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Abstract. Spectroscopy experiment techniques are widely used and produce a 

huge amount of data especially in facilities with very high repetition rates. In 

High Energy Density (HED) experiments with high-density materials, changes 

in pressure will cause changes in the spectral peak. Immediate feedback on the 

actual status (e.g. time-resolved status of the sample) would be essential to 

quickly judge how to proceed with the experiment. The two major spectral 

changes we aim to capture are either the change of intensity distribution (e.g., 

drop or appearance) of peaks at certain locations, or the shift of those on the 

spectrum.  

In this work, we apply recent popular machine learning/deep learning models to 

HED experimental spectra data classification. The models we presented range 

from supervised deep neural networks (state-of-the-art LSTM-based model and 

Transformer-based model) to unsupervised spectral clustering algorithm. These 

are the common architectures for time series processing. The PCA method is used 

as data preprocessing for dimensionality reduction. Three different ML algo-

rithms are evaluated and compared for the classification task. The results show 

that all three methods can achieve 100% classification confidence. Among them, 

the spectra clustering method consumes the least calculation time (0.069 s), and 

the transformer-based method uses the most training time (0.204 s).  

Keywords: Spectral data, Classification, PCA, LSTM, Transformer, Clustering. 

1 Introduction 

High Energy Density (HED) scientific instrument focuses on the investigation of matter 

at high density, temperature, pressure, electric, and/or magnetic field [1]. In HED ex-

periments with high-density materials, changes in pressure will cause changes in the 

spectral peaks (vanishing, shifting, or splitting). To evaluate the experiment status, the 

measured spectra need to be classified so that each class is assigned to a different state 

of the system under investigation. The two major spectral changes that we aim to cap-

ture in this study are  

• the change of intensity distribution (e.g. drop or appearance) of peaks at cer-

tain locations, or  
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• the shift of those in the spectrum. 

With recent developments in machine learning, data-driven machine learning /deep 

learning (ML/DL) methods have turned out to be very good at discovering intricate 

structures in high-dimensional data [2]. The ML/DL-based methods have applied 

broadly to a set of algorithms and techniques that train systems from raw data rather 

than a priori models [3], thus useful for research facilities that produce large, multidi-

mensional datasets.   

In this study, we aim to derive a statistical model for the application of HED spectra 

data classification. In this way, the actual status of the experiment can be fed back in-

stantly according to the classification result, and the follow-up experiment can be better 

guided. We presented a simple and strong baseline range from supervised DL networks 

to unsupervised spectral clustering architecture for time series spectra data 

classification. Three commonly used ML/DL-based models are explored and evaluated 

on the same HED benchmark datasets, namely, the supervised LSTM-based, Trans-

former-based DL models and the unsupervised Spectral clustering ML algorithm. The 

PCA method is used here as data preprocessing for dimensionality reduction and speed 

up training or calculation. The experiment results show that all three methods can find 

a clear classification boundary and achieve 100% classification confidence. Among 

them, the spectra clustering method consumes the least calculation time (0.069 s). Alt-

hough the data set is not clearly labeled, we use representative spectral curves as the 

training data set, which makes supervised DL models possible. Related work  

1.1 Deep learning approaches 

Deep neural networks have received an increasing amount of attention in time series 

analysis in recent years [4, 14]. A large variety of deep learning modeling approaches 

for time series analysis have been exploited for a wide range of tasks, such as forecast-

ing, regression, and classification[5, 9, 14 15, 36]. The most common established deep 

learning models in this area are convolutional neural network (CNN) [13, 42, 43], re-

current neural networks (RNN) [5, 7, 8], and attention-based neural networks [10, 11, 

14, 15, 16, 34]. Since CNN-based models can only learn local neighborhood features, 

recently, RNN-based models and attention-based models which can learn long-range 

dependencies are increasingly popular for learning from time series data [5].  

