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Abstract: Glassy carbon foam (GCF) catalyst supports were synthesized from waste polyurethane
elastomers by impregnating them in sucrose solution followed by pyrolysis and activation (AC) using
N2 and CO2 gas. The palladium nanoparticles were formed from Pd(NO3)2. The formed palladium
nanoparticles are highly dispersive because the mean diameters are 8.0 ± 4.3 (Pd/GCF), 7.6 ± 4.2
(Pd/GCF-AC1) and 4.4 ± 1.6 nm (Pd/GCF-AC2). Oxidative post-treatment by CO2 of the supports
resulted in the formation of hydroxyl groups on the GCF surfaces, leading to a decrease in zeta
potential. The decreased zeta potential increased the wettability of the GCF supports. This, and the
interactions between –OH groups and Pd ions, decreased the particle size of palladium. The catalysts
were tested in the hydrogenation of nitrobenzene. The non-treated, glassy-carbon-supported catalyst
(Pd/GCF) resulted in a 99.2% aniline yield at 293 K and 50 bar hydrogen pressure, but the reaction
was slightly slower than other catalysts. The catalysts on the post-treated (activated) supports showed
higher catalytic activity and the rate of hydrogenation was higher. The maximum attained aniline
selectivities were 99.0% (Pd/GCF-AC1) at 293 K and 98.0% (Pd/GCF-AC2) at 323 K.

Keywords: glassy carbon foam; nitrobenzene; palladium; conversion

1. Introduction

The reduction of nitrobenzene is a commonly used process for aniline production [1–5].
About 70% of aniline is used for polyurethane production and the rest is applied in the
pharmaceutical and dye industry. Catalytic hydrogenation is an established method for
aniline production in the chemical industry. The hydrogenation of nitro compounds is a
complicated reaction due to the formation of many intermediates and by-products; thus,
the production of a catalytically active and selective catalyst is a challenge for catalyst
researchers [6,7]. Carbon-based catalysts (mainly activated carbon or carbon nanotubes)
are commonly used for this purpose, taking advantage of their high specific surface area,
chemical and mechanical resistance, and good adsorption properties [8–11]. Both noble
and transition metals are used as catalytically active metals, and their combinations and
alloys are also applicable [12–15].

Carbon black (CB) is a popular catalyst support due to its properties and low price. It
has already been shown that it is suitable for the preparation of a hydrogenation catalyst
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with high conversion and selectivity [16,17]. However, it is of interest to explore if a three-
dimensional form of amorphous carbon (such as a glassy carbon foam) can provide any
advantageous properties, as it may conceivably have better properties than a simple carbon
black catalyst.

Glassy carbon foam (GCF) is a special, hard, turbostratic carbon structure that is
unique among the different carbon structures. It is known as a highly porous material with
an outstanding specific surface area and high electrical and thermal conductivity [18,19].
Moreover, the structure can be modified by doping or with different coatings to improve
mechanical, thermal, and other properties [20,21]. The number of oxygen-containing
surface functional groups can also be increased, which can provide stronger interactions
with other materials, such as catalytically active metals [22,23]. GCFs are mostly applied
as thermal and acoustic insulation, adsorbent filters for molten metal alloys, a substrate
for biological applications, and electrode material [24–27]. Glassy carbon foams may be
a promising support for catalysts, owing to their large specific surface area and strong
surface interactions due to the oxygen-containing surface functional groups. However,
there is little literature about a catalytic application (except in electrocatalysis).

In this paper, a glassy carbon foam supported Pd catalyst was tested in nitroben-
zene hydrogenation as a model reaction of nitro compound hydrogenation. The tests
were carried out at different temperatures to examine temperature dependence and for
kinetic calculations.

