Preparation of new type of organocatalysts having a carbohydrate scaffold\textsuperscript{1§}

Károly Ágoston\textsuperscript{2*} and Péter Fügedi

\textit{Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary}

E-mail: agoston.karoly@ttk.mta.hu; fugedi.peter@ttk.mta.hu.

ARTICLE INFO

Received:

ABSTRACT

The synthesis of nine new, bifunctional organocatalysts having carbohydrate scaffolds has been accomplished. In these catalysts both of the catalytic amino and thiourea functions are directly attached to a carbohydrate core. The activities of the newly prepared catalysts were tested in a Michael addition.

Graphical abstract

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graphicabstract.png}
\caption{Graphical abstract}
\end{figure}

Keywords

Bifunctional organocatalysts, thiourea-amine type catalysts, carbohydrate scaffold, Michael addition

\textsuperscript{1§} Presented at the 17th European Carbohydrate Symposium, Tel-Aviv, Israel, July 7-11, 2013, as poster July 7th P1

\textsuperscript{*} Corresponding author. Tel. +36 1 438 1100 372; fax: +36 1 438 1168 E-mail address: agoston.karoly@ttk.mta.hu

\url{http://dx.doi.org/10.1016/j.carres.2013.12.026}
1. **Introduction**

In recent years, organocatalysis, the acceleration of various chemical reactions by catalytic amounts of organic molecules, emerged as one of the rapidly developing areas of organic chemistry. With the aid of organocatalysis a large number of chemical reactions could then be performed in stereoselective manner. Particularly great attention has been paid to the development of new, efficient catalysts. A special class of these catalysts is the so called bifunctional organocatalysts in which H-bond donor and Lewis base functionalities are combined in a single asymmetric molecular scaffold. Several different bifunctional catalysts have been designed, synthesized and tested. Most of these molecules have a combination of thiourea and amine groups as catalytic functionalities which are presented on a single chemical entity. The very first example of these catalysts has been described by Takemoto in this molecule the catalytic centers are connected to a cyclohexane scaffold (compound A, Figure 1). Later some different chiral scaffolds such as binaphtyl or cinchona alkaloid (compounds B and C, Figure 1) were investigated and the catalysts based on these scaffolds showed promising results in asymmetric synthesis, particularly, in catalyzing Michael and aza-Henry reactions.

![Figure 1. Representative examples of bifunctional organocatalysts](image)

To date only a limited number of scaffolds has been used to synthesize bifunctional organocatalysts. Monosaccharides as commercially available, inexpensive molecules of the carbohydrate class are suitable as scaffolds for bifunctional organocatalysts. The exploitation of carbohydrate scaffold is induced by the application of their additional functionalities such as hydroxyl, amine, and sulfhydryl groups for the formation of bifunctional organocatalysts. The carbohydrate scaffold offers advantages for the construction of bifunctional organocatalysts as the carbohydrate derivatives can be prepared in large quantities, are easy accessible, and have a rich functional group diversity. The combination of the amino acid and carbohydrate scaffolds can lead to effective catalysts with high catalytic activity and enantioselectivity. Therefore, the combination of carbohydrate and amino acid scaffolds is a promising strategy for the development of bifunctional organocatalysts.
diverse chirality can be considered as obvious candidates for chiral scaffolds. Organocatalysts based on a D-glucosamine scaffold carrying urea and imine as catalytic functionalities were described by Kunz in 2007.\textsuperscript{5} Enantioselective Strecker and Mannich reactions were performed using these catalysts.\textsuperscript{5}

Thiourea-amine type bifunctional organocatalysts containing a monosaccharide unit were prepared and their catalytic activities were investigated recently.\textsuperscript{6} In these cases, the carbohydrate moiety was located on the periphery of the catalyst molecule and not in-between the two catalytic centers (compounds D and E, Figure 2). To our knowledge there is only one example in the literature where a monosaccharide residue was used as a scaffold to connect thiourea and amine functionalities thereby defining the selectivity of the catalyzed reaction (compound F, Figure 2).\textsuperscript{7} In this study the use of urea derivatives, however, provided higher yields and selectivity than the corresponding thiourea derivative.\textsuperscript{7} Up to now, there are no examples of bifunctional thiourea-amine organocatalysts where the core scaffold is a monosaccharide unit and the use of the catalyst results in high yield and high enantioselectivity catalyzing a chemical reaction.

Figure 2. Monosaccharide-containing bifunctional organocatalysts

We have initiated the preparation of new - bifunctional - thiourea-amine catalysts starting from D-glucose. In these molecules the two catalytic centers are connected with a carbohydrate residue. Using these catalysts the enantioselectivity of the catalyzed reaction will be influenced only by the carbohydrate moiety. The possible effect arising from carbohydrate chirality was taken into consideration in the design, by placing the catalytic groups at various positions of the carbohydrate scaffold. Thus the synthesis of molecules having the amino and thioureido groups in positions 4 and 6 (G and H, Figure 3), or in positions 2 and 3 (I, Figure 3), respectively, was planned. The catalytic groups are distanced by three carbon-carbon bonds in the first case, whereas they are separated by two C-C bonds in the latter. In the case of G and H, the synthetic route was designed to afford both the 4-
amino-6-thioureido (G) and the 6-amino-4-thioureido (H) derivatives from the same starting material.

Figure 3. General structures of the targeted organocatalysts

2. Results and discussion

For the preparation of the targeted catalysts having the catalytic groups in the 4 and 6 positions, methyl 4-O-benzoyl-6-bromo-6-deoxy-2,3-di-O-methyl-α-D-glucopyranoside\(^8\) (1, Scheme 1) was selected as starting material which is easily available from commercial methyl α-D-glucopyranoside in a few steps in high yields.

The synthesis of the 4-amino-6-thioureido type compounds started with the preparation of the 6-azido derivative (2). Reaction of compound 1 with sodium azide in DMF at elevated temperature resulted in the formation of the 6-azido derivative (→2, Scheme 1) in almost quantitative yield. The benzoate protecting group from compound 2 was removed with NaOMe in MeOH affording derivative 3 in high yield. 4-Amino derivatives were prepared by S\(_{N}\)2 replacement with primary amines via the 4-O-triflate in a one-pot manner. Treatment of 3 with triflic anhydride in CH\(_2\)Cl\(_2\) in the presence of pyridine at 0 °C afforded the crude 4-O-triflate, which was reacted directly with cyclohexylamine or benzylamine in the solvent mixture of CH\(_2\)Cl\(_2\)/DMF to yield the 4-cyclohexylamino (4) and 4-benzylamino (5) derivatives, respectively. The azido function of compound 4 was reduced to amine with propanedithiol in methanol\(^9\) and the 6-amino derivative was reacted with phenyl isothiocyanate (4→6) or 3,5-bis(trifluoromethyl)phenyl isothiocyanate (4→7) affording the bifunctional organocatalyst candidates.
Scheme 1.

Conditions:  
a.) NaN$_3$, DMF, 70 ºC, 6 h, 94%;  
b.) NaOMe, MeOH, rt., 1 h, 80%;  
c.) i: Tf$_2$O, pyridine, CH$_2$Cl$_2$, 0 ºC, 2 h, ii: amine, DMF, 45 ºC, 10 h, 50-70%;  
d.) i: propanedithiol, MeOH, rt., 48 h (6 and 7), or PPh$_3$, H$_2$O, THF, 80 ºC, (8 and 9) ii: isothiocyanate, MeOH, rt., 4 h, 30-50%.

