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Abstract Carbon foams have gained significant attention due to their tuneable properties that

enable a wide range of applications including catalysis, energy storage and wastewater treatment.

Novel synthesis pathways enable novel applications via yielding complex, hierarchical material

structure. In this work, activated carbon foams (ACFs) were produced from waste polyurethane

elastomer templates using different synthesis pathways, including a novel one-step method.

Uniquely, the produced foams exhibited complex structure and contained carbon microspheres.

The ACFs were synthesized by impregnating the elastomers in an acidified sucrose solution fol-

lowed by direct activation using CO2 at 1000 ℃. Different pyrolysis and activation conditions were

investigated. The ACFs were characterized by a high specific surface area (SBET) of 2172 m2/g and

an enhanced pore volume of 1.08 cm3/g. Computer tomography and morphological studies revealed

an inhomogeneous porous structure and the presence of numerous carbon spheres of varying sizes
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embedded in the porous network of the three-dimensional carbon foam. X-ray diffraction (XRD)

and Raman spectroscopy indicated that the obtained carbon foam was amorphous and of tur-

bostratic structure. Moreover, the activation process enhanced the surface of the carbon foam,

making it more hydrophilic via altering pore size distribution and introducing oxygen functional

groups. In equilibrium, the adsorption of methylene blue on ACF followed the Langmuir isotherm

model with a maximum adsorption capacity of 592 mg/g. Based on these results, the produced

ACFs have potential applications as adsorbents, catalyst support and electrode material in energy

storage systems.

� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Carbon foams (CFs) are low density, porous materials that
have gained significant attention over the past few decades

due to their potential applications in various fields. Based on
the applied pyrolysis temperature and type of precursor, CFs
are classified as graphitic (Klett, 2019) and non-graphitic

(Jana and Ganesan, 2009; Narasimman and Prabhakaran,
2012). Carbon foams are extensively used as electrode materi-
als in energy storage systems (Amini et al., 2011; Zhou et al.,
2017), as catalyst support (Qian et al., 2017; Wang et al.,

2017), in heavy metal removal (Chen et al., 2013; Lee et al.,
2015), CO2 absorption (Liu et al., 2020; Narasimman et al.,
2014; Rodrı́guez and Garcı́a, 2017), electromagnetic shielding

(Bychanok et al., 2015; Pastore et al., 2019), radionuclide trap-
ping (Jana and Ganesan, 2009), and sound absorption (Gao
et al., 2018; Letellier et al., 2017). The properties of CF depend

largely on the temperature of heat treatment, the carbon pre-
cursor and other pyrolysis conditions. The specific pore struc-
ture makes CF lightweight with the adjustable surface,

electrical, thermal and mechanical properties.
Several authors reported the synthesis of CF or reticulated

vitreous carbon materials using fabrication techniques such as
the blowing of carbon precursors, the template replica method,

compression of exfoliated graphite, assembly of graphene
nanosheets, etc. (Inagaki et al., 2015). Of these, the template
carbonization method is the simplest and most efficient for

obtaining CFs with tailored porosity and structure (Inagaki
et al., 2015). This approach utilizes polyurethane (PU) foams,
e.g., flexible foams (Qian et al., 2017; Saini et al., 2013) and

rigid foams (Farhan et al., 2016), melamine or melamine–
formaldehyde foams (Chen et al., 2013; Yu et al., 2018;
Zhou et al., 2017), polystyrene foams (de Paula et al., 2018),

poly(methyl methacrylate) (Lee et al., 2005), and zeolite foams
(Saini et al., 2013) as templates. These templates are either
directly carbonized at high temperatures in an inert atmo-
sphere or they can be treated with a polymeric resin (a carbon

source) for cross-linking before carbonization. Typical carbon
sources used for this process are coal tar (Kumar et al., 2015),
petroleum pitch (Yadav et al., 2011), phenolic resin (Lee et al.,

2005; Nam et al., 2013; Qian et al., 2017), polyfurfural alcohol
(Amini et al., 2011), polyimide (Inagaki et al., 2004) and
sucrose (Jana et al., 2013; Saini et al., 2013).

Since the discovery of carbon nanotubes and fullerenes,
great effort has been spent to synthesize carbon materials with
various shapes and morphologies (e.g. fibres, onions, nano-
buds, nanoribbons, etc). Among them, carbon spheres (CS)

are gaining significant interest due to their versatile properties
and wide-ranging applications. Carbon spheres can be used as
electrodes in electrochemical systems such as batteries (Hu
et al., 2020), supercapacitors (Du et al., 2020), fuel cells (Shu

et al., 2018), as catalyst support (Tesfu-Zeru et al., 2017), sea-
lants (Song et al., 2004), and in CO2 capture (Li et al., 2020).
Generally, carbon spheres are synthesized by one of two
routes: i) high-temperature decomposition of materials con-

taining carbon in an inert atmosphere through arc-discharge
(He et al., 2007) followed by chemical vapour deposition
(CVD) (Panickar et al., 2020) and laser ablation or plasma

processes (Bystrzejewski et al., 2008; Yang et al., 2008); or ii)
low-temperature pyrolysis and catalytic decomposition of
organic compounds via e.g., the heat treatment of polymers

or other materials, usually in an autoclave (Réti et al., 2017).
Porous carbon materials with a high specific surface area

have attracted much interest, especially in the field of adsorp-
tion and catalysis. The morphology and size distribution of

pores influence the specific surface area that is responsible
for the surface activity. The surface properties of the carbon
material can be easily altered by activation using a mild oxidiz-

ing agent. Previously, CFs prepared from different precursors
were activated using physical (steam, CO2) and chemical
(KOH, NaOH, ZnCl2) methods. The physical activation

method is widely considered an efficient way to produce por-
ous carbon materials since chemical activation requires highly
corrosive agents and an additional washing step.

The pore structure is a critical factor influencing the
adsorption capacity and rate capability of any carbon material
(Mestre et al., 2009). The adsorption of small molecules such
as CO2 (molecular diameter of 0.33 nm) is determined by the

distribution of ultramicropores, while the adsorption of large
molecules such as Congo red (2.3 nm) and methylene blue
(1.7 nm) happens in broadened pores (Li et al., 2018). Organic

dyes and hydrated ions are best adsorbed in hierarchical pore
structures.

