes when we change n (Fig. 1).

An interesting pattern emerges here, similarly to the case of
molecular fingerprints (bitvectors, corresponding to t = 2) [19]:
notice the alternating ‘‘zigzag” pattern of maxima and minima
with a period of four. This behavior can be rationalized on the basis
of the potential number of dissimilarity counters when changing
the number of compared objects (sequences). Generally, both our
results for molecular fingerprints, as well as Fig. 1 reflect an inter-
esting characteristic of the extended comparisons: the average val-
ues will tend to show an oscillating behavior with a period of t
when we change the value of n. In addition, applying a weighting
scheme clearly amplifies these differences (Fig. 1).

3.2. Analysis of mean similarity indices and ranking behavior

Next, we compared the range of similarity values returned by
the various similarity metrics for the same dataset (Fig. 2). The
indices cover different ranges from almost zero to one.

We can plausibly assume that all quaternary similarity indices
express the similarity of the sequence sets with some error. As
such, analysis of variance (ANOVA) is a suitable technique to
decompose the effects of different factors. Here, the following fac-
tors were considered: F2–number (n) of objects (sequences) com-
pared, 14 levels with n = 2, 3, . . . 15; F3–weighting, two levels:
weighted and non-weighted versions; F4–the similarity coeffi-
cients themselves: six levels (see Appendix 1); F5–length of the
sequences, four levels: m = 10, 100, 1000, 100 000 (F1 is reserved
for k-fold cross-validation iterations, see later). Altogether
14*2*6*4 = 6672 items (averages of similarity indices) have been
decomposed into the above factors. The averages of the quaternary
indices show a characteristic zigzag pattern (Fig. 3). The role of
weighting is illustrated in Fig. 3 as a function of the number of n
(number of objects compared).

Here, the same zigzag pattern is observed as in Fig. 1, with the
‘‘amplitude” being damped for non-weighted coefficients.
Weighted and non-weighted averages cover different ranges, the
non-weighted indices are dispersed between ~ 0.2 and 0.5,
whereas the weighted ones range from ~ 0.2 to 0.9. The variances
do not change much as the multiplicity of comparisons (n)
increases. Weighting has no effect on pairwise (n = 2) comparisons;
and a similarly small effect can be seen for quintic (n = 5) compar-
isons. The difference of weighted and non-weighted metrics is the
largest for n = 4, 8 and 12, i.e. where n is an exact multiple of t. The
coupling of various factors reflects the behavior of the individual
indices nicely (Fig. 4).

The two quaternary Consonni-Todeschini indices change rever-
sely, with the gap between weighted and unweighted versions
diminishing as the length of the sequences increases. The main rea-
son for the fringe behavior of the CT indices is the presence of
terms like ‘‘1 + p” and ‘‘1 + b + c” in their expression, which mean
that the values of these indices will depend heavily on the length of
the compared sequences. Compare this to an index like SM, which
is calculated via (a + d)/p, it is clear that increasing the length of the
sequences, the density of a given type of character is going to
remain sensibly constant, so the overall effect is going to cancel
between the numerator and denominator. This is in contrast with
CT1 and CT2, in which the value of the indices will tend to mono-
tonically increase or decrease, respectively, when we increase the
length of the sequences, since the ‘‘1+” terms break the proportion-
ality. This means that the CT indices cannot retrieve similarity
3631
information from a set in a robust way, because of its marked
length-dependence (note that this effect is more marked in the
case of CT2). The other indices have values in a relatively narrower
range and exhibit a slight increase as a function of sequence length.

To prioritize between the extended indices for further usage, a
property that is even more important than the actual similarity
values is the way the indices rank different groups of objects (se-
quences), as compared to an ideal reference method (benchmark).
For this purpose, we have used Sum of Ranking Differences (SRD)
[27], a robust multicriteria decision making tool that was exten-
sively applied in our earlier works [8,17,19]. Briefly, SRD expresses
the closeness of the individual methods (extended similarity met-
rics) to the reference method by calculating a normalized Manhat-
tan distance (termed the SRD value) between them, after rank-
transformation. The smaller the SRD value, the closer the given
metric is to the reference (benchmark). Here, the reference was
defined as the average of the six similarity metrics, based on the
consideration that the average will cancel out the individual errors
at least partially. An illustrative example of SRD calculations is
shown in Supplementary Figure S1.