Recurrent Approach. Two variants of the recurrent neural networks (RNN) models, 

Long Short Term Memory (LSTM) [6], GRU (Gated Recurrent Unit) [40], in particular, 

can effectively capture long term temporal dependencies, thus can work efficiently on 

various complex time series processing, prediction, recognition, and classification tasks 

[5, 7, 8, 38]. For example, in [8], Lipton et al. use clinical episodes as examples to first 

illustrate that LSTM has multi-label classification capabilities in multivariate time se-

ries. In the meantime, RNN-based architectures have also been used in combination 

with the CNN-based module to automatically extract the features and capture their 

long-term dependencies at the same time. The hybrid neural architectures have shown 

promising results for the automated analysis of time series [5, 9, 33, 38]. Lai et al. [5] 

proposed a Long- and Short-term Time-series network (LSTNet) framework for 
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multivariate time series forecasting. The method combines the strengths of CNN and 

RNN, can effectively extract short-term and long-term dependencies in data at the same 

time. In addition, they considered attention mechanism to alleviate nonseasonal time 

series prediction issue. Wu et al. [9] applied a convolutional recurrent neural network 

(CRNN) for hyperspectral data classification and achieved state-of-the-art perfor-

mance. In 2017, Karim et al. [33] proposed two deep learning models for end-to-end 

univariate time series classification, namely LSTM RNN and ALSTM-FCN. The pro-

posed model is an enhancement of a Fully Convolutional Network (FCN) with LSTM 

sub-module or attention LSTM sub-module. In 2019, the authors [35] introduced 

squeeze-and-excitation block to augment the FCN block, which can capture the con-

texture information and channel-wise dependencies, so that the model can be used for 

multivariate time series classification [35]. Interdonato et al. [37] proposed and end-to-

end DuPLO DL architecture for the analysis of Satellite Image Time Series data. It 

involves branches of CNN and GRU, which can better represent remote sensing data 

and achieve better quantitative and qualitative classification performance. 

Attention-Based Approach. Very recently, inspired by the Transformer scaling suc-

cesses in NLP [10], researches have also successfully developed their Transformer-

based or attention-based models for time series analysis task, such as video understand-

ing [11], forecasting of multivariate time series data [14, 15], satellite image time series 

classification [12], and hyperspectral image (HSI) classification [16]. Unlike sequence-

aligned models, Transformer or other attention-based models can process data se-

quences in more parallel and the applied attention mechanism can learn global depend-

encies in the sequence [4]. Ma et al. [39] first proposed a novel approach called Cross-

Dimensional Self-Attention (CDSA) for the multivariate, geo-tagged time series data 

imputation task. The CDSA model can jointly capture the self-attention across multiple 

dimensions (time, location, measurement), yet in an order-independent way [39]. Gar-

not et al. [12] proposed a spatio-temporal classifier for automatic classification of sat-

ellite image time series, in which a Pixel-Set Encoder is used to extract spatial features, 

and a self-attention-based temporal encoder is used to extract temporal features. This 

architecture has made significant improvements in accuracy, time, and memory con-

sumption. Rußwurm et al. [34] explored and compared several commonly used state-

of-the-art deep learning mechanisms on preprocessed and raw satellite data, such as 

convolution, recurrence, and self-attention—for crop type identification. They pointed 

out that preprocessing can improve the classification performance of all models they 

applied, while the choice of model was less crucial [34]. Although in most cases, the 

attention-based architecture used for time series analysis is used as a supervised learn-

ing method, in 2020, Zerveas et al. [15] first proposes a transformer-based framework 

for unsupervised representation learning of multivariate time series. Even with very 

limited training samples, this model can still exceed the current state-of-the-art perfor-

mance in the classification and regression tasks of multivariate time series, and can 

potentially be used for other downstream tasks, such as forecasting and missing value 

imputation [15]. 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
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1.2 Clustering approach  

In the field of unsupervised learning, many machine learning methods for data classi-

fication have also been developed, such as k-nearest neighbor (KNN) [17], partial least-

squares discrimination analysis (PLS-DA) [18, 19], support vector machine (SVM) 

[20], Extreme Learning Machine (ELM) [21], kernel extreme learning machine 

(KELM) [22]. As an unsupervised learning algorithm, clustering is one of the common 

nonparametric ML techniques and is widely used for exploratory data analysis [23].  