In this work, a new pathway was developed for the synthe-

sis of free-standing activated carbon foams (ACFs) containing
CS evenly distributed in the foam. The synthesized material
combines the advantages of CS such as increased surface, tune-

able porosity and good packing density (Amorós-Pérez et al.,
2018) with those of three-dimensional porous CF matrices.
Polyurethane elastomeric foam (EF) was used as a base mate-
rial and sucrose as a carbon source. The presented pathway

appears feasible for the utilization of difficult-to-recycle,
post-industrial polyurethane elastomer waste. To the authors’
knowledge, no prior studies have synthesized CS-containing

ACF using polyurethane elastomer templates. The synthesis
process was extended with one-step activation using CO2 that

http://creativecommons.org/licenses/by/4.0/


Fig. 1 Photograph of the ACF obtained using the one-step

process (EFAC1).
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resulted in CS-containing ACF with a high specific surface
area. The activation process does not require expensive cata-
lysts or complex purification. Finally, this work provides

insight into the morphology and structural properties of ACFs
produced from sucrose inside the pores of polyurethane elas-
tomer templates. The adsorption performance of the ACFs

was assessed by equilibrium studies of methylene blue (MB)
dye adsorption. The foams have potential applications as cat-
alyst supports or electrodes in energy storage devices.

2. Experimental section

In this section, details of the synthesis procedure and charac-

terization methods are provided.

2.1. Materials

Polyurethane elastomers (post-industrial waste) were provided
by Elastico Ltd. (Hungary). The concentrated sulfuric acid
(96 wt%) and MB dye (C16H18ClN3S) were purchased from
VWR International Ltd., (Hungary). MilliQ water (18.2

MXcm) and ordinary table sugar (sucrose from Magyar Cukor
Zrt., Koronás TM, Kaposvár, Hungary) were used for the
preparation of the carbon bead precursor solution. Carbon

dioxide (purity > 99.995%) purchased from Messer Group
GmbH (Germany) was used for the activation of CFs.

2.2. Preparation of activated carbon foams

The ACFs were prepared by using polyurethane elastomer as a
sacrificial template. The templates were immersed in an acidi-

fied sucrose solution followed by carbonization and activation.
The acidified sucrose solution and the carbon foams in N2

atmosphere were prepared as reported previously
(Udayakumar et al., 2019). In brief, the sucrose precursor solu-

tion was prepared by adding 40 ml of 2.8% (v/v) dilute sulfuric
acid to 100 g of sucrose in a glass beaker followed by heating
to 80 ℃ under continuous stirring until complete dissolution.

The foams cut into 2.5 cm � 2.5 cm � 2.5 cm cubes were
immersed and kept in the precursor solution for 12 h. The
excess solution was removed from the samples by squeezing

in paper tissues. Thereafter, the impregnated samples were
dried overnight at room temperature. Dried samples were
cross-linked in a hot air oven at 110 ℃ for 10 h. After impreg-
nation and drying, the mass of the residual sucrose precursor

that remained in the elastomers was approximately twice that
of the original mass of the raw foam. For activation, two dif-
ferent approaches were investigated: a one-step and a two-step

activation process.

2.2.1. Two-step activation

In the two-step process, the first step was the carbonization of

impregnated polyurethane elastomers at 700 ℃ or 900 ℃ at a
heating rate of 10 ℃/min in N2 atmosphere (200 ml/min) for
a dwell time of 60 min in a tube furnace (Carbolite�
1200 �C Split Tube furnace VST 12/900) (Udayakumar
et al., 2019). In the second step, the carbonized samples were
placed in a quartz crucible and activated inside a silica glass

tube of the high-temperature tube furnace in a stream of
CO2 (200 ml/min). Then, the furnace was heated to a maxi-
mum temperature of 900 ℃ or 1000 ℃, with a heating rate
of 10 ℃/min and the samples were left at this temperature
for 100 min.

2.2.2. One-step activation

In the one-step, direct process, the impregnated polyurethane
elastomer templates were directly activated using CO2 gas

without any prior carbonization. In this approach, the impreg-
nated samples were activated in a stream of CO2 with a flow
rate of 200 ml/min and heated to 1000 ℃ at a heating rate of

10 ℃/min with varying times of activation (30, 50, 80, 100
and 130 min) to identify the best activation time. Black, highly
porous ACF was obtained, as shown in Fig. 1.

For the rest of this paper, the CF prepared at 700 ℃ and
900 ℃ in N2 are denoted as EF700 and EF900, respectively.
Directly activated CF (one-step process) is denoted as EFAC1

and the foams activated after carbonization (two-step process)
at 1000 ℃ in CO2 for 100 min is labelled as EFAC2. Table 1
provides a summary of sample nomenclature. Fig. 2 shows a
flowchart of the synthesis procedure.

2.3. Calculation of yield

The yield of each sample was calculated as:

Yield after carbonization;YC %ð Þ

¼ Mass after carbonization

Mass after impregnation and drying
� 100 ð1Þ

Final Yield after activation;YA %ð Þ

¼ Mass after activation

Mass after impregnation and drying
� 100 ð2Þ
2.4. Characterization

Thermogravimetric analysis (TGA) was carried out using a

TG209 F3 Tarsus thermogravimetric analyser (NETZSCH-
Gerätebau GmbH, Germany) to measure the thermal beha-
viour of the impregnated polyurethane elastomers in N2 and

CO2 atmosphere. Furthermore, an approximate optimum



Table 1 Sample nomenclature.

