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Abstract: The paper proposes a novel framework for state observer design, in which learning-based
observers are incorporated. The aim of the method is to provide a framework, which is able to
guarantee the limitation of the observation error, even if the error of the learning-based observer
under all scenarios cannot be verified. The framework is based on the robust H∞ design method,
which is able to provide guarantees on the resulted observer. Moreover, the observer design process
is extended with a controller design, which leads to a joint robust H∞ controller-observer design.
In this paper the proposed method is applied on a vehicle control problem, such as lateral path
following. In this problem the goal of the observer is to provide an accurate lateral velocity signal for
the vehicle, which is used in the controlled system for the generation of front wheel steering angle.
The effectiveness of the method is illustrated through simulation examples on high-fidelity vehicle
dynamic simulator CarMaker.

Keywords: state estimation; learning-based methods; performance guarantees; vehicle control

1. Introduction and Motivation

The development of the complex automatic control systems has become a high chal-
lenge for the industry. One of the most important field is the control of autonomous
vehicles, in which various safety performance requirements and similarly, enhanced func-
tionality for the vehicle systems must be guaranteed. It requires lots of measurements
using high number of sensors. During the sensing process in the industrial applications,
several states of a given system can be measured, which play a crucial role in the control
system. In many cases, not all of the states of a system can be measured directly or the
appropriate sensors are too expensive for wide use. However, the increasing number of
achievable signals makes possible to observe, estimate and predict the states of the system,
which can lead to enhanced functionality in the controlled system.

Several approaches have been developed for the observation problems in recent years.
In terms of solutions, two main groups can be distinguished. In the first group, the classical
approaches can be found. In [1] a gain scheduled H∞ observer can be found, in which
the time delays and the saturation of the actuator are taken into account. AnH∞ filtering
method for the problem of state of charge and state of health monitoring in electric vehicles
is used in [2]. Orientation angles are determined using nonlinear Luenberger observer
in [3], during the estimation process low-cost inertial measurement unit is used. Moreover,
in [4] a method is proposed for minimizing the disturbances and the errors of the estimation
by usingH∞ norm approach. Furthermore, a polytopic system-based solution is presented
in [5]. The goal of that paper is to solve the state estimation and the fault detection problem
at the same time. The work of [6] describes a control method for linear parameter varying
systems using a polytopic observer. Although the proposed methods are able to handle the
nonlinearities of the system, they require the accurate knowledge of the observed system.
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In many cases the nonlinearities of the system unknown. Methods based on big data
analyses can be used in order to improve the accuracy of the estimation process.

In the second group, the non-conventional methods can be found. In these methods
the estimation process is extended with the results of the machine learning algorithms,
with which the accuracy can be increased especially in nonlinear operation range. In [7]
the estimation is an essential part of the control system of an induction motor, which
applies a neural network-based solution. Furthermore, machine learning-based observers
can also be used for mobile robots, see [8]. However, these approaches cannot provide
analytical guarantees for the performances of the estimation. Using the combination of the
neural network results and a model-based estimation approach, the performances can be
increased significantly. For example, a Luenberger observer is extended with the results
of the neural network in [9]. A solution for the estimation of the motor inertia value is
presented in [10]. The inertia value is observed using a extended Luenberger observer,
in which the gain matrix of the observer is adjusted using a neural network. Moreover,
in [11] a H∞ filtering algorithm is combined with the results of neural network in order
to measure the rolling angle of the vehicle. In the proposed solution only the on-board
sensor signals are used and the method is based on a sample vehicle model. Kalman
filtering is another important approach in the problem of state estimation with lots of
practical implementation possibilities. For example, [12] proposes a cascaded Kalman
filtering method for state estimation in the field of cooperative lateral vehicle following.
In the context of electric vehicles, Kalman filtering can be used for the state estimation of
the batteries [13]. Through an appropriate method the real-time operation of the filtering
process can be guaranteed [14].

The benefit of the classical approaches is that they are able to provide provable guar-
antees on the observation. For example, in case of model-based observer design process
it is possible to scale the maximum error of the process, i.e., the difference between the
estimated and the real signal. Nevertheless, it requires the accurate model on the system
and the achievable observation performance due to the limited complexity of the model
is limited. Despite, the learning-based observers has the advantage to provide accurate
observation while preliminary physical model on the process is not required. The design
of the observer is based on a training process, in which several scenarios are used, e.g., in a
supervised learning or in a reinforcement learning process. Since it can be difficult to formu-
lated some type of nonlinear dynamics of the system, an advantage of the learning-based
approach is that their effect on the performances can be catched through learning. Thus, it is
unnecessary to use complex nonlinear identification methods to achieve a control-oriented
state-space model. Furthermore, an advantage of the learning-based observers is that high
number of measured signals for achieving an accurate observation can be used, especially
the inputs of the agent can contain unstructured data (e.g., camera frames). Although
learning-based techniques has high effectiveness in practical applications, it is difficult to
provide provable guarantees on the performance level of the observation process.