2. Materials and Methods

The glassy carbon foams were prepared as reported in our recent work [28]. In brief,
the post-industrial waste polyurethane elastomer (Elastico Kft., Miskolc, Hungary) as a
sacrificial template was immersed in 2.5 g/mL concentrated sucrose (Magyar Cukor Zrt.,
Koronás TM, Kaposvár, Hungary) and 2.8% (v/v) dilute sulphuric acid solution (VWR
International Kft., Debrecen, Hungary) to prepare the precursor. The waste foams were
soaked in the sucrose solution for 12 h followed by atmospheric drying overnight and
oven-drying at 383 K for 10 h. The impregnated polyurethane elastomers were directly
activated in a CO2 atmosphere (Messer Group GmbH, Siegen, Germany) with a flow rate
of 200 mL/min at 1273 K and a heating rate of 10 K/min with a dwell time of 100 min
(denoted as ‘GCF-AC1’). In the other case, the impregnated foams were first carbonized at
1173 K at a heating rate of 10 K/min for 1 h in N2 (Messer Group GmbH, Siegen Germany),
with a flow rate of 200 mL/min (denoted as GCF), followed by activation in CO2 in the
above-mentioned activation condition (denoted as GCF-AC2).

The Pd nanoparticles were prepared using Pd(II)-nitrate dihydrate (Sigma-Aldrich,
Budapest, Hungary; Pd(NO3)2 × 2 H2O, 40% Pd basis) as a precursor with water as a
solvent, and hydrogen gas (Messer 4.5) for activation.

The glassy carbon foam samples (0.8988 g) were impregnated in a palladium-nitrate
solution (0.1125 g/10 mL dist. water). The water evaporated from the solid phase after the
samples were dried at 393 K overnight. The palladium-impregnated carbons were calcined
in a nitrogen atmosphere (flowrate: 50 scm N2) at 673 K (30 min) after the samples were
hydrogenated in hydrogen flow (50 scm H2) for one hour.

SEM images of the glassy carbon foams were fabricated by a Hitachi 4800 instrument
and the samples were fixed with carbon tape rubber. Catalysts containing palladium
were examined by high-resolution transmission electron microscopy (HRTEM, FEI Technai
G2 electron microscope, 200 kV) to explore the morphology and particle size of the Pd
nanoparticles. Sample preparation was performed by dropping an aqueous suspension of
the catalyst samples on 300 mesh copper grids (lacey carbon, Ted Pella Inc., Redding, CA,
USA). The diameters of the nanoparticles were measured on the HRTEM images, based on
the original scale bar using ImageJ software.

X-ray diffraction (XRD) measurements were carried out with a Bruker D8 Advance
diffractometer (Cu-Kα source, 40 kV and 40 mA, with Vantec 1 detector) to identify and
quantify the palladium.
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Identification of the surface functional groups was performed with a Bruker Vertex
70 Fourier transform infrared spectroscopy (FTIR) spectrometer. Measurements were
applied in KBr pellets (5 mg sample in 250 mg KBr) in an interval of 400–4000 cm−1 and
the resolution was 4 cm−1 next to a 16 min−1 scan rate.

Zeta potential measurements were carried out in the aqueous phase (2 mg sample in
50 mL distilled water) with Malvern Zeta Sizer Nano Zs equipment, using laser Doppler mi-
croelectrophoresis. Zeta potential calculation was performed based on the electrophoretic
mobility measurement using Henry’s equation.

The hydrogenation of nitrobenzene (c = 0.25 mol/dm3 in methanolic solution) was
carried out in a 200 mL Büchi Uster Picoclave reactor using 0.10 g catalyst. The pressure
of hydrogenation was constant (20 bar), and the reaction temperature was set to 283, 293,
303, or 323 K. The rotational speed of agitation was 1000 rpm. Sampling occurred after the
beginning of the reaction at 0, 5, 10, 15, 20, 30, 40, 60, 80, 120, 180, and 240 min. The quan-
titative analysis of the samples was carried out by an Agilent 7890A gas chromatograph
coupled with an Agilent 5975C mass-selective detector. The separation was performed
on an RTX-624 column (60 m × 0.25 mm × 1.4 µm). The injected sample volume was
1 µL at a 200:1 split ratio, while the inlet temperature was set to 473 K. Helium was the
carrier gas with a constant flow (2.28 mL/min) and the oven temperature was set to 323 K
for 3 min and then heated to 523 K, with a heating rate of 10 K/min, for another 3 min.
The analytical standards of the main product, the by-products, and the intermediates’
standards originated from Sigma Aldrich (St. Louis, MO, USA) and Dr. Ehrenstorfer Ltd.
(Hong Kong).