Label Description

EF700 Pyrolyzed in N2 at 700 ℃ for 60 min

EF900 Pyrolyzed in N2 at 900 ℃ for 60 min

EFAC1 or EFAC1

(100 min)

Direct activation in CO2 at 1000 ℃ for

100 min

EFAC2 or EFAC2

(1000℃)

First pyrolyzed in N2 at 900 ℃ (60 min), then

activated in CO2 at 1000 ℃ for 100 min

Fig. 2 Flowchart for the synthesis of activated carbon foams.
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activation temperature was found using TGA. The elemental
composition of ACFs was analysed using a Carlo Erba

EA1108 CHNS-O analyser. Nitrogen adsorption–desorption
experiments were carried out at 77 K to determine the
Brunauer-Emmett-Teller (Brunauer et al., 1938) (BET) specific

surface area (SBET) using an ASAP 2020 instrument
(Micromeritics Instrument Corp. USA). Before each measure-
ment, the samples were degassed by holding at 90 �C for 24 h.
The total pore volume was calculated from N2 adsorption data

at a relative pressure of 0.97. The micropore volume was
obtained using the t-plot method. Mesopore volume was deter-
mined by the Barrett-Joyner-Halenda (BJH) method. The sur-

face morphology of the carbon foams was investigated by
Scanning Electron Microscopy (SEM) (Thermo Helios G4
PFIB Cxe) and the projections were made by Transmission

Electron Microscopy (FEI Technai G2-F20 HRTEM). The
foam structure, pore size and particle size distribution of the
CS were investigated using a YXLON FF35 dual-beam Com-

puter Tomograph (CT). To determine the density of the CF, a
Mohr-Westphal type density balance was used after plunging
the specimens in ethanol. Averages of 5 independent measure-
ments are reported (given in Table S1). The pore size distribu-

tion of the carbon foams and powdered samples (ACF crushed
using mortar and pestle) were determined using mercury intru-
sion porosimetry (MIP). The tests were done using PASCAL

140 (low pressurization system down to 0.04 MPa) and PAS-
CAL 440 (high pressurization system up to 400 MPa) instru-
ments (Thermo Scientific). One test was performed on 3D
CF and 2 tests were run with powdered samples to cover the
entire range of inter- and intraparticle pores present in the
samples.

The structural properties of the CF were determined by the
powder X-ray diffraction method (XRD) using a Bruker D8
Advance diffractometer with a Cu K-a radiation source

(40 kV and 40 mA) in parallel beam geometry (Göbel mirror)
with a position-sensitive detector (Vantec1, 1� opening). Mea-
surements were taken in the 2–100� 2h range with a goniometer

speed of 0.007� 2h/14 s. Samples were top-loaded on zero back-
ground Si sample holders. Raman spectroscopy measurements
were carried out using a high-resolution Raman spectrometer
(Nicolet Almega XR, Thermo Electron Corporation, Wal-

tham, MA, USA) equipped with a 532 nm Nd:YAG laser
(50 mW). Electrophoretic measurements were performed using
a dynamic light scattering instrument (ZetaSizer NS - Malvern,

UK). Wettability tests for all CF were carried out using the
sessile drop method (SP 12 melt microscope - Sunplant Ltd.,
Hungary), via the acquisition of a silhouette shot. This method

measures the angle of the sessile drop resting on the flat surface
of the CF (polished using emery cloth sheets) using a goniome-
ter – a microscope equipped with a video camera and a suitable

magnifying lens, interfaced with a computer running image
analysis software (KSV Instrument Ltd., Finland) to deter-
mine the tangent angle.

2.5. Adsorption test

For the equilibrium adsorption study, a stock solution
(10 mmol/L) of MB was prepared and the desired concentra-

tions (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mmol/L) were
obtained by subsequent dilution. The experiments were carried
out using 8 Erlenmeyer flasks, each containing 0.1 g of pow-

dered ACF (EFAC1 and EFAC2) and 50 ml of MB working
solution (0.5–4.0 mmol/L). These flasks were shaken for 2 h
at room temperature in a horizontal shaker. The adsorption

of ACFs was tested with different contact times and equilib-
rium adsorption was achieved in 2 h. The parameters were
selected based on preliminary studies such that full adsorption
isotherms were obtained. After shaking, the mixtures were

immediately centrifuged, the supernatant was collected and
the residual MB concentrations were measured by a UV–Vis
spectrophotometer (UV-6300PC Double Beam Spectropho-

tometer, VWR International Ltd.) at a maximum wavelength
of 664 nm. The Langmuir and Freundlich isotherm models
were used to describe the equilibrium characteristics of the

adsorption of MB onto ACFs and the relevant equations
(Eqs. S1-S3) are given in the Electronic Supplementary Mate-
rial (ESM).

3. Results and discussion

The properties of the as-prepared CFs were tested using differ-

ent characterization techniques and their results will be dis-
cussed in the sub-sections below:

3.1. Yield of carbon foams

Table 2 presents the experimental yields (using Eqs. (1) and
(2)) of the ACFs obtained from the two different activation
approaches and also the yields obtained from the TGA. In



Table 2 The calculated yield of the as-prepared ACFs.

Process Sample Mass of raw

PU elastomer

Mass after impregnation

and drying

Mass after

carbonization

Yield after

carbonization (YC)

Mass after

activation

Final yield after

activation (YA)

(g) (g) (g) (%) (g) (%)

Experiment EF900 0.5 1.6 0.4 25.0 – –

EFAC1 2.0 6.0 – – 1.1 18.3

EFAC2 3.5 10.5 2.6 24.8 1.4 13.3

TGA EF900 – – – 30.8 – –

EFAC1 – – – – 20.5

EFAC2 – – – 30.8 – 14.5
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both the process, the yield of the ACF prepared by the direct
activation was higher than that obtained in the two-step pro-

cess. The results of the TG analysis are explained in detail in
the following Section 3.2.