The aim of this paper is to propose a framework for the design of observers, in which
the model-based and the learning-based approaches are integrated. The goal of the paper
is to bridge the gap between the observer design methods, i.e., provide guarantees on
the minimum performance level of the observation process, and similarly, provide the
possibility for improving the maximum performance level simultaneously. The role of
the model-based observer is to provide an observation, which has guarantee on the min-
imum performance level. The aim of the learning-based observer is to provide another
observation, which is potentially more accurate. The output of the learning-based observer
is taken part in the model-based observer to improve the final observation signal. The
contribution of the paper is a design framework with the model-based observer design,
in which some information on the learning-based observer is incorporated in. The advan-
tage of the method is that it is independent on the internal structure of the learning-based
observer, and thus, it can be used providing guarantees for various agents. In this paper
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the proposed framework is applied to an observation problem in the field of the vehicle
control, i.e., lateral path following.

The paper is organized as follows. The design framework and the concept behind the
observation is presented in Section 2. The design of the model-based observer with the
consideration of the learning-based observer is presented. Section 4 presents the application
of the proposed method to a vehicle control problem and moreover, simulation results for
the illustration of the observation effectiveness is also presented. Finally, in Section 5 the
conclusions of the paper and the further challenges are summarized.

2. Design Framework

In this section the framework for the observer design is presented. The structure of
the observer, together with a controller is illustrated in Figure 1.

The idea behind the framework is to provide x̂, which is as close as possible to the
real state vector x of the system. Since in various industrial applications the observer is
used for control purposes, x̂ can be used for the generation of control input u through
the controller u = K(x̂). Nevertheless, the design of the observer is independent from
the control design, and thus, x̂ can be used for non-control purposes, e.g., monitoring the
operation of the system.

System

Model-based
observer

Learning-based
observer

Controller

ym

yLx̂L

x̂

u

Figure 1. Illustration of the framework for observer design.

In the design framework it is considered that the input of the model-based observer
and the input of the learning-based observer can be different, i.e., it is not necessary that
the measurements ym and yL to be the same. Generally, the learning-based observers
can use high number of measured signals, due to their complex and nonlinear structure.
For example, in case of environment sensing applications the estimation of the autonomous
vehicle position on the road is based on camera information, which can be considered
as unstructured data. Despite, the model-based observers has a structure with limited
complexity and thus, the number of the measured signals are also limited. Moreover,
in case of model-based observers structured data can be used in the process. Therefore, it
is advantageous to differentiate ym and yL, but the measured signals in ym can be the parts
of yL.

The output of the learning-based observer is noted with x̂L, which is the estimation
on the state vector of the system. This information is used by the model-based observer
to improve the estimation ẋ, with which |x − x̂| is minimized. The idea is close to the
concept of the Kalman-filtering, in which innovation term is used to update the model-
based estimation. In the update process of the Kalman-filtering it is considered that the
measurement for the innovation is accurate, and thus, the estimation is fitted to that.
Despite, in the proposed concept x̂L is considered to be accurate in most cases, but not
necessarily in all scenarios. For example, there can be scenarios, when the output of the
learning-based observer is highly inaccurate, such as faults or rare inputs, which are highly
different from the samples in the training set. The goal of the proposed observer structure
is to avoid the unlimited increase of inaccuracy in the observation, i.e., the limitation of the
error between x and x̂ must be guaranteed. It is achieved through the model-based observer
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design, which provides the minimum performance level of the observer, i.e., bounds on the
observation error. Nevertheless, the learning-based observer is considered to be designed
on a way that it is able to provide accurate observation under normal circumstances and
thus, the consideration of x̂L has benefits on the minimization of the error |x− x̂|. It results
in the improvement of the observer maximum performance level. Decision on the accuracy
of x̂L is the part of the operation of the model-based observer, whose design is detailed in
the following section.