The efficiency of the catalyst was determined during the catalytic hydrogenation of
nitrobenzene to aniline by calculating the conversion (X %) of nitrobenzene based on the
following equation (Equation (1)):

X % =
consumed nnitrobenzene

initial nnitrobenzene
· 100 (1)

The process of nitrobenzene hydrogenation is interpretable as a first-order reaction [29–31].
Based on the initial and final nitrobenzene concentrations (c0 and ck, mol/dm3), the reaction
rate constant (k) was calculated at different temperatures by non-linear regression based
on the following equation (Equation (2)):

ck = c0· exp(−k·t) (2)

Furthermore, the yield (Y %) of the aniline was calculated as follows (Equation (3)):

Y % =
naniline

nnitrobenzene
· 100 (3)

where naniline and nnitrobenzene are the corresponding chemical amounts of the compounds.

3. Results and Discussion
3.1. Characterization of Glassy Carbon Foam Catalyst Supports

The 3D structure of the glassy carbon foam samples was examined by the SEM
technique. The SEM picture of the GCF shows that a porous structure arose from the
application of the polyurethane template during the synthesis (Figure 1A). The GCF sample
prepared only by pyrolysis in a nitrogen flow at 1173 K resulted in a specific surface area of
370 m2/g. After heat treatment of the impregnated foams in a CO2 atmosphere at 1273 K,
the structure of the carbon foam was changed (Figure 1B,C). The fibrous structure was
missing in the case of the GCF-AC1; instead, spherical particles were visible in each case,
which built up the three-dimensional carbon cluster. The structural change was noticeable
due to the extreme increase in the specific surface area from 370 (GCF) to 2172 m2/g (GCF-
AC1). The GCF-AC2 sample, which was treated in nitrogen at 1173 K and then activated
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in carbon-dioxide at 1273 K, did not show any structural changes compared with the
GCF-AC1 (Figure 1C). However, the BET surface area of the GCF-AC2 was only 633 m2/g.
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Figure 1. SEM pictures of the 3D structure of the glassy carbon foams, GCF (A), GCF-AC1 (B), and GCF-AC2 (C).

3.2. Characterization of the Palladium-Decorated Glassy Carbon Foam Samples

The morphology and particle size of the palladium nanoparticles on the GCF supports
were examined by the HRTEM technique. The HRTEM image of the three catalysts showed
several approximately spherical palladium nanoparticles with small particle diameters
(Figure 2A–C). The surface of the supports was covered homogeneously with Pd particles.
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Size distribution analysis was applied to the three catalysts (Table 1). The particle
size distribution in the case of the Pd/GCF and the Pd/GCF-AC1 catalysts was similar
(Figure 2D), despite the varying BET surface area (370 and 2172 m2/g, respectively) of
these catalyst supports. In contrast, the BET surface area of GCF-AC2 (633 m2/g) was
less than that of GCF-AC1 (2172 m2/g), and yet the particle size of this catalyst was the
smallest (Table 1).
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Table 1. Statistics for the particle size of palladium.

Pd/GCF Pd/GCF-AC1 Pd/GCF-AC2

Mean with Std. (nm) 8.0 ± 4.3 7.6 ± 4.2 4.4 ± 1.6
Min. diameter (nm) 3.1 2.8 2.3
Max. diameter (nm) 30.1 21.4 10.2

1st quartile (nm) 5.3 4.5 3.3
3rd quartile (nm) 9.2 9.3 5.1

An increased specific surface area enhances the force of adsorption interaction between
the sorbent and the metal particles. However, other mechanisms play a role during
sorption processes, namely ion exchange interactions, surface complexation or electronic
interactions, and p-d hybridization. The strength of adsorption interactions influences the
particle size by reducing surface migration, thereby increasing crystallite growth, which is
why FTIR and zeta potential measurements are necessary.