For the reduction of azido function of compound 5, the use of triphenylphosphine was found more advantageous, as reduction with propanedithiol resulted in impurities which were difficult to separate from the amino derivative. The amino derivative of compound 5 was reacted with phenyl isothiocyanate or 3,5-bis(trifluoromethyl)phenyl isothiocyanate affording derivatives 8 and 9, respectively.

For the preparation of the 6-amino-4-thioureido type target molecule nucleophilic substitution of the bromo function of compound 1 with piperidine was performed to afford 10 in high yield (Scheme 2). This reaction was significantly slower than the substitution of 1 with sodium azide. The removal of the benzoate protecting group from 10 by Zemplén’s method required elevated temperature, but afforded compound 11 in good yield. The azido function was introduced at position 4 by S$_{N}$2 reaction via a triflate intermediate. Treatment of 11 with Tf$_2$O, as described for 4, followed by reaction of the crude with sodium azide in DMF afforded the 4-azido galacto epimer (11→12). The stereochemistry was proven by the two small coupling constant of the H-4 in the $^1$H-NMR spectrum ($J_{3,4}$ 2.3 Hz, $J_{4,5}$ <1 Hz) while the presence on the azido group was indicated by the upfield shift of the C-4 signal in the $^{13}$C NMR spectrum. The transformation of the azido function into thiourea derivative was

http://dx.doi.org/10.1016/j.carres.2013.12.026
performed as in the case of compound 6. Treatment of 12 with propanedithiol resulted in the formation of the 4-amino intermediate which was reacted with phenyl isothiocyanate to form compound 13 as a catalyst candidate.

![Scheme 2.](image)

**Scheme 2.**

Conditions:  
(a) piperidine, DMF, 70 ºC, 50 h, 90%; (b) NaOMe, MeOH, reflux, 2 h, 85%; (c) i: Tf₂O, pyridine, DCM, 0 ºC, 2 h, ii: NaN₃, DMF, 45 ºC, 72 h, 40%; (d) i: propanedithiol, MeOH, rt., 48 h, ii: phenyl isothiocyanate, MeOH, rt., 8 h, 69%.

The preparation of the 2-amino-3-thioureido derivatives started from the *allo*-epoxide 14⁰ (Scheme 3) as starting material which is easily available from commercial methyl α-D-glucopyranoside in a few steps in high yields. The epoxide was opened with piperidine or with morpholine according to a literature procedure¹¹ affording the *altro* derivatives 15 and 16 in high yields. The preparation of the 3-azido derivatives was accomplished by using Mistunobu conditions as only low yields were obtained in preliminary trials to introduce the azide by the displacement of the 3-*O*-triflate intermediate (data not shown). Compounds 15 and 16 were treated with diisopropyl azodicarboxylate and triphenylphosphine then with diphenylphosphoryl azide¹² to form the 3-azido derivatives 17 and 18, respectively. The azido functions of compounds 17 and 18 were reduced with triphenylphosphine, the resulting 3-amino derivatives were subsequently treated with phenyl isothiocyanate or 3,5-bis(trifluoromethyl)phenyl isothiocyanate affording the target compounds (17→19, 17→20, 18→21 and 18→22).
Scheme 3.

Conditions:  a.) piperidine or morpholine, LiClO₄, MeCN, 90 ºC, 24 h, 80-90%; b.) i: PPh₃, DIAD, THF, 0 ºC, ii: DPPA, THF, rt., 24 h, 60-80%; c.) i: PPh₃, THF, H₂O, 80 ºC, ii: isothiocyanate, MeOH, rt., 8 h, 60-80%.

The catalytic activity of the prepared new, monosaccharide-based bifunctional organocatalysts was tested on the Michael addition of acetylacetone to β-nitrostyrene (Scheme 4). This reaction is commonly used as test in evaluating newly developed organocatalysts. Based on preliminary experiments dichloromethane was selected as solvent for the reaction. The use of other solvents such as toluene, THF, MeCN, or diethyl ether resulted in much longer reaction times (data not shown). The stereochemistry of the products was determined by comparison of their optical rotation values (Table 1) with literature references together with the comparison of the chiral HPLC retention times with literature references. The enantiomeric excess was determined by chiral HPLC.
Scheme 4.

Conditions: β-nitrostyrene, 1.1 eq. acetylacetone, 10 mol% catalyst, CH$_2$Cl$_2$, rt., 24 h.

The catalytic activity of the synthesized compounds is summarized in Table 1. Only those compounds which have secondary amine groups were able to promote the reaction to give good yields (Table 1, entries 1, 2, and 3). Tertiary amine-containing derivatives afforded very low yield or no reaction at all (entries 4, 5, and 6). The active catalysts favored the formation of the product having the S configuration, the enantioselectivity, however, was low. Further examination of the catalytic activity of prepared compounds on different reactions is in progress, and will be reported in due course.

Table 1. Summary of the catalytic activity of selected catalyst candidates.

<table>
<thead>
<tr>
<th>Entry</th>
<th>catalyst</th>
<th>Yield$^a$</th>
<th>$ee%$</th>
<th>$[\alpha]^{35}_D$ values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>70%</td>
<td>18.7%</td>
<td>13.9 (c 0.5, CHCl$_3$)</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>78%</td>
<td>14.1%</td>
<td>8.0 (c 0.5, CHCl$_3$)</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>50%</td>
<td>12.9%</td>
<td>7.8 (c 0.65, CHCl$_3$)</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>&lt;5%</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>none</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>none</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

n.d.: not determined; $^a$ Reaction times were 24 h in all cases. Without the use of catalyst no product formation was observed.

In conclusion, the synthesis of a new family of monosaccharide-based bifunctional organocatalysts has been achieved. Thiourea and amine functionalities were used as catalytic centers connected by a monosaccharide unit thereby replacing the commonly employed cyclohexane unit. The activities of the newly prepared catalysts were tested on a model...
reaction, where some of the compounds afforded high yields, although with low enantioselectivity.

3. Experimental

3.1. General. — Commercially available starting materials were used without further purification. Solvents were dried according to standard procedures. Melting points (uncorrected) were determined on a Griffin apparatus. Optical rotations were measured with a Jasco-Optical activity AA-10R polarimeter. NMR spectra were recorded on a Varian Gemini 2000 (200 MHz for \(^1\)H and 50 MHz for \(^{13}\)C) and on a Varian Unity-Inova (300 MHz for \(^1\)H and 75 MHz for \(^{13}\)C) spectrometer in CDCl\(_3\) as solvent. All chemical shifts are quoted in ppm downfield from the characteristic signals (\(^1\)H: 0.00 ppm (TMS), \(^{13}\)C: 77.00 ppm (CDCl\(_3\))). Kieselgel 60 (E. Merck, Darmstadt, Germany) was used for column chromatography and DC-Alufolien Kieselgel 60 F\(_{254}\) plates were used for TLC. MS spectra were recorded on an Applied Biosystems 3200 QTRap spectrometer. Enantiomeric excesses were determined on a Waters 600 HPLC instrument. (Diacel Chiralpack AD column, hexane:i-propanol 80:20, flow rate: 1 mL/min, \(\lambda = 210\) nm).