3.2. Thermogravimetric analysis

The thermal behaviour of impregnated PU elastomers in the
N2 and CO2 atmosphere at varying temperatures are shown

in Fig. 3.
The thermograms in Fig. 3a and b represent the samples

carbonized at 1100 ℃ at a heating rate of 10 ℃/min in N2

and CO2, respectively. The primary weight loss until 180 ℃
was due to the removal of residual water and the notable
change at 180–320 ℃ was attributed to the pyrolysis or
caramelization of acidified sucrose (Zhao et al., 2018) followed

by the initiation of the urethane bond breakage. In the temper-
ature range of 300–450 ℃, a sudden loss of mass was observed
that might be due to the cleavage of hard and soft segments of

urethane linkages leading to the formation of a primary amine,
terminal alkene and CO2, or the formation of a secondary
amine and CO2 (Nam et al., 2013). The remaining mass loss

was due to the oxidation of carbon present in the sample with
the evolution of CO and CO2. The thermal behaviour of
impregnated foams in N2 (Fig. 3a) and CO2 (Fig. 3b) was sim-
ilar, with only a slight change in the mass loss beyond 1000 ℃
in the CO2 atmosphere. Both gases behaved similarly, with the
difference of N2 acting as an inert gas even at high tempera-
ture, while CO2 became more reactive at approximately 1000

℃. Thus, the mass loss of 2.77% due to the removal of carbon
in the form of CO and CO2 can be observed in Fig. 3b. This
was further investigated by heating the impregnated foams to

1000 ℃ in N2 and CO2 at a heating rate of 10 ℃/min with a
dwell time of 60 min. Fig. 3c and d show that the total mass
loss until 1000 ℃ was almost the same in N2 and CO2 atmo-
spheres, respectively. However, the thermal behaviour at

1000 ℃ from the 100th to the 160th minute showed a signifi-
cant difference between the environments. During this time,
there was little mass loss in N2 atmosphere (3.18%), whereas

in CO2 the mass loss was comparatively higher (10.43%).
Therefore, it is clear that the critical temperature for the CO2

gas to become more reactive was 1000 ℃ and the significant

mass loss during the residence time revealed that the CO2

gas removed increasingly more atoms from the carbon
skeleton. Thus, CO2 appeared to be a good activating agent

for producing carbon foams with advantageous surface char-
acteristics. Furthermore, temperature and time play a crucial
role in the activation process.

The two different activation approaches, i.e., the one-step
and two-step processes, were compared based on the TG
curves shown in Fig. 3d and Fig. 3e and f, respectively.

Fig. 3d represents the one-step activation process, the mass
loss behaviour of which has already been discussed. From this
thermogram, the yield of the directly activated carbon foam

was found to be 20.5% (residue). Fig. 3e and f represent the
two-step activation process. The first step of carbonization
was done in N2 by heating at a rate of 10 ℃/min up to 900
℃ with a dwell time of 60 min. The thermal behaviour was sim-

ilar to that shown in Fig. 3c. In the second step, the produced
char was activated in CO2 at a heating rate of 10 ℃/min until
1000 ℃ with a dwell time of 60 min. In the two-step process,

the yield of the obtained char in the first step was 30.8%. From
the curve (Fig. 3f), the yield after the activation was calculated
to be 14.5%. Thus, the yield obtained from the one-step pro-

cess was higher than that of the two-step process. These results
are in line with the experimentally determined yields with the
CO2 activation time of 100 min (Table 2).

3.3. Chemical analysis

The results of the chemical analysis of the as-prepared ACFs
are given in Table 3.

Carbon contents of 97.0% and 94.8% were attained for
CFs produced by the one-step and two-step activation process,
respectively. These ACFs also contained traces of oxygen,

hydrogen, nitrogen and sulfur. This residual content indicated
the presence of surface functional groups. Supposedly, ACF
prepared by the two-step process contained more material

bound as surface functional groups than the foam synthesized
by the one-step process, as it had higher carbon content. The
samples did not contain any metallic impurities; the precursors
were free from metal ions and no catalysts were used in the

process.

3.4. Nitrogen adsorption test

Adsorption properties of the ACFs were determined by N2

adsorption tests. The BET model was used for the estimation
of surface area. For determining the micropore volume, the

t-plot method was used. Table 4 summarizes the textural prop-
erties calculated from the obtained N2 adsorption isotherm at
77 K. The pyrolysis of impregnated foams in N2 (EF900)



Fig. 3 TGA of the impregnated PU elastomer pyrolyzed in (a) N2 at 1100 ℃; (b) CO2 at 1100 ℃; (c) N2 at 1000 ℃ for 60 min; (d) CO2 at

1000 ℃ for 60 min (one-step process); (e) N2 at 900 ℃ for 60 min (1st step of the two-step process); (f) CO2 at 1000 ℃ for 60 min (2nd step

of the two-step process).
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exhibited a specific surface area of 370 m2/g and a total pore

volume of 0.21 cm3/g, and these values were taken from our
former study (Udayakumar et al., 2019). For this case, the
nitrogen sorption isotherm represented the characteristic type
I adsorption isotherm of the microporous structure. These

micropores originated from the removal of surface O- and
H- functional groups as tar and gas during pyrolysis. The tex-
tural properties of the char (EF900) were further enhanced by



Table 3 Chemical analysis of the ACFs.

Sample C %(m/m) H %(m/m) N %(m/m) S %(m/m) O %(m/m)

EFAC1 97.0 0.12 0.92 0 1.96

EFAC2 94.8 0.28 0.91 0.03 3.98

Table 4 Textural properties of CFs.

Sample Specific surface area (SBET) Micropore area External surface area Vm
a VBJH

b VT
c Vm/VT Pore size

(m2/g) (m2/g) (m2/g) (cm3/g) (cm3/g) (cm3/g) (%) (nm)

EF900 370 338 32 0.18 0.018 0.21 85.7 2.2

EFAC2 (900 ℃) 328 285 43 0.18 0.027 0.22 81.8 2.7

EFAC2 (1000 ℃) 633 522 111 0.33 0.066 0.41 80.5 2.6

EFAC1 (30 min) 334 290 44 0.13 0.017 0.16 81.3 1.92

EFAC1 (50 min) 896 762 134 0.36 0.034 0.43 83.7 1.90

EFAC1 (80 min) 1058 765 293 0.35 0.067 0.50 70.0 1.89

EFAC1 (100 min) 2172 577 1595 0.24 0.452 1.08 22.2 2.0

EFAC1 (130 min) 1421 561 860 0.25 0.255 0.71 35.2 1.99

a Micropore volume determined using t-plot; b BJH adsorption cumulative pore volume of pores between 1.7 nm and 300 nm; c Total pore

volume at P/P0 ~ 0.97.
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CO2 activation. The more suitable temperature for activation
was found to be 1000 ℃, as the specific surface area decreased
upon activation at 900 ℃ (328 m2/g). This might be due to the

less reactive nature of CO2 at 900 ℃. Thus, the maximum
specific surface area of CF obtained by two-step activation
was 633 m2/g – this corresponded to activation at 1000 ℃
for a dwell time of 100 min.