After completing all SRD calculations for the groups detailed
above (with varying settings of n,m and weighting) with two types
of sevenfold cross-validation, variance analysis (ANOVA) was com-
pleted on the resulting SRD values. The following factors were con-
sidered: F1–number (n) of compared objects (fingerprints or other
representations), 14 levels: n = 2, 3, . . . 15; F2–the similarity coeffi-
cients themselves: 6 levels. The role of weighting (F3) was evalu-
ated separately, because of the different scales of the weighted
and non-weighted versions within the limits of 0 and 100. The
ANOVA of the average similarity values (above) and the one on
SRD scores exhibits an essential difference, as the smaller SRD val-
ues are better. Fig. 5 shows the comparison of the six different sim-
ilarity measures in the t = 4 case.

First we can observe that weighted similarity metrics give
almost identical rankings: SRD values are close to 0 for each metric,
even for the two ‘‘outliers” CT1 and CT2. There is greater distinc-
tion for non-weighted metrics: here, Rogers-Tanimoto (RT)
emerges as the best option (closest to the reference), while
Sokal-Sneath 2 (SS2) is the least favorable one. Taken together with
the marked size dependence of CT1 and CT2 (see above), we can
recommend the Rogers-Tanimoto (RT), and also the Austin-
Colwell (AC) and Sokal-Michener (SM) metrics for further usage.
Additionally, we have compared the average SRD values in terms
of the number of compared objects n (Supplementary Figure S2):
for non-weighted metrics, a similar zigzag pattern (with maxima
at multiples of four) emerges as for the similarity values them-
selves, while for weighted metrics, there is again almost no distinc-
tion between the metrics (SRD values close to 0).

3.3. Case studies of selected datasets

To evaluate our method in real-life scenarios, we have collected
protein and DNA sequences for three families of proteins, each of
which have great importance in medicinal chemistry. The three
datasets also correspond to distinct cases in terms of the number
and population of subfamilies, as well as their sequence diversities.
We have used the n-ary similarity measures introduced here to
quantify the similarity of these protein families and their subfam-
ilies, based on their protein (t = 20), simplified protein (t = 8) and
DNA (t = 4) sequences. For the simplified protein sequences, we
have re-coded the protein sequences by classifying the amino acids
into eight groups based on the chemical/pharmacophoric character
of their side chains (see Table 1).

The first case study involves the sequence comparison and mul-
tiple (n-ary) similarity calculations of human protein kinases. Pro-
tein kinases are regulatory and signaling proteins that account for



Fig. 1. Variation of the average (of the absolute value) of all possible n-ary comparisons over 16 sequences of length m = 10 to m = 100 000 for different values of n for the
quaternary (t = 4) weighted (w,left) and non-weighted (nw,right) AC (Austin-Colwell, top) and CT1 (Consonni-Todeschini 1, bottom) indices.
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roughly 2% of the total human proteome [28], many of them are
important pharmaceutical targets in mostly oncological indica-
tions [29]. There are close to 500 protein kinases, having relatively
diverse sequences, but a conserved structure (corresponding to
their identical enzymatic function of transferring a phosphoryl
group to a sidechain of a downstream signaling protein), classically
grouped into eight subfamilies based on the sequence similarities
of their catalytic sites (Fig. 6) [30,31].

The major (and minor) subfamilies display relatively close
levels of similarity, except for the more diffuse ‘‘Other” category,
consisting of kinases that are not grouped into the major subfam-
ilies based on evolutionary relations/similarity. The DNA- and
3632
protein-based similarities (t = 4 and t = 20, respectively) are
roughly equal for most of the subfamilies, but the similarities
based on simplified amino acid sequences (t = 8) are notably larger
(this is particularly nicely illustrated by the otherwise diffuse
group of all kinases). This supports the notion that due to the
shared function of kinases (protein phosphorylation), amino acids
tend to be replaced with sidechains of similar character (which is
reflected in our sidechain categorization scheme, see Table 1).

Set similarities calculated individually with the six (non-
weighted and weighted) indices are included in Supplementary
Figures S3 and S4. We can observe that non-weighted metrics usu-
ally offer a greater level of distinction than weighted ones. The



Fig. 2. Box plots with the median, interquartile range and minimum–maximum of individual quaternary (t = 4) indices.