3.2. Methyl 6-azido-4-O-benzoyl-6-deoxy-2,3-di-O-methyl-\(\alpha\)-D-glucopyranoside (2)

Na\(_3\)N (260 mg, 4.0 mmol) was added to a solution of 1 (780 mg, 2.0 mmol) in dry DMF (10 mL) and the mixture was stirred for 6 h at 70 °C. The mixture was allowed to cool to r.t. then it was diluted with EtOAc (100 mL) and washed with water (3 \(\times\) 50 mL). The organic layer was dried over MgSO\(_4\), filtered, concentrated and the product was obtained after column chromatography (toluene–acetone; 95:5) as a syrup (660 mg, 94%). \([\alpha]_{D}^{25}\) 52.5 (c 0.69, CHCl\(_3\)); \(^1\)H NMR: \(\delta\) 8.06, 7.60, and 7.46 (m, 5 H, aromatic), 5.09 (dd, 1 H, \(J_{3,4}\) 9.4 Hz, \(J_{4,5}\) 9.9 Hz, H-4), 4.93 (d, 1 H, \(J_{1,2}\) 3.5 Hz, H-1), 3.99 (ddd, 1 H, \(J_{5,6}\) 5.4 and 2.6 Hz, H-5), 3.74 (dd, 1 H, \(J_{2,3}\) 9.2 Hz, H-3), 3.56, 3.52 and 3.48 (each s, each 3 H, 3 OMe), 3.38 (m, 2 H, H-2 and H-6a), 3.27 (dd, 1 H, \(J_{gem}\) 13.3 Hz, H-6b); \(^{13}\)C NMR: \(\delta\) 165.4 (C=O), 133.4, 129.8, 129.3, and 128.5 (aromatic), 97.6 (C-1), 81.3 (C-2), 80.7 (C-3), 71.8 (C-4), 69.2 (C-5), 61.0, 59.3 and 55.5 (3 OMe), 51.3 (C-6); MS: Calcd. for: C\(_{16}\)H\(_{21}\)N\(_3\)O\(_6\) 351, found: 352 [M+H]\(^+\), 374 [M+Na]\(^+\), 725 [2M+Na]\(^+\). Anal. Calcd for C\(_{16}\)H\(_{21}\)N\(_3\)O\(_6\): C, 54.69; H, 6.02. Found: C, 54.82; H, 6.05.

http://dx.doi.org/10.1016/j.carres.2013.12.026
3.3. Methyl 6-azido-6-deoxy-2,3-di-O-methyl-α-D-glucopyranoside (3)

NaOMe (50 mg) was added to a solution of 2 (660 mg, 1.88 mmol) in dry MeOH (20 mL). The mixture was stirred for 1 h at rt. Then the mixture was neutralized with Amberlite IR-120 (H⁺). The resin was filtered off and washed with MeOH. The filtrate was concentrated and the product was isolated by column chromatography (toluene–acetone; 4:1). 3 (370 mg, 80%) was obtained as a colorless syrup: [α]$_D^{25}$ 117.0 (c 0.58, CHCl$_3$); $^1$H NMR: δ 4.81 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 3.70 (m, 1 H, H-5), 3.60, 3.46 and 3.41 (each s, each 3 H, 3 OMe), 3.50 (dd, 1 H, $J_{gem}$ 13.2 Hz, H-6a), 3.44-3.30 (m, 3 H, H-3, H-4 and H-6b) 3.20 (dd, 1 H, $J_{2,3}$ 9.2 Hz, H-2) 2.18 (bs, 1 H, 4-OH); $^{13}$C NMR: δ 97.3 (C-1), 82.6 (C-3), 81.7 (C-2), 70.4 and 70.3 (C-4 and C-5), 61.1, 58.4 and 55.3 (3 OMe), 51.4 (C-6); MS: Calcd. for: C$_9$H$_{17}$N$_3$O$_5$ 247, found: 270 [M+Na]$^+$, 517 [2M+Na]$^+$. Anal. Calcd for C$_9$H$_{17}$N$_3$O$_5$: C, 43.72; H, 6.93. Found: C, 43.67; H, 6.95.

3.4. Methyl 6-azido-4-cyclohexylamino-4,6-dideoxy-2,3-di-O-methyl-α-D-galactopyranoside (4)

A solution of Tf$_2$O (1.63 mL, 9.7 mmol) in CH$_2$Cl$_2$ (5 mL) was added to a solution of 3 (1.61 g, 6.7 mmol) in a mixture of pyridine (3.2 mL) and CH$_2$Cl$_2$ (20 mL) at 0 °C, then the mixture was stirred for 2 h at 0 °C. TLC (hexane–EtOAc; 1:1) showed the formation of a new apolar derivative. Cyclohexylamine (6 mL) in DMF (20 mL) was added to the mixture and stirring was continued for 10 h at 45 °C. Then the mixture was concentrated and the residue was purified by column chromatography (hexane–EtOAc; 1:1) to provide 4 (1.1 g, 51%) as a pale yellow syrup. [α]$_D^{25}$ 136.4 (c 0.64, CHCl$_3$); $^1$H NMR: δ 4.86 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 3.78 (m, 1 H, H-5), 3.60 (dd, 1 H, $J_{gem}$ 12.2 Hz, H-6a), 3.51 (dd, 1 H, $J_{2,3}$ 9.5 Hz, $J_{3,4}$ 3.6 Hz, H-3), 3.44, 3.42, and 3.41 (each s, each 3 H, 3 OMe), 3.35 (dd, 1 H, H-2), 3.16 (dd, 1 H, H-6b) 3.08 (dd, 1 H, $J_{4,5}$ ~1 Hz, H-4), 2.25 (m, 1 H, cyclohexyl CH), 1.80-1.50 and 1.20-0.70 (m, 10 H, cyclohexyl CH$_2$); $^{13}$C NMR: δ 97.3 (C-1), 79.1 (C-3), 77.1 (C-2), 70.3 (C-5), 58.6, 57.8 and 55.2 (3 OMe), 56.8 (cyclohexyl CH) 53.7 (C-4), 52.2 (C-6), 34.5, 33.6, 25.8, 25.2, 25.0 (5 cyclohexyl CH$_2$); MS: Calcd. for: C$_{15}$H$_{28}$N$_4$O$_4$ 328, found: 329 [M+H]$^+$; HRMS: [M+H]$^+$ calcd. for 329.2189, found: 329.2191.

http://dx.doi.org/10.1016/j.carres.2013.12.026
3.5. **Methyl 6-azido-4-benzylamino-4,6-dideoxy-2,3-di-O-methyl-α-D-galactopyranoside (5)**

Compound 3 (1.61 g, 6.7 mmol) was converted into the 4-O-triflate intermediate as described for compound 4. A solution of benzylamine (6 mL) in DMF (20 mL) was added to the triflate intermediate and the mixture was stirred for 10 h at 45 °C. Then the mixture was concentrated and the residue was purified by column chromatography (hexane–EtOAc; 1:1) to give 5 (1.67 g, 76%) as a pale yellow syrup: [α]$_D^{25}$ 117.2 (c 0.8, CHCl$_3$); $^1$H NMR: δ 7.40-7.20 (m, 5 H, aromatic), 4.95 (d, 1 H, J$_{1,2}$ 3.7 Hz, H-1), 3.85 (m, 3 H, H-5 and benzyl CH$_2$), 3.70 and 3.22 (each dd, 2 H, J$_{5,6}$ 8.8 and 4.2 Hz, J$_{gen}$ 12.5 Hz, H-6a), 3.60 (dd, 1 H, J$_{2,3}$ 9.9 Hz, J$_{3,4}$ 4.2 Hz, H-3), 3.48, 3.44 and 3.28 (each s, each 3 H, 3 OMe), 3.43 (dd, 1 H, H-2), 3.10 (dd, 1 H, J$_{4,5}$ 1.3 Hz, H-4); $^{13}$C NMR: δ 140.1, 128.3, and 127.1 (aromatic), 97.5 (C-1), 79.4 (C-3), 77.1 (C-2), 70.2 (C-5), 58.6, 57.4 and 55.2 (3 OMe), 55.4 (C-4), 54.4 (benzyl CH$_2$), 52.3 (C-6); MS: Calcd. for C$_{16}$H$_{24}$N$_4$O$_4$: 336, found: 337 [M+H]$^+$. Anal. Calcd for C$_{16}$H$_{24}$N$_4$O$_4$: C, 57.07; H, 7.18.