3. Robust Design of the Model-Based Observer

The goal of this section is to propose the design of the model-based observer, in which
the output x̂L of the learning-based observer is incorporated. The model-based observer
design is based on the robust H∞ method, with which guarantee on the error of the
observation can be provided. Moreover, in this section the design of the observer is
extended with the design of a robust controller for closed-loop purposes, which results in
an output-feedbackH∞ controller with guarantees.

The designed model-based observer must guarantee the following features.

• The model-based observer must provide an observation x̂, with which the observation
error (x− x̂)2 is minimized. It requests an accurate model on the process, and on the
measurement ym. Moreover, the observation is improved through x̂L.

• The model-based observer must decide on the acceptability of x̂L. Its reason is that
the learning-based observation process can degrade, because the performance level
on the observation is not guaranteed. For example, x̂L is unacceptable if there are
faults in the operation of the learning-based agent. Another example is that if an input
sample for the agent significantly differs from the samples in the training set and thus,
x̂L can lead to a reduced performance level. This feature through the robust design
is achieved.

The model for the observer design is based on the state-space representation

ẋ = Ax + B2u, (1a)

ym = C2x; (1b)

where A, B2, C2 are matrices, x represents the state vector of the system with n states and
u is the control input. for simplicity, one control input is considered in the rest of the
paper. Moreover, the signal x̂L is considered as a bounded disturbance in the system.
In spite of the classical disturbance signals, x̂L has benefits on the system in most cases,
as presented in Section 2. During the design of the model-based observer, it is requested
that the observation of the learning-based observer must be inside of a bounded range
of the model-based observation. And thus, the model-based observer must be robust
against the bounded disturbance. Consequently, the maximum observation error, i.e., the
minimum performance level of the observer is guaranteed by theH∞ design.

The goal of the observer is to minimize the difference between the states of the system
and the estimated states, such as

lim
t→∞

(x(t)− x̂(t))2 → min. (2)

Thus, it is requested to find an observer matrix L which is able to minimize the
objective (2). The structure of the observer, which contains L and the model of the systems
is formed as

˙̂x = A(x̂ + ∆) + B2u + L(ym − C2 x̂), (3)
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where ∆ vector is the improvement based on the learning-based estimation x̂L. The values
in ∆ is formed as follows. The values in ∆ = [∆1 . . . ∆i . . . ∆n]T are bounded by predefined
values ∆min,i, ∆max,i, such as

∆i = max
(

min
(
x̂i − x̂L,i; ∆max,i

)
; ∆min,i

)
, ∀i ∈ n, (4)

where max, min functionals represent the selection of the higher or lower values and index
i for x̂L,i, x̂i represents the elements of the state vector. It means that ∆ can be interpreted
as a state correction from x̂L, which is bounded to avoid the degradation of x̂, if x̂L is
degraded. (4) expresses that x̂i − x̂L,i must be between ∆min,i and ∆max,i. The selection of
∆min,i, ∆max,i depends on the requirements on the acceptable maximum observation error,
i.e., if x̂L,i is degraded, which value of degradation is acceptable on x̂i. If ∆i varies in high
range, it can lead to increased degradation. But, if ∆i varies in a small range, the benefits of
the learning-based observer has less impact on the observation process.

From the aspect of the observer design, the vector of ∆ and u can be handled as known
disturbances, which means that the model for the design of the observer is transformed as

˙̂x = Ax̂ + B1w + L(ym − C2 x̂), (5)

where B1 = [A B2] and w = [∆ u]T . Since the goal of the observer is to minimize the error
in (2), the objective of the observer design is formed as the minimization of the cost function

Jo =
1
2

∞∫

0

(zT
o Qozo + lTrol)dt, (6)

where the minimization of z0 = C1,ox− x̂ is the performance criteria of the observer with
the identity matrix C1,o = eye(n), l = L(ym − C2 x̂) is the control signal for the correction in
the observer, Qo is weighting matrix, which expresses priorities between the performances
and ro is scalar weight for the correction.