Fig. 3. The effect of weighting on the means of quaternary (t = 4) similarity coefficients as a function of the number of compared objects n (w: weighted, nw: non-weighted).
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weighted formulas display a peculiar behavior, returning higher
similarity values when more objects (n) are compared (this is also
true for the non-weighted CT2 metric).

In the second case study, sequences of 120 human SH2 domains
are compared. SH2 domains are ancient modular protein units that
arose within multicellular life and are key regulators of cellular sig-
nal transduction [32]. They recognize phosphotyrosine-containing
peptide motifs in a highly selective manner, depending on the con-
textual sequence [33]. SH2 domains have a relatively conserved
fold and are found in proteins with diverse functions, including
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kinases, transcription factors, scaffold proteins, etc., with many of
them being involved in oncogenic processes [34]. Compared to
kinases, we have more, relatively smaller groups of SH2-
containing proteins, and interestingly, their functional grouping
does not directly correspond to the phylogenetic distance of the
SH2 domains themselves, as illustrated by their phylogenetic tree
(Fig. 7).

Here, differences between the DNA/protein-based and simpli-
fied protein-based similarities are much smaller than in the case
of kinases, suggesting a higher degree of freedom in terms of amino



Fig. 4. Averages of extended similarity coefficients. Line plots correspond to weighted and non-weighted options. The lengths of the sequences (m, F5) are plotted on the
upperx axis, whereas the lower x axis contains the individual extended indices.

Fig. 5. Comparison of the individual non-weighted (A) and weighted (B) similarity coefficients with the ANOVA analysis of their normalized SRD values (0–100). The
abbreviations can be found in Appendix 1.
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acid substitutions. This can be explained by individual SH2
domains selectively recognizing phosphotyrosine-containing pep-
tide segments with diverse contextual sequences, requiring more
specific (and equally diverse) binding motifs on the SH2 domains
themselves. Also, in this case, there is a greater level of distinction
between the set similarities of smaller and more compact groups
(e.g. cytoskeletal regulators) and larger, more diffuse groups (e.g.
small GTPase signaling proteins).

Set similarities calculated individually with the six (non-
weighted and weighted) indices are included in Supplementary
Figures S5 and S6. The non-weighted results are mostly in agree-
ment with Fig. 7B, although the CT1 and CT2 metrics seem to offer
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a lower level of distinction (operating in a narrower range). A pecu-
liar result in the case of the weighted metrics is that the group of
all SH2 domains was assessed to be more similar than any of the
subfamilies, but only based on the DNA sequences. Together with
the results on the kinases, this suggests the wider applicability of
the non-weighted formulas.

Finally, the last case study involves the sequence similarity cal-
culations of a large family of cytochrome P450 (CYP) enzymes. CYP
enzymes are heme-thiolate proteins that are found in virtually all
organisms [35]. Commonly, they use electrons from NAD(P)H to
catalyze the activation of molecular oxygen, but their reactions
can be surprisingly diverse. They are involved in vital processes



Fig. 7. A) Phylogenetic tree of human SH2 domains (adapted from the work of Liu
et al. [32] with permission from Elsevier). While smaller protein groups generally
comprise compact clusters (e.g. transcription factors, orange), larger groups are
more diffuse (e.g. kinases, blue). B) n-ary similarities of the SH2 subfamilies (with
matching colors to panel A), calculated for DNA, amino acid (AA) and simplified
amino acid sequences (average of all six, non-weighted similarity metrics), along
with the numbers of compared objects (n). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. A) Phylogenetic tree of human protein kinases, with the seven larger
subfamilies (illustration reproduced courtesy of Cell Signaling Technology, Inc.–
www.cellsignal.com). B) n-ary similarities of the kinase subfamilies, calculated for
DNA, amino acid (AA) and simplified amino acid sequences (average of all six, non-
weighted similarity metrics), along with the numbers of compared objects (n).

Table 1
Re-coding scheme for producing the simplified protein sequences based on the
chemical/pharmacophoric character of amino acid sidechains.