3.6. **Methyl 4-cyclohexylamino-4,6-dideoxy-2,3-di-O-methyl-6-[(N’-phenyl)thioureido]-α-D-galactopyranoside (6)**

Propanedithiol (2.0 mL) was added to a solution of 4 (0.8 g, 2.4 mmol) in MeOH (20 mL) at rt and the mixture was stirred for 48 h at rt. When TLC (hexane–EtOAc, 1:1) showed the formation of the 6-amino derivative the mixture was filtered, the filtrate was evaporated and the residue was purified by column chromatography (CH$_2$Cl$_2$–MeOH–water; 8:5:1) to afford the amino derivative (0.65 g). Phenyl isothiocyanate (400 µL) was added to a solution of the amino derivative (650 mg) in MeOH (10 mL) at rt. The mixture was stirred for 4 h then concentrated. After column chromatography (CH$_2$Cl$_2$–MeOH–water; 8:5:1) of the residue a white solid was obtained, which was recrystallized from EtOAc to yield 6 (450 mg, 42 %, over two steps): m.p 160-162 °C; [α]$_D^{25}$ 84.7 (c 0.54, CHCl$_3$); $^1$H NMR: δ 8.36 (bs, 1 H, NH), 7.42-7.20 (m, 5 H, aromatic), 4.80 (d, 1 H, J$_{1,2}$ 3.7 Hz, H-1), 4.32 (bs, 1 H, H-6a), 3.86 (m, 1 H, H-5), 3.57 (dd, 1 H, J$_{2,3}$ 10.2 Hz, J$_{3,4}$ 4.7 Hz, H-3), 3.48 (m, 1 H, H-6b), 3.46, 3.42, and 3.20 (each s, each 3 H, 3 OMe), 3.30 (dd, 1 H, H-2), 3.14 (dd, 1 H, H-4), 2.28 (m, 1 H, cyclohexyl CH), 1.80-1.50 and 1.20-0.70 (m, 10 H, cyclohexyl CH$_2$); $^{13}$C NMR: δ 180.0 (C=S), 136.3, 129.8, 126.8, and 125.0 (aromatic), 97.4 (C-1), 79.0 (C-3), 77.1 (C-2), 68.0 (C-...
3.7. Methyl 4-cyclohexylamino-4,6-dideoxy-2,3-di-O-methyl-6-(N’-3,5-
bis(trifluoromethyl)phenyl)thioureido-α-D-galactopyranoside (7)

Compound 4 (0.8 g, 2.4 mmol) was converted into the 6-amino derivative as described for compound 6. 3,5-Bis(trifluoromethyl)phenyl isothiocyanate (400 µL) was added to a solution of the 6-amino derivative (0.65 g) in MeOH (10 mL) at rt. The mixture was stirred for 4 h then concentrated and the product was isolated after column chromatography (hexane–EtOAc; 1:2) as a white solid. The solid was recrystallized from EtOAc to yield 7 (530 mg, 35 %, over two steps): m.p. 189-191 °C; [α]D 35 39.7 (c 0.51, CHCl3); 1H NMR: δ 10.18 (bs, 1 H, 6-NH), 8.95 (bs, 1 H, NH), 7.84 (s, 2 H, aromatic) 7.68 (s, 1 H, aromatic), 4.95 (d, 1 H, J1,2 3.5 Hz, H-1), 4.40 (m, 1 H, H-6a), 3.96 (m, 1 H, H-5), 3.65 (dd, 1 H, J2,3 10.4 Hz, J3,4 4.7 Hz, H-3), 3.55, 3.46 and 3.44 (each s, each 3 H, 3 OMe), 3.45 (m, 1 H, H-6b), 3.28 (dd, 1 H, H-2), 3.22 (dd, 1 H, H-4), 2.37 (m, 1 H, cyclohexyl CH), 1.60-1.44 and 1.20-0.50 (m, 10 H, cyclohexyl CH2); 13C NMR: δ 178.8 (C=S), 139.5 (aromatic quaterner), 132.8 (q, 2 C, 3JCF 33 Hz, C-3” and C-5”), 122.9 (q, 2 C, JCF 271 Hz, 2 CF3), 122.8 (m, 2 C, C-2” and C-6”), 118.4 (m, 1 C, C-4”), 97.7 (C-1), 79.4 (C-3), 77.2 (C-2), 65.5 (C-5), 58.7, 58.6 and 55.5 (3 OMe), 57.0 (cyclohexyl CH) 54.3 (C-4), 49.3 (C-6), 33.2, 32.8, 25.5, 24.8, 24.6 (5 cyclohexyl CH2); MS: Calcd. for: C24H33F6N5O4S 573, found: 574 [M+H]+. Anal. Calcd for C24H33F6N5O4S: C, 50.25; H, 5.80. Found: C, 50.31; H, 5.82.

3.8. Methyl 4-benzylamino-4,6-dideoxy-2,3-di-O-methyl-6-(N’-phenyl)thioureido-α-D-
galactopyranoside (8)

Triphenylphosphine (1.2 g, 4.6 mmol) was added to a solution of 5 (1.0 g, 3.0 mmol) in THF (20 mL) at rt and the mixture was stirred for 2 h at 80 °C. When TLC (hexane–EtOAc; 1:1) showed the absence of the starting material water (2 mL) was added to the mixture and the stirring was continued for 4 h at 80 °C. The mixture was concentrated, the residue was purified by column chromatography (CH2Cl2–MeOH–water 8:5:1) affording the 6-amino derivative (0.7 g). Phenyl isothiocyanate (225 µL) was added to a solution the 6-

http://dx.doi.org/10.1016/j.carres.2013.12.026
amino-derivative (485 mg) in MeOH (10 mL) at rt. The mixture was stirred for 24 h then concentrated and the product was obtained after column chromatography (CH₂Cl₂–MeOH–water 8:5:1) as a white solid. The solid was recrystallized from CH₂Cl₂/hexane to yield 8 (281 mg, 31%, over two steps) as white crystals: mp 100-102 ºC; [α]₂₅° 116.9 (c 0.65, CHCl₃); ¹H NMR: δ 8.18 (s, 1 H, NHPh), 7.40 - 7.18 (m, 10 H, aromatic), 6.92 (d, 1 H, 6-NH), 4.78 (d, 1 H, J₁,₂ 3.5 Hz, H-1), 4.34 (bs, 1 H, H-6a), 3.89 (m, 1 H, H-5), 3.80 (ABq, 2 H, benzyl CH₂), 3.68 (m, 1 H, H-6b), 3.59 (dd, 1 H, J₂,₃ 10.3 Hz, J₃,₄ 3.6 Hz, H-3), 3.44, 3.25 and 3.17 (each s, each 3 H, 3 OMe), 3.35 (dd, 1 H, H-2), 3.13 (dd, 1 H, H-4), 1.66 (bs, 1 H, 4-NH); ¹³C NMR: δ 180.4 (C=S), 139.7, 136.1, 129.9, 128.4, 127.1 and 125.2 (aromatic), 97.6 (C-1), 79.0 (C-3), 77.0 (C-2), 68.6 (C-5), 58.7, 57.4 and 55.0 (3 OMe), 56.2 (C-4), 54.9 (benzyl CH₂), 47.1 (C-6); MS: Calcd. for: C₃₂H₂₃N₅O₅S₂ 445, found: 446 [M+H]⁺. Anal. Calcd for C₂₃H₁₃N₅O₅S: C, 62.00; H, 7.01. Found: C, 62.07; H, 7.02.