The highest specific surface area, 2172 m2/g, and a total
pore volume of 1.08 cm3/g were obtained with direct, one-

step activation at 1000 ℃ in a stream of CO2 for 100 min. In
both approaches, some of the carbon in the matrix was gasi-
fied, leading to the generation of new micropores with subse-
quent pore widening. Simultaneously, the release of CO and

CO2 further increased porosity.
The thermal decomposition of impregnated foams in N2 or

CO2 led to the release of volatile matter in the form of vapours,

tars and gases with the creation of pores in the residual char.
The primary constituents of tar are aromatic hydrocarbons:
toluene, furan, phenol and polycyclic aromatic hydrocarbons

(PAHs) (Ukanwa et al., 2019). The primary tars can undergo
polymerization reactions and secondary char formation as
proposed by Gilbert et al. (Gilbert et al., 2009). In one-step

activation at 1000℃ for 100 min, the CO2 that reacted with tars
released from impregnated foams, hindering the polymeriza-
tion reaction and secondary char formation, resulted in high
specific surface area. However, in the two-step process, the for-

mation of these condensable tars during pyrolysis in N2 cre-
ated secondary char, completely or partially filling the
created pores, resulting in chars with a lower surface area

(633 m2/g). During the activation of this char at the same
condition as with direct activation (1000 ℃ for 100 min), the
CO2 removed the condensed tar particles from the pores and

created new micropores, as indicated by high micropore
surface area (522 m2/g) and increased micropore volume
(0.33 cm3/g). Due to the secondary char formation, the surface
area of the ACF produced in the two-step process was lower

than that of the direct-activated ACF at the same condition.
According to the International Union of Pure and Applied
Chemistry (IUPAC), adsorbent pores are classified as microp-
ores (<2 nm), mesopores (2–50 nm) and macropores

(>50 nm) (Sing et al., 1985). In one-step activation, the pro-
portion of micropores progressively increases with an increase
in the activation time. Once the activation time is increased

beyond 100 min, the proportion of meso- and macropores
sharply increases with a considerable drop in the proportion
of micropores. Direct activation also increased the total pore

volume of the samples, especially at longer activation times.
Thus, the activation time is another critical parameter for opti-
mizing porosity. The proportion of micropore, mesopore and
macropore volume to the total pore volume was calculated

for each sample and depicted in Fig. 4a. The lower proportion
of micropore volume to the total pore volume of EFAC1
(100 min), 22.2%, and increased external surface area

(1595 m2/g) indicated the formation of many mesopores inter-
connected with continuous macropores. Meso- and macrop-
ores are transport pores that influence the adsorption

kinetics and diffusion rate of the adsorbate within the material.
The pore volume between the pore size of 1.7 and 300 nm was
approximately 42% of the total pore volume; this has substan-

tially increased in the case of EFAC1 (100 min).
The adsorption–desorption isotherms of the activated car-

bon foams are shown in Fig. 4b. All samples exhibited a typ-
ical type I adsorption isotherm of the microporous structure.

Although the isotherm of EFAC1 (100 min) was still classified
as type I, the increased volume of adsorbed N2 and a narrow
hysteresis (shown in Fig. 4b) associated with capillary conden-

sation in mesopore structures, corresponding to a combination
of type I and type IV isotherms, representing a micro-
mesoporous structure (Cychosz et al., 2017). Moreover, the

increase of the volume of adsorbed N2 indicates a larger sur-
face area and enhanced pore volume due to the extension of
micropores and creation of new mesopores and macropores,
indicating the potential for applications as an adsorbent with

a hierarchical pore configuration. Table 5 provides a compar-



Fig. 4 (a) Pore volume distribution of carbon foams with various pore size ranges; (b)N2 adsorption–desorption isotherms of the ACFs.

The hysteresis of EFAC1 (100 min) is shown as an inset.

Table 5 Comparison of SBET values of the current work with previously reported values.

Precursor Process Activating

agent

SBET (m2/g) Ref.

Polyurethane elastomer -

sucrose

Direct activation CO2 2172 Current work

Melamine sponge Carbonization followed by chemical activation KOH 1136 (Cao et al., 2020)

Pinus nigra pine Carbonization followed by chemical activation KOH 76.9 ± 2.8 (Khalid et al., 2020)

Buckwheat flour Direct activation KOH 1555 (Huang et al., 2019)

Glucose Hydrothermal synthesis followed by direct

activation

KOH 3106.7 (Li et al., 2016)

Phenolic resin Carbonization followed by physical activation Steam 727.62 (Zhao et al., 2009)

Spruce tree sawdust Carbonization followed by activation KOH 716 (Yargic and Ozbay,

2019)

Coal tar pitch Carbonization followed by physical activation Steam 933 (Tsyntsarski et al., 2012)

Mimosa tannin extract Carbonization followed by chemical activation ZnCl2,

H3PO4

1265, 1875 (Tondi et al., 2010)

Furfural alcohol Direct activation ZnCl2 652 (Cepollaro et al., 2020)
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ison of the SBET of the carbon foam synthesized in this study
with that of similar, previously reported materials.

3.5. Pore size distribution

To better characterize the macroporosity of the samples, mer-
cury intrusion porosimetry was used. The meso- and macrop-
ore size distributions of the CFs and their powdered samples

were determined in the range of 4 nm to 110,000 nm. Plotting
the cumulative pore volume (CPV) against the pore diameter
(Fig. 5) shows a continuous increase in the mercury uptake

with a decrease in the pore diameter. The pore size distribution
of the 3D CFs was analysed, as it is relevant for their applica-
tion as a support material. The comminution of the 3D

EFAC1 shifted the peaks towards the smaller pore size ranges
and the number of pores below 100 nm increased. The pore
volume and size distribution of EFAC1 in powder form dis-
played a multimodal distribution with four intrusion steps in

the domain of meso- and macropores from 4.7 nm to 17 lm,
as shown in Fig. 5b. In both forms, EFAC2 exhibited a wider
pore size distribution with four intrusion steps; the respective
pore sizes are marked in Fig. 5c and 5d. Results from MIP
and N2 adsorption analysis corroborate the hierarchical pore
structure of the synthesized ACFs.