Residue Residue group

Glycine (G) Glycine (G)
Alanine (A), valine (V), leucine (L), isoleucine

(I), methionine (M)
Hydrophobic (H)

Phenylalanine (F), tyrosine (Y), tryptophan
(W), histidine (H)

Aromatic (A)

Aspartate (D), glutamate (E) Negative (N)
Lysine (K), arginine (R) Positive (P)
Asparagine (N), glutamine (Q) Amide (D)
Serine (S), threonine (T), cysteine (C) OH/SH-based H-bond donor/

acceptor (B)
Proline (P) Proline (R)
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such as chemical defense in plants or degradation of xenobiotics in
animals. The latter signifies their main importance in medicinal
chemistry and drug design: hepatic CYP enzymes are the main dri-
vers of drug metabolism [36]. The number of currently known CYP
enzymes is over 40 000 [37], their classification was introduced
and refined by a nomenclature committee [38,39] as follows: the
root symbol CYP is followed by a number for families (groups of
proteins with more than 40% amino-acid sequence identity, cur-
rently there are more than 300), a letter for subfamilies
(with greater than 55% identity) and a number for the protein,
for example CYP2C9. Here, we quantify the similarities of the
CYP2 family and its subfamilies (Fig. 8): in addition to being the

http://www.cellsignal.com


Fig. 8. A) Phylogenetic tree of CYP2 enzymes. B) n-ary similarities of the CYP
subfamilies, calculated for DNA, amino acid (AA) and simplified amino acid
sequences (average of all six, non-weighted similarity metrics), along with the
numbers of compared objects (n).
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largest known family (3296 proteins), the CYP2 family contains
many of the key human metabolic CYP enzymes (such as CYP2C9)
with high relevance for the ADME prediction of drug candidates
[40].
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Here, since the large number of CYP enzymes are classified into
subfamilies based on sequence homology, it is no surprise that we
can observe higher levels of similarity in virtually all subfamilies.
Differences between the original and simplified protein-based sim-
ilarities are mostly moderate, but the DNA sequences are consider-
ably less similar for some groups (e.g. 2B, 2D or 2F), suggesting that
genetic codes of diverse species can yield CYP2 enzymes of similar
protein sequence. The other face of the same coin is represented by
the human CYP2 proteins: a group of 59 enzymes with representa-
tives from 12 of the 18 CYP2 subfamilies in Fig. 8 (hence, constitut-
ing a more diffuse group than any individual subfamily). Here, the
genetic code is more similar than the protein sequences, suggest-
ing that within the same species, relatively fewer/smaller genetic
mutations can yield a more diverse panel of CYP2 enzymes.

Set similarities calculated individually with the six (non-
weighted and weighted) indices are included in Supplementary
Figures S7 and S8. From the non-weighted metrics, CT2 seems to
be an outlier based on its assessment of the ‘‘All CYP2” and
‘‘Human CYP2” sets, while the rest of the metrics agree with the
results in Fig. 8B. At the generally much higher level of similarity
of the CYP2 subfamilies, the weighted formulas offer little distinc-
tive power, consistently returning values close to 1 (CT2 is interest-
ingly an outlier again, this time by working in a wider operating
range).

We briefly note that besides the t = 8 case presented here, other
amino acid re-coding schemes can be introduced as well. A few of
these possibilities (with varying values of t) are presented in Sup-
plementary Figure S9, with the similarity values calculated for each
protein class summarized in Figure S10. While there seem to be
slightly higher similarity values for several protein classes at lower
values of t, the trend is not consistent and the differences between
the re-coding schemes are always much smaller than the differ-
ences across the protein classes. Nonetheless, we cannot recom-
mend any further generalization than the one presented in the
main text, since a smaller number of residue classes inevitably
forces together amino acids of different character.
3.4. Diversity picking

Having a set of extended many-item (t,n) similarity metrics
opens the doors to potentially many applications in bioinformatics.
Here, we explore diversity picking as an illustrative example. In
cheminformatics, diversity picking is a key concept for selecting
a smaller number of molecules that represents the variability of
a much larger chemical space (this was addressed in detail in our
recent work, where we introduced (2,n) similarity metrics [20]).
Analogously, selecting diverse macromolecular sequences can be
important in certain situations (e.g. the selectivity of kinase inhibi-
tors is often evaluated against a small, but diverse panel of kinases
to cover all major branches of the phylogenetic tree [41,42]).