3.9. Methyl 4-benzylamino-4,6-dideoxy-2,3-di-O-methyl-6-(N'3,5-bis(trifluoromethyl)phenyl)thioureido-α-D-galactopyranoside (9)

Compound 5 (1.0 g 3.0 mmol) was converted into the 6-amino derivative as described for 8. 3,5-Bis(trifluoromethyl)phenyl isothiocyanate (350 µL) was added to a solution of the 6-amino derivative (497 mg) in MeOH (10 mL) at rt. The mixture was stirred for 10 min, during this time a light brown precipitate was formed. The solid was filtered and was purified by recrystallization from EtOAc/hexane to afford 9 (868 mg, 70%, over two steps) as white crystals: mp 180-182 ºC; [α]₂₅° 69.9 (c 0.89, CHCl₃); ¹H NMR: δ 9.28 (bs, 1 H, NH), 8.66 (bs, 1 H, NH), 7.50 – 7.40 (m, 8 H, aromatic) 4.90 (d, 1 H, J₁,₂ 3.5 Hz, H-1), 4.40 (m, 1 H, H-6a), 4.00 (m, 1 H, H-5), 3.84 and 3.55 (each m, 2 H, benzyl CH₂), 3.70 (dd, 1 H, J₂,₃ 10.2 Hz, J₃,₄ 4.7 Hz, H-3), 3.65 (m, 1 H, H-6b), 3.51, 3.41 and 3.40 (each s, each 3 H, 3 OMe), 3.34 (dd, 1 H, H-2), 3.22 (dd, 1 H, H-4), 2.00 (bs, 1 H, 4-NH); ¹³C NMR: δ 179.6 (C=S), 139.5 (aromatic quaterner), 132.8 (C-3" and C-5"), 129.2, 128.8, 128.1, and 127.6 (aromatic), 123.2 (q, 2 C, JCF 271 Hz, 2 CF₃), 121.4 (m, 2 C, C-2" and C-6"), 114.9 (m, 1 C, C-4"), 98.0 (C-1), 79.1 (C-3), 77.9 (C-2), 66.1 (C-5), 59.4 (C-4), 59.0, 58.4 and 55.8 (3 OMe), 55.7 (benzyl CH₂), 49.1 (C-6); MS: Calcd. for: C₂₅H₂₉F₆N₅O₅S 581, found: 582 [M+H]⁺. Anal. Calcd for C₂₅H₂₉F₆N₅O₅S: C, 51.63; H, 5.03. Found: C, 51.51; H, 5.00.

http://dx.doi.org/10.1016/j.carres.2013.12.026
3.10. **Methyl 4-O-benzoyl-6-deoxy-2,3-di-O-methyl-6-piperidino-α-D-glucopyranoside (10)**

Piperidine (720 µL, 7.3 mmol) was added to a solution of 1 (1.12 g, 2.88 mmol) in dry DMF (5 mL) and the mixture was stirred for 50 h at 70 °C. Then the mixture was allowed to cool to r.t., it was diluted with toluene (100 mL) and washed with water (2 × 30 mL), the organic layer was dried over MgSO₄, filtered, and concentrated. Column chromatography (toluene–acetone; 3:1) of the residue afforded 10 (1.01 g, 90%) as a syrup: [α]_D²⁵ 80.2 (c 0.63, CHCl₃); ^1^H NMR: δ 8.05, 7.55 and 7.42 (m, 5 H, aromatic), 5.00 (dd, 1 H, J₃,₄ 9.4 Hz, J₄,₅ 9.9 Hz, H-4), 4.86 (d, 1 H, J₁,₂ 3.5 Hz, H-1), 4.03 (m, 1 H, H-5), 3.66 (dd, 1 H, J₂,₃ 9.4 Hz, H-3), 3.51, 3.46 and 3.43 (each s, each 3 H, 3 OMe), 3.31 (dd, 1 H, H-2), 2.50 and 2.36 (each dd, 2 H, J₂,₃ 13.4 Hz, H-6), 2.33, 1.46 and 1.30 (each m, 10 H, 5 piperidine CH₂); ^1^C NMR: δ 165.5 (C=O), 133.1, 129.7 and 128.3 (aromatic), 97.5 (C-1), 81.4 (C-2), 81.0 (C-3), 73.2 (C-4), 66.9 (C-5), 60.8, 59.2 and 55.5 (3 OMe), 60.1 (C-6), 55.1, 25.7 and 24.1 (5 piperidine CH₂); MS: Calcd. for: C₂₁H₃₁NO₆ 393, found: 394 [M+H]^+ . Anal. Calcd for C₂₁H₃₁NO₆: C, 64.10; H, 7.94. Found: C, 64.03; H, 7.92.

3.11 **Methyl 6-deoxy-2,3-di-O-methyl-6-piperidino-α-D-glucopyranoside (11)**

NaOMe (50 mg) was added to a solution of 10 (1.0 g, 2.54 mmol) in dry MeOH (20 mL) at r.t., then the mixture was stirred for 2 h at reflux. The mixture was concentrated and the residue was purified by column chromatography (CH₂Cl₂–MeOH; 95:5→8:2) to give 11 (618 mg, 85%) as a colorless syrup: [α]_D²⁵ 73.4 (c 0.63, CHCl₃); ^1^H NMR: δ 4.68 (d, 1 H, J₁,₂ 3.5 Hz, H-1), 3.60 (m, 1 H, H-5), 3.56, 3.42 and 3.32 (each s, each 3 H, 3 OMe), 3.40 (m, 2 H, H-3 and H-4), 3.10 (dd, 1 H, H-2), 2.60 (m, 2 H, J₂,₃ 12.3 Hz, H-6), 2.55, 2.30, 1.50 and 1.33 (each m, 10 H, 5 piperidine CH₂); ^1^C NMR: δ 97.5 (C-1), 82.0 (C-3), 81.0 (C-2), 71.1 (C-4), 64.4 (C-5), 63.1 (C-6), 60.8, 58.6 and 55.0 (3 OMe), 55.4, 25.7 and 23.3 (5 piperidine CH₂); MS: Calcd. for: C₁₃H₂₇NO₅ 289, found: 290 [M+H]^+, 312 [M+Na]^+. Anal. Calcd for C₁₃H₂₇NO₅: C, 58.11; H, 9.40. Found: C, 58.10; H, 9.37.

3.12. **Methyl 4-azido-4,6-dideoxy-2,3-di-O-methyl-6-piperidino-α-D-galactopyranoside (12)**

http://dx.doi.org/10.1016/j.carres.2013.12.026
A solution of Tf₂O (1.89 mL, 11.3 mmol) in CH₂Cl₂ (5 mL) was added to a solution of 11 (2.16 g 7.5 mmol) in a mixture of pyridine (3.6 mL) and CH₂Cl₂ (50 mL) at 0 °C and the mixture was stirred for 2 h at 0 °C. Sodium azide (980 mg) in DMF (50 mL) was added to the mixture and stirring was continued for 72 h at 45 °C. Then the mixture was concentrated and the residue was purified by column chromatography (CH₂Cl₂–MeOH, 95:5) to yield 12 (700 mg, 30%) as a pale yellow syrup: [α]²⁵D 104.8 (c 0.65, CHCl₃); ¹H NMR δ: 4.72 (d, 1 H, J₁,₂ 3.4 Hz, H-1), 4.10 (dd, 1 H, J₃,₄ 2.3 Hz J₄,₅ <1 Hz, H-4), 3.90 (m, 1 H, H-5), 3.69 (dd, 1 H, J₂,₃ 9.8 Hz, H-3), 3.58, 3.56 and 3.40 (each s, each 3 H, 3 OMe), 3.50 (m, 1 H, H-2), 2.50 (m, 6 H, H-6 and 2 piperidine CH₂), 1.60 and 1.40 (each m, 6 H, 3 piperidine CH₃); ¹³C NMR: δ 98.2 (C-1), 79.8 (C-3), 78.1 (C-2), 66.3 (C-5), 61.7 (C-4), 59.7 (C-6), 59.4, 58.4 and 55.8 (3 OMe), 55.6, 26.2 and 24.4 (5 piperidine CH₂); MS: Calcd. for: C₁₄H₂₆N₄O₄ 314, found: 315 [M+H]⁺, 332 [M+NH₄]⁺. Anal. Calcd for C₁₄H₂₆N₄O₄: C, 53.49; H, 8.34. Found: C, 53.42; H, 8.32.