The design of the observer is based on the solution of the algebraic Riccati inequali-
ties [15], such as

AY + YAT + Y(γ−2CT
1,oQ−1

o C1,o −
1
r0

CT
2 C2)Y + B1BT

1 < 0, (7a)

Y > 0, (7b)

where Y is a symmetric matrix. γ > 0 scalar represents the upper bound of theH∞ norm
of the transfer function from w to the observation performance z0. The goal of the observer
design is to minimize γ, i.e., γ < 1 to achieve robustness against the disturbances must be
guaranteed. The result of the minimization is Y, from which the observer matrix for (3) is
created, such as

L =
1
r0

C1,oY. (8)

The computation of Y, L is based on a minimization process. The goal is to find the
minimum of γ, where the feasibility of the Riccati inequalities (7) are guaranteed. The Ric-
cati inequalities are feasible if the solution Y can be computed. In practice, the minimum of
γ can be found through an iterative process, e.g., line-search.
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Since in several industrial problems the observers are used for control purposes,
the joint design of the robust H∞ controller and observer is presented. The goal of the
control design is to minimize the quadratic cost function

Jc =
1
2

∞∫

0

(zT
c Qczc + uTrcu)dt, (9)

where in zc = C1,cx vector with C1,c matrix the performances of the control system are
formed, Qc is the weighting matrix for creating priorities between the control performances
and rc scales the control input u.

The robust H∞ design process of the observer and the controller is based on joint
Riccati inequalities, which is formed as follows [15]

ATX + XA + X(γ−2BT
1,oB1,o −

1
rc

BT
2 B2)Y + C1,cQ−1

c CT
1,c < 0, (10a)

AY + YAT + Y(γ−2CT
1,oQ−1

o C1,o −
1
r0

CT
2 C2)Y + B1BT

1 < 0, (10b)

Y > 0, X > 0, ρ(XY) ≤ γ2, (10c)

where X is a symmetric matrix. Thus, in this case the minimization of γ is constrained by
five inequalities, i.e., it is necessary to find γ < 1 where X, Y exist. The control input of the
system is computed as u = −Kx̂, where the controller matrix K is derived as

K =
1
rc

BT
2 X. (11)

The result of the γ minimization are the L and K matrices, with which the controlled
system can be formulated. Figure 2 illustrates the implementation of the controlled systems
with the observer. In the block ∆ generation the rule (4) is implemented.

System

A

Learning-based
observer

K

ym

yL

x̂L

x̂u ∫
C2

B2

∆ generation
∆

L

Figure 2. Scheme of the implementation of the observer and the controller.

4. Application of the Observer Design to a Vehicle Control Problem

In the rest of the paper the proposed observer design framework for a vehicle control
problem is applied. The goal of the observer is to provide a precise lateral velocity value vy
for the path tracking control, if the yaw-rate ψ̇ and the lateral error of the vehicle from the
path ey = y− yre f are measured.

The model-based representation of the system is based on the two-wheel bicycle
model of a medium-size passenger car [16], such as
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Jψ̈ = C f l1

(
δ−

vy + ψ̇l1
v

)
− Crl2

(
−

vy − ψ̇l2
v

)
, (12a)

mv̇y = C f

(
δ−

vy + ψ̇l1
v

)
+ Cr

(
−

vy − ψ̇l2
v

)
, (12b)

ẏ = vy, (12c)

and the model-based formulation is

ẋ = Ax + B2u, (13)

where the state vector is xT = [ψ̇, vy, y] and Cr = 126,000 N/rad, C f = 126,000 N/rad are
the cornering stiffness values on the front and rear wheels, l f = 1.47 m, lr = 1.5 m are the
distances between the front/rear axles and the center of gravity. The mass of the vehicle is
m = 2108 kg and the inertia value on the vertical axis is J = 1585.3 kgm2. In the design of
the observer and the controller v = 20 m/s constant longitudinal velocity is considered.

The performance of the controller is formed as

zc = ey = y− yre f = C1,cx + yre f , (14)

where yre f is the reference position of the vehicle. Since yre f reference signal can be handled
as a disturbance in the system, which offsets the value of y for the controller, it is not
considered directly in the design of K.

The computation of the control input u requires the states of the system because of the
full-state feedback. Since ψ̇ and y are considered to be measured, an accurate observation
on the state v̂y must be provided. Therefore, the performance criteria of the observer design
is to minimize (v̂y − vy)2. In the implementation of the controller and the observer the
coordinate system of the vehicle is handled to move together with the vehicle. It results in
that the lateral position of the vehicle in the implementation of the controller is equal to the
measured lateral error ey. Thus, for implementation purposes, the vector of the measured
signal is yT

m = [ψ̇, ey].
The ∆min,i, ∆max,i values for the generation of ∆ signal are selected with the same

absolute values, such as |∆min,i| = |∆max,i|, ∀i ∈ n. The value for vy is ±0.15 m/s, for ψ̇ it
is ±0.1 rad/s and for ey it is ±0.2 m. Moreover, the design of the model-based observer
requires the selection of Qo and ro. In the given observer design problem the Qo is suggested
to select in the form of a matrix, whose elements outside of the main diagonal are zero.
The values in the main diagonal represent the priority of vy observation, i.e., the related
value of Qo to vy is suggested to selected as a high value. Nevertheless, the selection of
Qo, ro is a tuning process, until the requested performance level of the observer is reached.