Among them, spectral clustering is a clustering method that does not make assumptions 

about the global structure of the data [24]. It can solve very general problems like in-

tertwined spirals and can be implemented efficiently even for large data sets [23]. For 

example, Jebara et al. [41] combined non-parametric spectral clustering with paramet-

ric hidden Markov models for time-series data analysis, and achieved great clustering 

accuracy. 

In this work, we apply three commonly used machine learning/deep learning archi-

tectures to time series spectral data classification. Our proposed baseline models are 

based on the same PCA preprocessing process. The LSTM-based, Transformer-based 

and Spectral clustering network range from supervised DL neural networks to unsuper-

vised ML algorithm are explored and evaluated on the same benchmark datasets. 

2 Method 

2.1 Dataset description 

The spectral data used in this work was collected during the HED experiment, and it 

was obtained by azimuthal integration of raw X-ray diffraction images. The data set 

consists of 349 samples with each of 4023 features and is publicly available at 

https://zenodo.org/record/4424866. To show more clearly how the diffraction changes 

while the pressure on the sample is changing, we show one for every 10 diffractograms, 

as shown in Fig. 1. It can be clearly seen from this figure that the amplitude of spectral 

peaks changes (increases, decreases, vanishes) at certain locations, and the peaks also 

shift at 2θ-angle position, or split, or start to broaden. These changes correspond to the 

modification of the crystal lattice (e.g. indicating phase changes). Among them, 28 

original spectra samples (the 16 marked in red belong to class label 0 and the 12 marked 

in blue belong to class label 1) are used as the training dataset in supervised methods. 

We also added 2800 simulated ones for training (by adding sufficiently small random 

noise, 100 simulated spectral curves can be added to each original diffractogram). 

During the experiment, we should be able to track these changes and determine the 

actual state of the system in near real-time. Scientifically, the most relevant question is 

whether the phase transition in the sample has occurred. Since there is no ground truth 

information, in order to determine this, for supervised learning approaches, we got rep-

resentative spectra measured (and simulated) at both the initial and final stages for train-

ing, which is marked in red or blue in Fig. 1. Based on this input, we should provide a 

judgment with minimum ambiguity at each point during the experiment. 
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Fig. 1. Spectral data (one for every 10 diffractograms) collected during the experiment after base-

line subtraction. Please note that the 28 spectra marked in red or blue are used as the basis for the 

LSTM or Transformer-based ML training set. Among them, the 16 marked in red belong to class 

label 0 and the 12 marked in blue belong to class label 1. 

2.2 PCA for Dataset preprocessing 

In spectroscopy experiments, it is very common that the number of input variables (fea-

tures) is greater than the number of training samples, which will more easily lead to the 

problem of overfitting. Our data has the same characteristic. In order to facilitate the 

ML/DL training process, the PCA algorithm is applied to data dimensionality reduction 

while speeding up the training process. PCA uses an orthogonal transformation to con-

vert data (of possibly correlated variables) into a set of new uncorrelated variables 

called principal components that successively maximize variance [26]. It is proved to 

be a simple and effective dimensionality reduction method for spectra data [22, 25]. 

Data centering.  Before applying the PCA algorithm, the dataset features should be 

centered by removing the mean. Centering is performed independently on each feature 

by computing the relevant statistics on the samples [44], as shown in Fig. 2.   

 

Fig. 2. Centering the dataset (take the first and last samples are used as an example). 
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PCA preprocessing.  In the PCA method, the number of principal components (PCs) 

required to describe the data can be determined by looking at the cumulative explained 

variance ratio as a function of the number of PCs [45]. The cumulative explained vari-

ance of PCA is shown in Fig. 3 a), the first 2 PCs explain more than 60% of the vari-

ance. Some of the new projected orthogonal variables’ (PCs) values distribution can be 

seen from Fig. 3 b). It can be clearly seen that the first PC explains the most variance 

in the data with each subsequent component explaining less. 