### 3.13. Methyl 4,6-dideoxy-2,3-di-O-methyl-6-piperidino-4-(N'-phenyl)thioureoido-α-D-galactopyranoside (13)

Propanedithiol (200 µL) was added to a solution of 12 (300 mg, 0.95 mmol) in MeOH (5 mL) at rt and the mixture was stirred for 72 h at 50 °C. When TLC (CH₂Cl₂–MeOH, 95:5) showed the formation of the 4-amino derivative, the mixture was filtered and the filtrate was concentrated. The residue was dissolved in MeOH (10 mL) and phenyl isothiocyanate (200 µL) was added to the solution. The mixture was stirred for 8 h at rt, then it was concentrated and the residue was purified by column chromatography (CH₂Cl₂–MeOH; 95:5) to afford 13 (280 mg, 69 % over two steps) as a syrup: [α]²⁵D 122.5 (c 0.59, CHCl₃); ¹H NMR: δ 8.78 (bd, 1 H, NH), 7.45 – 7.20 (m, 5 H, aromatic), 6.51 (bs, 1 H, NH), 5.30 (bd, 1 H, H-4), 4.80 (d, 1 H, J₁,₂ 3.0 Hz, H-1), 4.10 (m, 1 H, H-5), 3.67 (dd, 1 H, J₂,₃ 10.3 Hz, J₃,₄ 4.4 Hz, H-3), 3.53, 3.50 and 3.38 (each s, each 3 H, 3 OMe), 3.11 (m, 1 H, H-2), 2.66 (dd, 1 H, H-6a), 2.46 (m, 5 H, H-6b and 2 piperidine CH₂), 1.58 and 1.42 (each m, 6 H, 3 piperidine CH₂); ¹³C NMR: δ 181.5 (C=S), 136.7, 129.6, 126.5 and 126.6 (aromatic), 97.6 (C-1), 78.2 (C-3), 77.6 (C-2), 65.9 (C-5), 59.1 (C-6), 58.9, 58.1 and 55.6 (3 OMe), 54.5 (C-4), 54.9, 25.3 and 23.7 (5 piperidine CH₂); MS: Calcd. for: C₂₁H₃₃N₃O₅S 423, found: 424 [M+H]⁺. Anal. Calcd for C₂₁H₃₃N₃O₅S: C, 59.55; H, 7.85. Found: C, 59.58; H, 7.89.

### 3.14. Methyl 4,6-O-benzylidene-2-deoxy-2-piperidino-α-D-altropyranoside (15)

http://dx.doi.org/10.1016/j.carres.2013.12.026
Piperidine (6.73 mL) and LiClO₄ (3.62 g) were added to a solution of 14 (4.5 g, 17.0 mmol) in MeCN (50 mL) at rt and the mixture was stirred for 24 h at 90 ºC. Then the mixture was concentrated, the residue was redissolved in EtOAc (300 mL) and washed with water (3 × 150 mL), the organic layer was dried, filtered and concentrated. After column chromatography (CH₂Cl₂–MeOH; 95:5) 15 (5.7 g, 95 %) was obtained as white crystals: mp 83–85 ºC (hexane/EtOAc), lit¹¹ mp 117-118 ºC; [α]²⁵D 74.3 (c 0.64, CHCl₃); lit¹¹ [α]²⁵D 90.8 (c 1.3, CH₂Cl₂); ¹H NMR: δ 7.54 - 7.32 (m, 5 H, aromatic), 5.64 (s, 1 H, -CHPh), 4.80 (s, 1 H, H-1), 4.32 (dd, 1 H, J₆₇ 10.1 Hz, H-6a), 4.13 (m, 2 H, H-3 and H-5), 3.90 (dd, 1 H, J₃,₄ 2.9 Hz, J₄,₅ 9.8 Hz, H-4), 3.80 (dd, 1 H, H-6b), 3.40 (s, 3 H, OMe), 3.17 (d, 1 H, J₃,OH 6.6 Hz, 3-ΟΗ), 2.70 and 2.55 (each m, each 2 H, 2 -CH₂⁻), 1.60 and 1.45 (m, 6 H, -CH₂⁻); ¹³C NMR: δ 137.4, 129.1, 128.2 and 126.2 (aromatic), 102.1 (-CHPh), 101.2 (C-1), 77.8 (C-4), 69.4 (C-6), 67.8 (C-2), 65.6 and 57.7 (C-3 and C-5), 55.3 (OMe), 51.8, 26.5 and 24.2 (5 -CH₂); MS: Calcd. for: C₁₉H₂₅NO₅ 349, found: 352 [M+H]⁺.

3.15 Methyl 4,6-0-benzylidene-2-deoxy-2-morpholino-α-D-altropyranoside (16)

Morpholine (5.9 mL) and LiClO₄ (3.62 g) were added to a solution of 14 (4.5 g, 17.0 mmol) in MeCN (50 mL) at rt and the mixture was stirred for 24 h at 90 ºC. Then the mixture was concentrated and the residue was taken up in EtOAc (300 mL) and washed with water (3 × 150 mL), the organic layer was dried, filtered and concentrated. Purification of the residue by column chromatography (CH₂Cl₂–MeOH; 95:5) afforded 16 (5.0 g, 84 %) as white crystals: mp 117-119 ºC (hexane), lit¹¹ mp 118-119 ºC; [α]²⁵D 73.2 (c 0.71, CHCl₃); lit¹¹ [α]²⁵D 71.7 (c 1.2, CH₂Cl₂); ¹H NMR: δ 7.54 - 7.32 (m, 5 H, aromatic), 5.64 (s, 1 H, -CHPh), 4.83 (s, 1 H, H-1), 4.32 (dd, 1 H, J₆₇ 10.1 Hz, H-6a), 4.16 (m, 2 H, H-3 and H-5), 3.92 (dd, 1 H, J₃,₄ 3.1 Hz, J₄,₅ 9.8 Hz, H-4), 3.79 (dd, 1 H, H-6b), 3.70 (t, 4 H, -CH₂OCH₂⁻), 3.42 (s, 3 H, OMe), 3.17 (d, 1 H, J₃,OH 6.6 Hz, 3-ΟΗ), 2.79 (d, 1 H, J₂,₃ 1.9 Hz, H-2), 2.70 and 2.60 (each m, each 2 H, 2 -CH₂⁻); ¹³C NMR: δ 137.2, 129.0, 128.2 and 126.2 (aromatic), 102.2 (-CHPh), 100.0 (C-1), 77.4 (C-4), 69.2 (C-6), 67.2 (-CH₂OCH₂⁻), 67.0 (C-2), 65.9 and 57.8 (C-3 and C-5), 55.4 (OMe), 51.1 (2 × -CH₂); MS: Calcd. for: C₁₉H₂₅NO₅ 351, found: 352 [M+H]⁺.