The result of the γ minimization is illustrated in Figure 3. The initial value of the
candidate γ value is 100 and the achieved minimum value is 0.4028, see step 14. During the
minimization process in step 9 with the candidate γ value 0.3906 the minimization is failed,
i.e., X, Y matrices cannot be existed. Since the value in step 14 is close to the value in step 9,
it can be selected as a minimum for γ. The achieved γ value guarantees the robustness of
the system due to γ < 1.

4.1. Training of the Learning-Based Observer

In the vehicle control example a neural network-based observer is implemented in
order to increase the accuracy of the estimation process. The goal of the learning-based
observer is to provide an estimation on x̂L, which is carried out through the following
signals, which can be measured by the on-board sensors of the vehicle:

• longitudinal velocity v,
• lateral acceleration v̇y,
• steering angle δ,
• yaw-rate ψ̇.
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Figure 3. Convergence of the γ minimization.

The training process of the neural network is performed using supervised learning,
for which a previously recorded training dataset is used. During the data generation
several simulations are performed in CarMaker vehicle dynamics simulation software.
The steering angle of the vehicle was randomized within the reasonable region.

Generally, neural networks are able to handle fitting problems, where the process is
influenced by high nonlinearities. Neural networks consist of several layers, which can
be divided into three main groups such as the input layer hidden layers and the output
layer. The layers consist of neurons, which is built up by activation functions and weights.
Before the training process, several parameters are be chosen such as the number of the
layers and neurons, which are determined using the k-fold cross-validation technique [17].
Moreover, taking into account the chosen activation functions, the number of neurons can
be determined see [18].

In Figure 4 the structure of the selected neural network is illustrated, in which the
inputs of the network is given by (yl,i) and the output is x̂l .

Figure 4. Structure of the neural network.

Since the accuracy of the estimation process can be increased by considering past
values, the neural network-based observer takes into account the actual and 3 past values
of the measured attributes. The sampling time of the past values can be determined using
spectral analysis [19]. In Figure 5 an example can be seen for the results of the estimation
process with various numbers of neurons in the hidden layers (n1-first hidden layer, n2-
second hidden layer). It can be said that by increasing the number of neurons, a better
estimation accuracy can be achieved. However, using too many neurons leads to over-
fitting, which greatly decrease the usability of the network. As a result, Table 1 summarizes
the main parameters of the neural network with the lowest sum of error value, i.e., the
selected number of neurons and the types of activation function.
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Figure 5. Results of neural networks with different parameters.

The training process is performed using a backpropagation algorithm, and parameters
of the neural network is calculated using Levenberg-Marquardt optimization process.

Table 1. Parameters of the trained neural network.

Parameters of the Neural Network

1st Hidden Layer 2nd Hidden Layer

Number of neurons 20 15

Activation function ReLU log-sigmoid

4.2. Simulation Results

Finally, the effectiveness of the proposed observer design framework is presented
through a comprehensive simulation example. The simulations are performed in CarMaker
vehicle dynamic simulation software, in which the vehicle is driven along a predefined path.
Two different cases are compared during the simulations. In the first case, the measured
signals of the sensors on the vehicle are considered to be accurate. But, in the second case,
additional noise with high value is added to the measured signals in order to simulate
the case, when the learning-based observer can provide inaccurate x̂L. The goal of the
simulations is to show that through learning-based observer the state observation process
can be improved and furthermore, the proposed design framework provides guarantees if
the output of learning-based observer is degraded.

In Figure 6a the reference trajectory of the vehicle can be seen, which is based on the
data of a section of Hockenheimring, Germany. The steering angle, which is provided
by the resulted controller K, is shown in Figure 6b. During the simulation example,
the longitudinal velocity of the controlled vehicle is set to 50 km/h.

In Figure 7 the yaw-rate of the vehicle is depicted. The figure shows that the measured
yaw-rate signal is quite noisy. Using the proposed observer, which is augmented with the
results of the neural network, the obtained yaw-rate value can be used during the lateral
control of the vehicle. Thus, the impact of the noise on the control performance can be
reduced though the proposed method.
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Figure 6. Control input and the reference trajectory during the simulation example.