  

Fig. 3. a) Cumulative explained variance. b) Value distribution of new orthogonal variables pro-

jected by PCA. 

When converted back to the original space, you can see the information retained or 

lost by the PCA algorithm more vividly, the comparison between the inverse transfor-

mation of PCA with different explained variance and the original spectra data is shown 

in Fig. 4. We can get that the first few PCs can describe the basic distribution of the 

data, with other PCs providing more details. In order to retain as many features as pos-

sible, we choose 13 components which can explain 99% of the variance. Then our new 

projected data consist of 349 samples with each of 13 features.  

 

Fig. 4. Inverse transformation with different explained variances of sample 0. 
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Contributions of variables to PCs. In PCA, the correlation between components and 

variables is called loadings, it is the element of the eigenvectors and estimates the in-

formation they share [26].  

 

Fig. 5. Sum of loadings over variable and the contributions of each original variable/feature to 

the first PC and selected PCs. 

The loadings (marked with blue line) and contributions (marked with red line) of 

variables/features in accounting for the variability to the first PC are shown in Fig. 5 

(top row). The sum of loadings and the contributions of each original variable/feature 

to selected PCs are shown in Fig. 5 (bottom row). It shows that the more obvious the 

features/variables, the greater the contribution to the selected PCs. 

2.3 LSTM-based model 

As a variance of RNN in particular, Long short-term memory (LSTM), originally ap-

plied in NLP tasks, also yielded promising results for time series classification 

[5,34,36]. The cell unit and three gates (input gate, output gate and forget gate) in the 

LSTM unit allow this architecture to remember values over arbitrary time intervals and 

regulate the flow of information [27]. The point-wise operations used to update cell 

state and hidden state in the LSTM architecture can assign different weights to different 

features/variables in our time series spectra data, thereby improving the role of obvious 

features in the classification task and weakening the impact of unobvious features on 

classification. 

Here, we do not consider the connections between different spectral observations at 

different time steps, but only consider the relationship between different features, that 

is, the sequence length is set to 1.The spectra data classification model based on LSTM 

structure is shown in Fig. 6, where the selected PCs after PCA preprocessing are fed 

into the LSTM unit. Here we use a single layer of LSTM cell, followed by a dense layer 

(64 input neurons and 1 output neuron) with Sigmoid as the activation function for the 
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classification task. 64 neurons are used in the hidden state. The hidden states are ini-

tialized with zero-valued vectors. The PCA preprocessing process can also be regarded 

as an input embedding. 

 

Fig. 6. Multi-LSTM layers solution for spectra data classification. PCA method is used as data 

preprocessing for dimensionality reduction that can also serve as an input embedding.  

2.4 Transformer-based model 

Transformer model relies on the so-called self-attention mechanism and is found to be 

superior in quality while being more parallelizable [10]. There are many successful 

applications of Transformers in time series processing tasks such as the spectra data 

classification [15, 16].  

 We adopted the encoder architecture of the self-attention Transformer network, as 

illustrated in Fig. 7. below. The same PCA preprocessing process is used to reduce 

dimensionality and save the amount of calculation. Since our spectra time series data 

lives in a continuous space of spectral intensity values [34], we use the dense layer or 

the convolutional layer for input embedding instead of a word embedding step. In ad-

dition, as with the LSTM-based method, in each batch, we only process one spectral 

data vector, without considering the sequential correlation of the time series, so we 

discarded the step of positional encoding. In this work we employed 8 attention layers, 

or heads, running in parallel. And the input embedding layer produces outputs of di-

mension 16. 

In the decoder part, similarly to the input embedding, the dense layer with Sigmoid 

as the activation function is used to predict the class label of each spectral curve. Here, 

the dense layer has an input dimensionality of 16, output dimensionality of 1. 