3.16. Methyl 3-azido-4,6-O-benzylidene-2,3-dideoxy-2-piperidino-α-D-mannopyranoside (17)

http://dx.doi.org/10.1016/j.carres.2013.12.026
Diisopropyl azodicarboxylate (1.33 mL, 6.8 mmol) was added to a solution of 15 (2.0 g, 5.73 mmol) and PPh₃ (1.79 g, 6.87 mmol) in THF (50 mL) at 0 °C and the mixture was stirred for 20 min at 0 °C. Then diphenylphosphoryl azide (1.48 mL, 6.86 mmol) in THF (12 mL) was added and the mixture was stirred for 24 h at rt. Then the mixture was concentrated, the residue was taken up in EtOAc (300 mL) and washed with sat. NaHCO₃ solution (150 mL), the organic layer was dried, filtered and concentrated. Column chromatography (CH₂Cl₂–EtOAc; 95:5) of the residue followed by recrystallization from hexane/EtOAc afforded 17 (1.27 g, 60 %) as white crystals: mp 161-163 °C; [α]²⁵D 17.8 (c 0.89, CHCl₃);¹H NMR: δ 7.55 - 7.33 (m, 5 H, aromatic), 5.60 (s, 1 H, -CHPh), 4.70 (s, 1 H, H-1), 4.32 (dd, 1 H, J₆₇ 9.9 Hz, H-6a), 4.20 (m, 1 H, H-5), 4.13 (m, 1 H, H-3), 4.01 (dd, 1 H, J₃₄ 3.8 Hz, J₄₅ 9.8 Hz, H-4), 3.74 (dd, 1 H, H-6b), 3.38 (s, 3 H, OMe), 2.86 (d, 1 H, J₂₃ 1.2 Hz, H-2), 2.72 and 2.55 (each m, each 2 H, 2 -CH₂-), 1.60 and 1.45 (m, 6 H, -CH₂-);¹³C NMR: δ 137.1, 129.1, 128.3 and 126.1 (aromatic), 102.2 (-CHPh), 101.3 (C-1), 77.7 (C-4), 69.4 (C-6), 67.4 (C-2), 58.0 (C-5), 56.0 (C-3), 55.2 (OMe), 51.7, 26.5 and 24.2 (5 -CH₂); MS: Calcd. for: C₁₉H₂₆N₄O₄ 374, found: 375 [M+H]+. Anal. Calcd for C₁₉H₂₆N₄O₄: C, 60.95; H, 7.00. Found: C, 60.99; H, 7.01.

3.17. Methyl 3-azido-4,6-O-benzylidene-2,3-dideoxy-2-morpholino-α-D-mannopyranoside (18)

Compound 16 (2.0 g, 5.73 mmol) was converted into the azido derivative as described for 17. Column chromatography (CH₂Cl₂–EtOAc, 95:5) followed by crystallization from hexane/EtOAc afforded 18 (1.49 g, 69 %) as white crystals: mp 164-166 °C; [α]²⁵D 26.2 (c 0.62, CHCl₃);¹H NMR: δ 7.54 - 7.34 (m, 5 H, aromatic), 5.61 (s, 1 H, -CHPh), 4.72 (s, 1 H, H-1), 4.30 (dd, 1 H, J₆₇ 10.0 Hz, H-6a), 4.21 (m, 1 H, H-5), 4.11 (m, 1 H, H-3), 4.04 (dd, 1 H, J₃₄ 3.6 Hz, J₄₅ 9.2 Hz, H-4), 3.73 (dd, 1 H, H-6b), 3.70 (t, 4 H, -CH₂OCH₂-), 3.38 (s, 3 H, OMe), 2.81 (d, 1 H, J₂₃ 1.3 Hz, H-2), 2.75 and 2.64 (each m, each 2 H, 2 -CH₂-);¹³C NMR: δ 137.0, 129.2, 128.3 and 126.1 (aromatic), 102.3 (-CHPh), 100.0 (C-1), 77.4 (C-4), 69.2 (C-6), 67.3 (-CH₂OCH₂-), 66.5 (C-2), 58.1 (C-5), 56.5 (C-3), 55.4 (OMe), 50.9 (2 -CH₂); MS: Calcd. for: C₁₉H₂₄N₄O₈ 376, found: 377 [M+H]+. Anal. Calcd for C₁₉H₂₄N₄O₈: C, 57.44; H, 6.43. Found: C, 57.57; H, 6.44.

http://dx.doi.org/10.1016/j.carres.2013.12.026
3.18. **Methyl 4,6-O-benzylidene-2,3-dideoxy-2-piperidino-3-(N'-phenyl)thioureido-α-D-mannopyranoside (19)**

Triphenylphosphine (1.51 g, 5.7 mmol) was added to a solution of 17 (1.2 g, 3.2 mmol) in THF (15 mL) at rt and the mixture was stirred for 2 h at 80 °C. When TLC (hexane:EtOAc; 1:1) showed the absence of the starting material water (0.75 mL) was added to the mixture and the stirring was continued for 4 h at 80 °C. Evaporation of the solvent and column chromatography (CH$_2$Cl$_2$–MeOH; 98:2) of the residue afforded the 3-amino derivative (900 mg). Phenyl isothiocyanate (300 µL) was added to a solution of the amino derivative (600 mg) in MeOH (10 mL) at rt. The mixture was stirred for 30 min then concentrated and the product was isolated by column chromatography (CH$_2$Cl$_2$–MeOH; 98:2). Compound 19 (733 mg, 71%) was obtained as a syrup: [α]$_D^{25}$ 18.7 (c 0.82, CHCl$_3$); $^1$H NMR: δ 8.2 (bs, 1 H, NH), 7.80 – 7.00 (m, 10 H, aromatic), 5.65 (s, 1 H, -CHPh), 4.76 (s, 1 H, H-1), 4.20 (m, 2 H, H-4 and H-6a), 3.79 (dd, 1 H, H-6b), 3.65 (bs, 1 H, H-5), 3.33 (bs, 3 H, OMe), 2.80 – 2.50 (m, 4 H, H-2, H-3 and 2 -CH$_2$-), 1.58 and 1.45 (m, 6 H, -CH$_2$-); $^{13}$C NMR: δ 181.0 (C=S), 137.6, 137.1, 131.9, 131.8, 131.7, 128.4, and 126.0 (aromatic), 101.6 (-CHPh), 99.4 (C-1), 76.0 (C-4), 69.2 (C-6), 66.2 (C-2), 59.4 (C-5), 55.6 (OMe), 52.0 (2 -CH$_2$), 51.8 (C-3), 26.3 and 24.1 (3 -CH$_2$); MS: Calcd. for: C$_{26}$H$_{33}$N$_3$O$_4$S 483, found: 484 [M+H]$^+$. Anal. Calcd for C$_{26}$H$_{33}$N$_3$O$_4$S: C, 64.57; H, 6.88. Found: C, 64.37; H, 6.91.