3.6. Morphological investigation

SEM micrographs of carbonized and activated CFs are shown

in Fig. 6. The higher magnification micrographs of EF900 and
EFAC2 showed a disordered microstructure with pores and
interconnected threads of varying morphology as shown in

Fig. 6b, f. However, the morphology of EFAC1 was nearly
homogeneous with uniform pores and threads (Fig. 6d). More-
over, numerous spherical structures were seen on the walls,

threads and porous bed of the CFs. The spheres were clearly
identified in TEM micrographs.

The TEM micrographs (Fig. 7) of the carbonized and acti-
vated CFs display the presence of spherical carbon particles

with varying sizes between 10 and 400 nm. Web-like arrange-
ments of amorphous carbon particles around the carbon



Fig. 5 MIP pore size distribution of 3D CFs (a) EFAC1; (c) EFAC2 and powdered samples (b) EFAC1; (d) EFAC2.
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spheres of EFAC1 (Fig. 7b) and most pores appeared meso-
porous, which again confirmed the higher porosity and specific
surface area of EFAC1. These carbon particles are dense and
perfectly spherical in shape.

Generally, spherical carbon particles provide better packing
density than non-spherical structures (Cao et al., 2021). A
promising future research direction is the application of the

as-prepared carbon material as electrodes in supercapacitors.
Electrodes fabricated from carbon foams containing carbon
spheres with dense structure have the advantage of high pack-

ing density compared to other forms of amorphous carbon.
The high packing density of active materials is desirable for
achieving high volumetric capacitance, energy and power den-
sities (Lee et al., 2016). Usually, 3D porous carbon has low

packing density due to a large void fraction, leading to low vol-
umetric capacitance (Cao et al., 2021). On the other hand, they
provide high gravimetric capacitance due to their large acces-

sible specific surface area. Thus, the porous ACF containing
carbon spheres provides a compact structure while retaining
high porosity that might be advantageous for attaining high

volumetric and gravimetric capacitance.

3.7. Computer tomography analysis

Three-dimensional CT images of the raw PU elastomer and
CFs are shown in Fig. 8.
Many spherical and cylindrical pores could be observed
inside the pure polyurethane elastomer (Fig. 8a and Video
S1 in the ESM). This porous architecture could act as a tem-
plate for the formation of carbon spheres inside the foam

structure. As polymeric materials have a high carbon content
and a unique p-conjugated system, the pyrolysis of polymers
leads to the formation of nanotubes, nanospheres, etc.

(Deshmukh et al., 2010). Besides, sucrose can be widely used
as a carbon source for the synthesis of carbon spheres, mainly
in autoclave processes (Réti et al., 2017). Therefore, poten-

tially, both the polymer template and the sucrose precursor
played a significant role in the formation of carbon spheres.
The formation of carbon spheres inside the foam can be
explained with reference to the mechanism proposed by Zheng

et al. (Zheng et al., 2009): the diluted sulfuric acid hydrolyzed
the glycosidic bonds of sucrose and formed glucose and fruc-
tose monomer units. Further dehydration occurred upon dry-

ing at a low temperature (110 ℃) and during pyrolysis or
activation in the tube furnace at a temperature between 160
and 200℃, polymerization took place to form colloidal carbon

spheres inside the porous polyurethane elastomer template.
When the temperature reached 300–400 ℃, the colloidal car-
bon spheres were subjected to self-assembly and aggregation.

At higher temperatures (above 450℃), the spherical aggregates
were fused into solid carbon spheres of varying sizes. With the
evidence of the pore and particle size distribution of the CFs



Fig. 6 SEM micrographs of (a, b) EF900; (c, d) EFAC1; (e, f) EFAC2.
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calculated from CT imaging, it appears likely that during

pyrolysis and activation, the carbon spheres were formed from
the sucrose precursor filled inside the spherical pores of the
polymer template, as seen in Fig. 8b-d and Video S2 in the

ESM. The macropores or interconnected channels of the car-
bon foams were also visible in the CT images (Fig. 8b-d).
The pore and particle size distribution of the raw PU elastomer

and CFs are shown in Fig. 9.
As seen in Fig. 9a, the sizes of major pores of the polyur-

ethane template were in the range of 50–300 lm. Similarly,
the particle sizes of carbon spheres were between 50 and
200 lm (in Fig. 9b-d). Thus, it appears that the pore size dis-

tribution of the polyurethane template was a factor that influ-
enced the size of carbon spheres. Note that the CT analysis
only provided the pore and particle size distribution in the

micrometre range.
3.8. XRD and Raman analysis

The structural properties and the type of carbon obtained were
investigated by XRD and Raman spectroscopy (shown in



Fig. 7 TEM micrographs of (a) EF900; (b) EFAC1; (c) EFAC2.