 

Fig. 7. Single transformer layer solution for spectra data classification. In the decoder part, the 

dense layer with Sigmoid as the activation function is used for the classification task. 
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2.5 Spectral Clustering method 

Spectral Clustering uses information from the eigenvalues (spectrum) of special matri-

ces (i.e., Affinity Matrix, Degree Matrix, and Laplacian Matrix) derived from the graph 

or the data set [28] and makes no assumptions about the form of the clusters. The 

method shows great clustering performance for data with non-convex boundaries. It is 

usually used when the dataset has a non-flat geometry and needs to be divided into a 

small number of clusters with even cluster size [30], which is well suitable for our case.  

In this method, PCA preprocessing with the same parameters is used for dimension-

ality reduction, immediately followed by the standard spectral clustering algorithm. The 

clustering metrics used in the spectral clustering algorithm is graph distance, a graph of 

nearest neighbors [29], which is constructed to perform a low-dimension embedding of 

the affinity matrix between samples. And the K-Means label assignment strategy is 

applied in the approach, which is a popular choice [23]. 

2.6 Implementation 

Implementation details. All the models are implemented on the Jupyter notebook plat-

form using Pytorch and Scikit-learn libraries and use the same PCA preprocessing 

method with the same parameters.  

The Transformer-based model and LSTM-based model are performed as supervised 

learning. 28 original spectra samples with 2800 simulated ones as mentioned above (by 

adding some random noise, 100 simulated spectral curves are generated based on each 

original spectrum), a total of 2828. The small random noise in simulated spectral data 

is generated using the Mersenne Twister [31] as the core generator. The 28 original 

spectra samples used as the basis for training is shown in Fig. 1. All training data in-

cluding the simulated ones obtained after PCA preprocessing is shown in Fig. 8. The 

two models are trained by backpropagation using gradient descent, with the adaptive 

learning-rate method Adam [32] as the optimizer (learning rate is set to 2e-3, and weight 

decay is 2e-5). We use the cross-entropy loss function for our classification task. The 

statistical models are obtained by minimizing the loss function on the training data set. 

In the Transformer-based model, 15 epochs are used for iteration, and in the LSTM-

based model, 45 epochs are used. The two models are trained on one machine with 

Tesla P100-PCIE-16GB GPU. 

Jupyter notebook for reproducibility.  In this work, we use Jupyter notebooks for 

data analysis. The analysis scripts as Jupyter notebooks are publicly available at 

https://github.com/sunyue-xfel/Machine-Learning-applied-for-spectra-classification. 
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Fig. 8. Training dataset (including original spectra data and simulated ones) used in Transformer-

based model and LSTM-based model.  

3 Results and discussions 

3.1 Performance metrics 

In this study, we aim to find the phase transition point, which also means classifying 

the spectra into 2 phases or classes during the experiment. As there is no ground-truth 

phase transition information, we are interested in whether there is a clear boundary or 

an ambiguity zone during the experiment when the classification jumps inconsistently 

between the phases. Hence, our performance metric shall how small this ambiguous 

zone is.  To explain what an ambiguity zone is, an illustrative example is shown in Fig. 

9. Suppose we have 24 samples, corresponding to class 0 or class 1, and their classifi-

cation results are shown in Fig. 9, the zone marked with red for the class label jump is 

an ambiguity zone. From the physics point of view, a proper interpretation would re-

quire the phases and the ambiguity zone to be linked to specific pressure ranges. Un-

fortunately, the available data is not complete and does not contain such information.  

 

Fig. 9. An illustrative example of ambiguity zone. 