After implementing a diversity picker algorithm based on the
(t,n) similarity metrics (as well as the MaxMin and MaxSum algo-
rithms as two well-known diversity pickers for benchmarking
[20]), we have tested it by selecting small sets of varying sizes
(10, 20. . ., 100) from the CYP2 family of altogether 3296 enzymes
(Fig. 9). Each set was selected three times to establish error ranges.

Most importantly, our n-ary diversity picker surpassed the
benchmark methods by providing more diverse sets in every case,
corroborating our earlier results for the (2,n) comparisons [20].
Interestingly, we also observe local maxima in most cases for n val-
ues that are multiples of t (e.g. 40 and 80 for t = 8). We can conclude
that the new metrics present an ideal choice for diversity picking;



Fig. 9. Results of diversity picking from the CYP2 family of enzymes with the n-ary (green, bottom), and the binary MaxMin (red, top) and MaxSum (blue, middle) diversity
pickers for DNA (A), simplified amino acid (B) and amino acid (C) sequences. Diversities are expressed as extended many-item similarities (average of the six metrics) for the
complete sets of 10, 20, . . . 100 selected sequences. Data are shown as averages +/- standard deviations. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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the algorithm is available at https://github.com/ramirandaq/tn_
Comparisons.
4. Conclusions

We have recently introduced a framework to extend the con-
cept of similarity calculations from binary comparisons (similarity
of two objects) to n-ary or multiple comparisons (similarity of sets
of objects), chiefly for molecular fingerprint similarities in chemin-
formatics [19,20]. Expanding upon our results, here we have intro-
duced extended many-item–or(t,n)–similarity metrics, moving
from the domain of binary fingerprints (bit-strings containing
two possible characters, such as 0 and 1) to character sequences
(strings with an arbitrary number t of possible characters), such
as DNA (t = 4) and protein sequences (t = 20). In our ‘‘democratic
matching” approach (where matches are quantified in the same
way, independently of the characters being matched), six existing
similarity metrics can be extended for this purpose: SM (simple
matching), RT (Rogers-Tanimoto), SS2 (Sokal-Sneath), CT1, CT2
(Consonni-Todeschini), and AC (Austin-Colwell).

In addition to a full theoretical description, we have provided a
detailed study on the characteristics of the new similarity indices,
including the typical ranges of similarity values returned, and how
certain factors influence these results. For this purpose, we have
applied analysis of variance (ANOVA).

Additionally, we have demonstrated the usage of the extended
many-item similarity indices on three case studies of DNA, protein,
and simplified protein (eight categories of similar amino acids)
sequences of three existing protein families, and briefly explored
diversity picking as one of the possible applications. The metrics
present a new option for a quick calculation of the similarity of sets
of sequences and have been demonstrated to provide good levels of
distinction between protein groups with varying degrees of simi-
larity. Nonetheless, we can narrow down our choice from the wide
selection of new similarity metrics, accounting for some of the
observations in this study, e.g. non-weighted formulas usually offer
more distinctive power, and the CT2 metric often acts as an outlier.
A multicriteria decision tool (sum of ranking differences) allowed
to select the most advantageous similarity coefficents. Considering
these results, along with the marked size dependency of the CT1
and CT2 metrics, we recommend the Rogers-Tanimoto (RT)
coefficent as an optimum choice. The Python code for the extended
many-item similarity indices is publicly available at:

https://github.com/ramirandaq/tn_Comparisons
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5. Methods

5.1. Statistical analysis

In section 3.2, the means of the extended similarity coefficents
were analyzed using factorial analysis of variance (ANOVA) [43].
Factorial ANOVA was applied on the raw data, considering the fol-
lowing factors: F2–number (n) of objects (sequences) compare, 14
levels (n = 2, 3, . . .15); F3–weighted or unweighted version of the
extended many-item similarity indices, two levels (w, nw); F4–
the extended many item similarity coefficients themselves, six
levels (AC, CT1, CT2, RT, SM, SS2); F5–sequence lengths, four levels
(m = 10, 100, 1000, 100 000). Here, sequences were generated ran-
domly, using four characters: A, C, G, T. The factors yield a total of
14*2*6*4 = 672 combinations and their effects were examined sep-
arately and in certain combinations (section 3.2).