Fig. 8 CT images of (a) raw polyurethane elastomer; (b) EF700; (c) EF900; (d) EFAC1. The blue colour represents the pores and the

white particles in (b) - (d) are the carbon spheres.
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Fig. 10). Fig. 10a shows the XRD diffractogram of CFs with
(EFAC) and without activation (EF700 & EF900). The
diffractograms exhibited two broadened and weak diffraction

peaks at 21.5�� 2h � 23.5�and around 43.5�that correspond
to the respective (0 0 2) and (1 0 0) diffraction of the amor-
phous or disordered turbostratic carbon skeleton (Hao et al.,

2017; Nam et al., 2013). These peaks are of low intensity and
not well-defined. This indicates a low degree of graphitization
of the obtained carbon irrespective of the activation process.
Therefore, from the XRD investigation, it can be observed

that the obtained CFs were of a non-graphitized, turbostratic
structure, in line with earlier results (Nam et al., 2013).
Raman spectra of the CF prepared at temperatures 700,
900 and 1500 ℃ in N2 atmosphere and the ACF are shown
in Fig. 10b. The spectrum ‘‘EF1500” represents the CF pre-

pared at 1500 ℃ in N2 and was included to provide a reference
to compare with the Raman spectra of the samples prepared at
lower temperatures. The first-order region in the Raman spec-

tra displayed two main peaks at around 1340 cm�1 and
1580 cm�1. The former peak is usually referred to as the D-
band (or defect-induced band), attributed to the vibration of
carbon atoms with dangling bonds in planar termination of

the disordered graphite-like framework (Torad et al., 2014)
and the latter peak is the G-band (graphitic band), correspond-



Fig. 9 Pore size distribution calculated from CT images of (a) raw PU elastomer; particle size distribution of (b) EF700; (c) EF900; (d)

EFAC1.

Fig. 10 (a) Powder XRD and (b) Raman spectra of carbonized (EF700, EF900, EF1500) and activated CF (EFAC). Activated samples

(EFAC1 and EFAC2) displayed similar XRD and Raman spectra; therefore, here it is referred to as ‘EFAC’.
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ing to the in-plane stretching motion of sp2-bonded carbon
atoms with E2g symmetry (Sze et al., 2001). The band observed

around 2695 cm�1 as a rising peak in the spectrum of EF1500
and a broad modulated bump of the three Raman bands (in
EF700, EF900, EFAC) is the overtone of the first order bands

usually referred to as Gꞌ or 2D peak. Generally, the ratio of
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intensities of D and G bands (ID/IG) provides information
about the size and structural network of the graphite crystals.
The relative peak intensity of D and G peaks are given in

Table S2. Another band (Dꞌ peak) appeared around
1600 cm�1 that merged with the G band in all four samples,
are similar to very small and disordered crystals with little

three-dimensional order as reported previously (McCulloch
et al., 1994). Furthermore, while considering the bandwidth
(full width at half maximum, FWHM) of the peaks D and

G, usually the ordered crystals acquire cD and cG values in
the range of 60–65 cm�1 and 25–50 cm�1, respectively
(Escribano et al., 2001). Here, the cD value of EF700 and
EF900 was approximately 270 cm�1, representing a disordered

carbon structure and the values decreased to approximately
190 cm�1 and 100 cm�1 for the samples EFAC and EF1500,
respectively. Thus, the decreasing bandwidth of the D peak

for the activated and carbonized foams at high temperature
indicates the ordering of the graphitic crystallite domains in
the sample. Moreover, the merging of the G and Dꞌ peak

increases the width of the G peak with the cG value around
110 cm�1 for EF700 and EF900, 93 cm�1 for the activated
sample (EFAC) and 75 cm�1 for the sample carbonized at high

temperature (EF1500). These values further indicate that the
CF possessed a structure with little in-plane graphitic order
and negligible three-dimensional ordering. Besides, the broad
and low intensity of the 2D peak indicates an irregular or dis-

ordered arrangement of the graphitic framework.
The reason for the existence of the D peak is still not clear.

According to Tuinstra and Koenig (Tuinstra and Koenig,

1970), the ratio of the peak intensity of D and G bands is
inversely proportional to the size of the graphitic crystallites
present in the sample i.e. ID/IG = C/La, where C = 4.4 nm

for an excitation wavelength of 515.5 nm and La is the size
of the crystallite. Later, Ferrari and Robertson (Ferrari and
Robertson, 2000) reported that the T-K rule was no longer

valid for amorphous carbon since increasing defects and reduc-
ing La below 2.5 nm, the decreased number of ordered rings
are indicated by a smaller D-band (ID/IG a La

2), therefore the
D-band and the intensity ratio (ID/IG) decreases with increas-

ing amorphization. This fact was further confirmed by Jurkie-
Fig. 11 (a) Zeta potential of carbonized (EF900) and activated CF

(EF700, EF900) and activated CFs (EFAC1, EFAC2).
wicz et al. (Jurkiewicz et al., 2018) while investigating the
structure of glassy carbon produced at temperatures below
1000 �C. Thus, the shorter D-band and the decreased intensity

ratio of the CF prepared at low temperatures (EF700, EF900)
represented the disordered sp2 bonded carbon with distorted
pentagonal, hexagonal folded rings or rings of other orders.

At higher temperatures (EFAC and EF1500), the development
of the D-band and increased intensity ratio indicated the
ordering of hexagonal carbon network or graphene layers to

a certain extent. Thus, both the carbonized and activated CF
had a turbostratic structure with small or disordered crystals
with little or no three-dimensional ordering.

3.9. Zeta potential and wettability

Fig. 11a shows the zeta potential of powdered carbon foams in
solutions of different pH. The pH-dependent surface charge

provided insight into the surface functional groups of the
CF. The pH at which the zeta potential equals zero is called
the isoelectric point (pHiep). The zeta potential of carbonized

(EF900) and activated CF (EFAC1 & EFAC2) declined
from + 12 mV to �24 mV, +21 mV to �23 mV,
and + 21 mV to �22 mV, respectively, when the pH of the

solution was increased from 3 to 9. It can also be observed that
all three samples displayed zeta potential values of approxi-
mately �20 mV at pH 7.0. Extrapolation to the pH-axis
yielded an estimate of pHiep of 3.7 for the carbonized

(EF900) and 4.5 and 4.0 for the activated samples EFAC1
and EFAC2, respectively. The activation process shifted the
pHiep towards higher values and it was apparent that the acti-

vation by CO2 increased the surface basicity of the samples.
Contact angles measured using a polar liquid (deionized

water) were found to be dependent on the pyrolysis and/or

activation process as shown in Fig. 11b. The reported angles
measured were based on the Circle and Young-Laplace meth-
ods (Carrier and Bonn, 2015) and their results are shown in

Table S3. A significant decrease in the contact angle was
observed for the activated CFs (EFAC1 & EFAC2). The
ACF prepared by the two-step process were super-
hydrophilic due to their specific porosity and surface
s (EFAC1, EFAC2) at varying pH; (b) Wettability of carbonized
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functional groups introduced during the CO2 activation.
Carbon-oxygen was the most important surface groups that
influenced the surface characteristics, i.e., wettability of the

material. Here, activation increased the pHiep to 4 and 4.5,
possibly due to the presence of basic surface functional groups
that could improve the hydrophilicity of the material. Thus,

the decrease of the contact angle (increasing hydrophilicity)
could be attributed to the activation by CO2, since it modified
the carbon surface via the introduction of oxygen surface func-

tional groups.