In Figure 8a the estimated lateral velocities can be seen. The real value of the lateral
velocity is represented with the black line and the red line illustrates the results of the
model-based observer. Moreover, the lateral velocities provided by the observer, which is
extended with the neural network, is shown with the blue line. It can be seen, that using
the proposed observer structure, the results of the estimation process is more accurate
compared to the purely model-based solution. Furthermore, it can be said that the choice
of ∆min, ∆max has high impact on the results. In the cases when the neural network
provides more accurate results than the model-based observer, the estimation accuracy
can be highly increased. But, when the neural network provides poor results, avoiding
inaccuracy of the state observation process can be guaranteed by the robustH∞ design of
the model-based observer.
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Figure 7. Yaw rate of the vehicle.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

L
a

te
ra

l 
v
e

lo
c
it
y
 (

m
/s

)

Real value

Estimated with NN

Estimated without NN

(a) Estimated lateral velocity
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(b) Error of the lateral velocity

Figure 8. Comparison of the model-based and neural-network-based results.

In Figure 9 a statistical analysis, i.e., a histogram is presented for the illustration of the
effectiveness of the observer. In the histogram the probability values of each estimation
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errors on vy are illustrated. The blue bars represent the results with the proposed method,
in which the outputs of the neural network are taken in to account. The statistical analysis
confirms the conclusions of the simulation results.

Figure 9. Comparison between the model-based and the combined estimation.

In the second example noises with high values on the measurements are added,
which leads to the inaccurate operation of the learning-based observer. The result of the
observation on vy is shown in Figure 10. It can be seen that in this case the error between x̂L
and x is significantly increased and thus, x̂ 6= x̂L in most of the simulation. Nevertheless,
the degradation of the observation process is limited, due to the limitation of ∆.
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Figure 10. Estimated lateral velocity with false signals.

The statistical analysis through the plot of the histogram on the results of the second
simulation is found in Figure 11. It shows the main benefit of the method, i.e., the guarantee
on the estimation error. In case of the proposed method the plot of the histogram is bounded,
while without the limitation of ∆ the neural-network-based observer leads to a flatter plot
without limits on the error.
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Figure 11. Histogram on the observation error in the second scenario.

Since in the proposed example the observed state x̂ is used for control purposes,
the impact of the observation accuracy on the tracking performance is examined. Figure 12
shows the histogram on the absolute value of the lateral tracking error in case of the
second scenario. It can be seen that the proposed method results in reduced lateral error
with increased probability, compared to the simulation with learning-based observer.
The improvement is around ≈25% if |ey| < 0.05 m.

Figure 12. Histogram on the lateral tracking error in the second scenario.

5. Conclusions

The simulation examples proposed the effectiveness of the method on a vehicle control
problem from two aspects. First, through the design framework the higher accuracy of
the learning-based observer can be utilized in the state observation process. Second, if the
learning-based observation has degradation, the degradation of the state observation
process can be limited. The advantageous operation of the designed observer is achieved
through the robustH∞ observer design method. The effectiveness of the design method has
been illustrated through simulations on the example of state estimation for lateral dynamics
of vehicles. The statistical evaluation of the results has concluded that the estimation error
through the proposed method can be limited and similarly, the performance level of the
observation process is improved. Finally, the observer design method is extended with the
design method of the controller, which leads to a jointH∞ design.

Nevertheless, the proposed method has some limitations, which must be handled
through the practical application of the method. First, the training of the learning-based
observer requires high number of data, which can be achieved through simulations or test
measurements. In some applications the collection of high number of data can be expensive
and the unsuccessful scenarios during the training process can lead to critical operation.
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Therefore, a challenge of the learning-based observation is to provide a method, with which
a quantity index of the required number of samples can be given. A further limitation of
the method is that it uses linear model for the design of the model-based observer. A future
goal is to extend the design process for further class of systems, e.g., linear parameter
varying systems. Another future challenge of the method is to extend the state observation
process for a prediction method of the states. It requests the development of a method
on the comprehensive analysis of the learning-based agent, e.g., observer or predictor.
In the proposed method the decision on the acceptability of the learning-based observation
is based on the actual signals, but for prediction the output of the learning-based agent
on a longer horizon must be examined, which is a challenge in the design framework.
Furthermore, another challenge of the method is to guarantee the observability with the
learning-based observer for a system, which is unobservable. It can require an analysis
method on the global observability, which contains the augmented system, i.e., the system
and the learning-based observer.
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