Additionally, ANOVA was also performed on the normalized
Sum of Ranking Differences (SRD) values obtained for the similar-
ity measures (with the average of the six measures implemented as
the reference method). Briefly, Sum of Ranking Differences is a
robust multicriteria decision making tool [27] that is widely
applied for method comparison in diverse fields [44–46]. SRD
yields a normalized Manhattan distance (the SRD value) for each
alternative method (here, similarity metric) as a measure of close-
ness to the reference method, which can be an independent gold
standard or can be defined by a suitable data fusion method (in
most cases, the average) from the compared methods. To adjust
for the possibly different scales of values returned by the methods,
rank transformation is applied as a data preprocessing step.
SRD implements several validation steps, and is maintained for

several platforms, including MS Excel (http://aki.ttk.hu/srd/),

Python (https://github.com/davidbajusz/srdpy) and R Shiny

(https://attilagere.shinyapps.io/srdonline/)
5.2. Collection of protein and DNA sequences

Pre-aligned kinase sequences were downloaded from

http://kinase.com [28]. The SH2 domain sequence alignment was
adapted from the work of Liu et al. [32]. Aligned sequences of the
CYP2 family and its larger subfamilies (with � 20 proteins) were
downloaded from the Cytochrome P450 Engineering Database

(current website: https://cyped.biocatnet.de/) [37]. The phyloge-
netic tree for the CYP2 family was drawn with Hypertree [47].

https://github.com/ramirandaq/tn_Comparisons
https://github.com/ramirandaq/tn_Comparisons
https://github.com/ramirandaq/tn_Comparisons
http://aki.ttk.hu/srd/
https://github.com/davidbajusz/srdpy
https://attilagere.shinyapps.io/srdonline/
http://kinase.com
https://cyped.biocatnet.de/


Dávid Bajusz, Ramón Alain Miranda-Quintana, A. Rácz et al. Computational and Structural Biotechnology Journal 19 (2021) 3628–3639
By default, our extended similarity metrics involve the detec-
tion of identical characters as similarity counters (with the excep-
tion of the "-" character for gaps). In contrast, during the
comparison of protein sequences, amino acids of similar character
(hydrophobic, aromatic, etc.) are also considered as a feature of
similarity (as implemented in popular similarity scoring matrices,
such as BLOSUM [15]). To reflect this, we introduce here a simple
idea to ‘‘re-code” the protein sequences by grouping the natural
amino acids into 8 groups, based on their sidechain character
(Table 1). We have to note that this is a rather crude approach that
does not account for the possible overlaps between these groups
(for example, we classify histidine as aromatic, but it can assume
a positively charged character upon protonation; similarly, cys-
teine is often deprotonated, etc.). The introduction of overlapping
features would require serious modifications to the methodology
and would constitute the basis of a separate work.

Finally, DNA sequences were downloaded from corresponding
NCBI databases (chiefly, Entrez [48]) by either a look-up of the
gene identifiers of the proteins (for the CYP dataset), or a BLAST
search of the corresponding protein sequences (with the tblastn
algorithm [49], for the kinase and SH2 datasets). In the latter case,
at most one mismatch was allowed between the query protein
sequence and the protein sequence resulting from the translation
of the gene hit (to allow for transcript variants if the exact
sequence was not found), retaining a sequence identity of more
than 99% in every case (100% in most cases). The lookup was suc-
cessful for 437 kinases (out of 491) and 109 SH2 domains (out of
120). The DNA sequences were aligned with Clustal Omega [50].
6. Availability of data and materials

Python code for calculating the extended many-item similarity

metrics is freely available at: https://github.com/ramirandaq/tn_

Comparisons.
Metric Label Name

AC ACt-n_w extended many-itemAustin-Colwell

ACt-n_nw

CT1 CT1t-n_w extended many-itemConsoni-Todeschini (1)

CT1t-n_nw

CT2 CT2t-n_w extended many-itemConsoni-Todeschini (2)

CT2t-n_nw

RT RTt-n_w extended many-itemRogers-Tanimoto

RTt-n_nw

SM SMt-n_w extended many-itemSimple matching
(Sokal-Michener)

SMt-n_nw

SS2 SS2t-n_w extended many-itemSokal-Sneath (2)

SS2t-n_nw
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Appendix 1:

Extended many-item similarity indices.
Equation
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.06.021.
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