3.10. Equilibrium adsorption study

The adsorption isotherms allowed for evaluation of the nature
of the adsorption process of MB on ACFs. The adsorption iso-
Fig. 12 Langmuir isotherms for the adsorption of MB on (a) EFAC1

equilibrium (mg/g); Ce is the equilibrium concentration of MB (mg/L

Table 6 Isotherm parameters for the adsorption of MB on ACFs.

Langmuir model

qm (mg/g) KL (L/mg)

EFAC1 592 0.42

EFAC2 437 0.92

The coefficients of Langmuir and Freundlich isotherm were calculated us

method).

Table 7 Adsorption capacities of MB of various previously reporte

Adsorbent Precursor Activatin

Carbon foams Polyurethane elastomer - sucrose CO2

Sucrose Steam

Spruce bark extracts ZnCl2
PU foam – activated carbon Only carb

Other activated carbon Coconut shell NaOH

Commercial sucrose KOH

Fishery waste NaOH

Waste black tea H3PO4

Date press cake KOH

Sucrose CO2
therms of MB on ACF plotted with the linearized Langmuir
and Freundlich models are shown in Fig. S1. The comparison
of the correlation coefficient (R2) of the linear fits suggests that

the Langmuir model (Fig S1a & b) yielded a better fit
(R2 = 0.9998) for the experimental equilibrium adsorption
data than the Freundlich model. This indicates that the

adsorbed MB formed a monolayer on the activated carbon
surface and adsorption sites possessed uniform adsorption
energies (Chen et al., 2016). Fig. 12a & b represent the MB

adsorption isotherms (non-linear fits of the Langmuir and Fre-
undlich equations) of the ACFs and the coefficients of the
Langmuir and Freundlich models are given in Table 6. The
maximum adsorption capacity of EFAC1 and EFAC2 was cal-

culated from the non-linear Langmuir equation as 592 mg/g
and 437 mg/g, respectively. The separation factor indicated
and (b) EFAC2. In this figure, qe is the amount of MB adsorbed at

)

Freundlich model

RL range KF (mg/g) n (L/mg)

0.001 – 0.015 281.6 4.78

0.0008 – 0.0067 223.8 6.08

ing non-linear regression (Orthogonal Distance Regression Iteration

d adsorbents and the as-prepared CF.

g agent SBET (m2/g) qm (mg/g) References

2172; 633 592; 437 Current work

601 85 (Varila et al., 2019)

1495 240 (Varila et al., 2020)

onization 655 100 (Li and Liu, 2012)

876 200 (Delle Site, 2001)

1534 704 (Bedin et al., 2016)

1868 185 (Marrakchi et al., 2017)

2054 402 (Borah et al., 2015)

2633 547 (Heidarinejad et al., 2018)

1012 211 (Bedin et al., 2018)
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strong interaction between the MB and the ACF adsorbent
and showed that adsorption was favourable (0 < RL < 1).

The high surface area EFAC1 (2172 m2/g) resulted in the

highest qm, while the highest affinity (KL) towards MB was
observed in the case of EFAC2. Some of the micropores in
the adsorbent were too small for the diffusion of MB mole-

cules (1.7 nm); however, larger micropores and mesopores
could easily adsorb MB molecules, increasing adsorption
capacity. Both adsorbents showed good adsorption capacity

due to their hierarchical pore structure, especially in the case
of EFAC1 as it contained more micro- and mesopores.
Although the surface area and the pore structure of activated
carbon are crucial to accommodate the adsorbed MB, the

presence of surface functional groups also played a vital role
in increasing the adsorption capacity. The lower surface area
EFAC2 (633 m2/g) also allowed good adsorption capacity

(qm = 437 mg/g) and high affinity (KL = 0.92 L/mg), possibly
due to more basic surface functional groups than in the case of
EFAC1, as confirmed by the wettability test. Moreover,

EFAC2 contained more oxygen and hydrogen than EFAC1,
as discussed in Section 3.2 (Table 3). Table 7 presents a sum-
mary of the adsorption capacities of the various adsorbents

for MB. The adsorption capacities of ACFs were comparable
to, or greater than some adsorbents reported in the literature.

4. Conclusion

This study reports the preparation and characterization of
activated carbon foams using acid-catalyzed carbonization in
polyurethane elastomer templates, followed by activation in

CO2. The objective was to provide a basis and platform syn-
thesis process for further improvement and explore potential
applications for the synthesized material such as adsorption

and catalysis. The obtained ACFs have a hierarchical pore
structure and exhibit a non-graphitized, turbostratic carbon
nanostructure. A population of nanometre- and micrometre-

sized carbon spheres are dispersed in the obtained CFs. Two
activation processes were evaluated: one-step, direct activation
in CO2 and two-step activation in N2 and CO2. The yield of

ACF was higher when direct, one-step activation was used;
furthermore, direct activation at 1000 �C in CO2 for 100 min
yielded ACF with high surface area (2127 m2/g). The temper-
ature and time of activation played a significant role in obtain-

ing ACF with good surface properties. Equilibrium adsorption
of methylene blue (MB) was best described by the Langmuir
isotherm model with a maximum adsorption capacity of

592 mg/g. One-step activation is simpler and appears more
economical than two-step activation. Based on the high sur-
face area, hierarchical pore configuration and excellent adsorp-

tion capacity of MB, the as-prepared ACFs obtained via one-
step activation have the potential as an adsorbent or catalyst
support. Further surface modification might enable applica-
tions in wastewater treatment.
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