3.19. **Methyl 4,6-O-benzylidene-2,3-dideoxy-2-piperidino-3-(N’-3,5-bis(trifluoromethyl)phenyl)thioureido-α-D-mannopyranoside (20)**

Compound 17 was converted into the 3-amino derivative as described for compound 19. 3,5-Bis(trifluoromethyl)phenyl isothiocyanate (470 µL) was added to a solution of the 3-amino derivative (600 mg) in MeOH (10 mL) at rt. The mixture was stirred for 30 min then concentrated. Column chromatography (CH$_2$Cl$_2$–EtOAc; 98:2) of the residue provided 20 (900 mg, 81%) as a syrup: [α]$_D^{25}$ -41.7 (c 0.69, CHCl$_3$); $^1$H NMR: δ 7.70 - 7.30 (m, 8 H, aromatic), 5.70 (s, 1 H, -CHPh), 4.86 (s, 1 H, H-1), 4.30 (m, 2 H, H-4 and H-6a), 4.10 (m, 1 H, H-5), 3.82 (dd, 1 H, H-6b), 3.40 (bs, 3 H, OMe), 2.80 – 2.55 (m, 4 H, H-2, H-3 and 2 -CH$_2$-), 1.58 and 1.45 (m, 6 H, -CH$_2$-); $^{13}$C NMR: δ 183.2 (C=S), 136.5 (aromatic), 131.0 (C-3” and C-5”), 128.5, 128.3 and 128.1 (aromatic), 122.8 (q, 2 C, $^1$J$_{C,F}$ 271 Hz, 2 CF$_3$), 123.1 (m, 2 C, C-2” and C-6”), 102.8 (-CHPh), 99.3 (C-1), 77.5 (C-4), 69.1 (C-6), 66.4 (C-2), 52.0 (2 -CH$_2$), 51.8 (C-3), 26.3 and 24.1 (3 -CH$_2$); MS: Calcd. for: C$_{26}$H$_{33}$N$_3$O$_4$S 483, found: 484 [M+H]$^+$. Anal. Calcd for C$_{26}$H$_{33}$N$_3$O$_4$S: C, 64.57; H, 6.88. Found: C, 64.37; H, 6.91.

http://dx.doi.org/10.1016/j.carres.2013.12.026
59.8 (C-5), 55.5 (OMe), 53.1 (C-3), 52.0 (2 -CH₂), 26.4 and 24.1 (3 -CH₂); MS: Calcd. for:
\( C_{28}H_{31}F_{6}N_{3}O_{4}S \) 619, found: 620 [M+H]⁺. Anal. Calcd for \( C_{28}H_{31}F_{6}N_{3}O_{4}S \): C, 54.28; H, 5.04. Found: C, 54.16; H, 5.04.

3.20. Methyl 4,6-O-benzylidene-2,3-dideoxy-2-morpholino-3-(N′-phenyl)thioureido-α-
D-mannopyranoside (21)

Compound 18 (2.46 g, 6.5 mmol) was converted into the 3-amino derivative (1.34 g) as described for 19. Phenyl isothiocyanate (130 µL) was added to a solution of the crude amino derivative (251 mg) in MeOH (8 mL) at rt. The mixture was stirred for 30 min, the product, which formed as a precipitate, was filtered and was recrystallized from EtOAc/hexane to afford 21 (167 mg, 29% over two steps) as white crystals: mp 192-193 °C; 
[α]²⁵ 45.9 (c 0.84, CHCl₃); ¹H NMR: δ 8.40 (bs, 1 H, NH), 7.50 - 7.20 (m, 10 H, aromatic), 5.65 (s, 1 H, -CHPh), 4.67 (s, 1 H, H-1), 4.20 (m, 2 H, H-4 and H-6a), 3.78 (t, 1 H, H-6b), 3.70 (t, 4 H, -CH₂OCH₂), 3.60 (bs, 1 H, H-5), 3.10 (s, 3 H, OMe), 2.80 and 2.60 (m, 6 H, H-2, H-3 and 2 -CH₂); ¹³C NMR: δ 180.6 (C=S), 137.0, 129.4, 128.7, 128.0, 125.9, and 125.1 (aromatic), 101.6 (-CHPh), 98.2 (C-1), 75.2 (C-4), 69.0 (C-6), 67.2 (-CH₂OCH₂), 65.4 (C-2), 59.5 (C-5), 55.7 (OMe), 51.4 (C-3), 51.2 (2 -CH₂); MS: Calcd. for: \( C_{25}H_{31}N_{3}O_{5}S \) 485, found: 486 [M+H]⁺, 508 [M+Na]⁺. Anal. Calcd for \( C_{25}H_{31}N_{3}O_{5}S \): C, 61.83; H, 6.43. Found: C, 61.87; H, 6.54.

3.21. Methyl 4,6-O-benzylidene-2,3-dideoxy-2-morpholino-3-(N′-3,5-
bis(trifluoromethyl)phenyl)thioureido-α-D-mannopyranoside (22)

Compound 18 (2.46 g, 6.5 mmol) was converted into the 3-amino derivative (1.34 g) as described for 19. 3,5-Bis(trifluoromethyl)phenyl isothiocyanate (720 µL) was added to a solution of the crude amino derivative (920 mg) in MeOH (10 mL) at rt. The mixture was stirred for 30 min then concentrated. Column chromatography (CH₂Cl₂-EtOAc; 98:2→95:5) of the residue afforded 22 (733 mg, 27%) as a syrup: [α]²⁵ 25.1 –23.4 (c 0.74, CHCl₃); ¹H NMR: δ 8.70 (bs, 1 H, NH), 7.50 - 7.10 (m, 8 H, aromatic), 5.70 (s, 1 H, -CHPh), 4.78 (s, 1 H, H-1), 4.35 (m, 2 H, H-4 and H-6a), 3.81 (dd, 1 H, H-6b), 3.70 (m, 5 H, H-5 and 2 × -CH₂), 3.40 (bs, 3 H, OMe), 2.80 – 2.60 (m, 6 H, H-2, H-3 and 2 -CH₂); ¹³C NMR: δ 183.1 (C=S), 136.2 (aromatic), 130.2 (C-3” and C-5”), 128.9, 128.6 and 128.3 (aromatic), 122.8 (q, 2 C, \( J_{C,F} \) 270

http://dx.doi.org/10.1016/j.carres.2013.12.026
Hz, 2 CF₃), 123.1 (m, 2 C, C-2” and C-6”), 102.8 (-CHPh), 98.5 (C-1), 77.4 (C-4), 69.0 (C-6), 67.2 (-CH₂OCH₂), 65.8 (C-2), 59.1 (C-5), 55.6 (OMe), 52.8 (C-3), 51.2 (2 -CH₂); MS: Calcd. for: C₂₇H₂₉F₆N₃O₅S 621, found: 622 [M+H]⁺; HRMS: [M+Na]⁺ calcd. for 644.1624, found: 644.1629.

3.22. General procedure for the Michael addition

Organocatalyst (0.02 mmol) was added to a solution of β-nitrostyrene (0.2 mmol) in CH₂Cl₂ (0.5 mL) under Ar at rt. The mixture was stirred for 5 min, then acetylacetone (0.22 mmol) was added and stirring was continued for 24 h at rt. The mixture was concentrated and the product was isolated by column chromatography (Hexane–EtOAc; 7:3). The ratio of the formed enantiomers was determined by chiral HPLC method: t_major: 9.3 min t_minor: 12.5 min.

3.23. (S)-3-(2-Nitro-1-phenylethyl)-pentane-2,4-dione (23)

¹H NMR: δ 7.35-7.15 (m, 5 H, aromatic), 4.62-4.58 (m, 2 H), 4.36 (d, J=10.8 Hz, 1 H), 4.28-4.20 (m, 1 H), 2.30 (s, 3 H), 1.95 (s, 3 H); ¹³C NMR: δ 201.7, 201.0, 136.0, 129.3, 128.5, 128.0, 78.1, 70.7, 42.8, 30.4, 29.5.

Acknowledgements

The authors thank Mrs. Roczkov Ivánné for performing combustion analysis, Dr. Palkó Roberta for helpful support with chiral HPLC measurements, Dr. Szilárd Varga for supporting us with β-nitrostyrene and for Dr. Tibor Soós for fruitful discussions.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at…

References


http://dx.doi.org/10.1016/j.carres.2013.12.026