Let 𝑁𝑓 represent the number of spectral curves in ambiguous region, 𝑁𝑡 represent 

the number of test spectral curves, then the classification confidence can be defined as 

 𝑃𝑐𝑜𝑛𝑓 = 1 −
𝑁𝑓

𝑁𝑡
 (1) 

 The clear boundary between these two types of spectra yields 100% confidence. If 

phase transition or boundary between two classes is not detected, then all the spectral 

curves are in the ambiguous region, and the classification confidence is 0. 
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3.2 Results Comparison and discussion  

Classification confidence and training time consumption of these three methods are 

shown in Fig. 10. All methods can achieve 100% classification confidence with the 

same PCA preprocessing process. Among them, the spectra clustering algorithm uses 

the least calculation time (0.069 s), and the transformer-based method consumes the 

most training time (0.204 s).  Regarding reproducibility, all these methods have been 

run at least 20 times, and we get the same classification confidence and with almost the 

same training time, which means that they have high stability and reproducibility. Re-

garding complexity, for supervised learning algorithms, the parameters that need to be 

trained using the LSTM-based method are 20289, while the transformer-based method 

requires 5633. And the training losses for these two methods are 0.11917 and 0.113147, 

respectively. 

For the spectral clustering method, we also test the classification confidence with 

different explained variance value which ranges from 55% to 99.99% (the correspond-

ing number of PCs range from 2 to 301), the result shows that this method achieves 

consistent high-precision classification results (100% classification confidence), at the 

same time, the classification boundary is very stable and fluctuates only in a small 

range, as can be seen from Fig. 11. From another aspect, it also shows that the PCA 

algorithm can obtain the main feature information of the original data. 

 

Fig. 10. Classification confidence and training time of the three models.  
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Fig. 11. Classification confidence with different explained variance value and PCs. 

4 Threats to Validity 

Although we obtained nice results on ML-based spectral classification, there are still 

some threats to validity. It can be clearly seen that in our original spectral data set, the 

number of training samples is limited, and the number of features is much larger than 

the number of samples, which will cause over-fitting problems. In this case, the PCA 

method is used for dimensionality reduction, and more simulated spectral curves are 

added to the LSTM-based and transformer-based supervisory architecture for training. 

However, the effect of simulation data is limited after all, and it may not reflect the real 

experimental data well.  

In addition, since there is no ground truth information for the phase transition, the 

process of selecting/creating the training set is still limited. When the data is not cor-

rectly labeled and lacks some key explanatory information, we can only choose some 

representative spectra as training data, thus reducing the efficiency and validity of the 

supervised learning algorithms. 

Moreover, in our current work, only one data set is used. To improve reliability and 

validity, multiple data sets should be used for performance evaluation and comparison. 

5 Conclusion and future work 

In this work, we provide a simple and strong baseline range from supervised deep neu-

ral networks to unsupervised spectral clustering architecture for time series spectra data 

classification. Here, the PCA method is used as data preprocessing to reduce the dimen-

sionality and speed up the subsequent training or clustering process. The state-of-the-

art supervised LSTM-based and transformer-based models are applied for spectra data 

classification. In these two methods, the context between different time series (sequen-

tial correlation of time series) is not considered, but only the connection between dif-

ferent features. Despite this, both methods achieve 100% classification confidence, a 

clear boundary can be found. Regarding the training time, the Transformer-based 

method (0.204 s) consumes more time than the LSTM-based method (0.164 s). The 

unsupervised spectral clustering method is also shown to be very suitable for the HED 
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spectra data analysis with non-flat geometries. It achieves 100% classification confi-

dence and consumes the least amount of time (0.069 s). In addition, we provide the data 

analysis scripts as Jupyter notebooks for reproducibility. 

In the future, for the LSTM-based and transformer-based models, we will consider 

using the connection between different spectral samples to better utilize the advantages 

of these two algorithms in time series processing. Currently, the parameters and hy-

perparameters of these algorithms in our work are manually selected. In subsequent 

research, we consider conducting parameter analysis work, for example, using some 

optimization algorithms to fine-tune these parameters. We will also consider applying 

other different deep neural network architectures, such as convolutional neural network 

(CNN) and its combination with LSTM or attention mechanism, to improve the model 

architecture of spectral classification tasks. And in future work, an end-to-end classifi-

cation model without preprocessing will be introduced. Similarly, other different unsu-

pervised clustering algorithms can be explored and compared to provide a strong base-

line. At the same time, in order to better evaluate and verify the algorithm, multiple 

data sets from multiple experiments could be tested. 
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