FTIR is a useful technique for the identification of the surface functional groups
(Figure 3A). On the spectrum of untreated GCF, a band at 1010 cm−1 was located that
belonged to the C–O stretch vibration mode of the hydroxyl groups, while νOH vibration
resulted in a band at 3440 cm−1. Peaks at 2885 and 2949 cm−1 wavenumbers signalled the
presence of C–H stretching, which is typical for other GCF samples. The C=C stretching
vibration resulted in adsorption peaks of 1630 cm−1 for all three samples. The βOH band
was noticeable on the spectra of the GCF-AC1 and GCF-AC2 samples, which were activated
by carbon-dioxide. The hydroxyl groups can be deprotonated, thus decreasing the zeta
potential of the carbons. The most negative value was measured in GCF-AC2, which
was −21.1 mV (Figure 3B). The oxidation improved the negative charge of the surface
and the wettability of the GCF. The surface functional groups, mainly the –OH groups,
advantageously influenced the anchoring of the platinum particles on the glassy carbon
surface, which can decrease the particle size of palladium. Pd particle size was the smallest,
4.4 ± 1.6 nm, on the surface of GCF-AC2 (Table 2). Palladium ions prefer the –OH groups
on carbon surfaces as adsorption sites and coordination or ion-exchange interaction thereby
occurs between –OH groups and precious metal ions, which serve as nucleation sites for
nanoparticles [30,31]. Moreover, the –OH groups can stabilize the anchoring of the metal
cluster because, at these electron densities, hybridization between the precious metal d and
carbon p orbitals are relatively more favored [32]. In this sense, the particle size of the Pd
particles can be controlled by the concentration of –OH groups on the carbon support.
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Table 2. Reaction rate constants (k) in s−1 dependence on the reaction temperature.

283 K 293 K 303 K 323 K

Pd/GCF 2.5 × 10−4 ± 1.3 × 10−5 5.2 × 10−4 ± 1.6 × 10−5 5.7 × 10−4 ± 3.6 × 10−5 8.2 × 10−4 ± 6.3 × 10−5

Pd/GCF-AC1 5.6 × 10−4 ± 3.4 × 10−5 7.3 × 10−4 ± 5.9 × 10−5 1.2 × 10−3 ± 1.0 × 10−4 1.8 × 10−3 ± 1.3 × 10−4

Pd/GCF-AC2 9.7 × 10−4 ± 5.4 × 10−5 9.1 × 10−4 ± 7.2 × 10−5 1.9 × 10−3 ± 2.0 × 10−4 3.2 × 10−3 ± 1.6 × 10−4

The presence of elemental palladium on the surfaces was confirmed by XRD mea-
surements, as can be seen in Figure 4. On the diffractograms of the three catalysts, the
identified reflections are attributed to the crystalline phases of Pd0 (Figure 4). On the XRD
patterns, the Pd (111), Pd (200), Pd (220), Pd (311), and Pd (222) reflections are visible
at 40.06◦, 46.5◦, 68.1◦, 82.1◦, and 86.5◦ two-theta degrees. Based on the XRD results, the
hydrogenation of Pd ions during the catalyst preparation was efficient. Based on the
pattern deconvolution by Rietveld refinement, we could not identify the oxidized form
of the palladium. Two carbon phases were identified in the catalysts: glassy carbon and
nanocrystalline graphite. The reflection at 20.7◦ two-theta degrees belonged to the glassy
carbon. Two reflexions of the graphite were identified at 25.2◦ (002) and at 44.4◦ (101)
two-theta degrees.
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3.3. Catalytic Tests of the Glassy Carbon Foam Catalysts Containing Palladium

All catalysts were compared in terms of their catalytic activities in the hydrogenation
of nitrobenzene to aniline. The total nitrobenzene conversion reached in all the cases
is shown in Figure 5A–C. The non-treated, carbon-foam-supported palladium catalyst
(Pd/GCF) resulted in a smaller hydrogenation rate than the other two catalysts; i.e., the
100% nitrobenzene conversion occurred only after 4 h at 50 bar hydrogen pressure and
283 K. By increasing the reaction temperature, the conversion was also increased and, at
323 K, the total nitrobenzene was converted in 2 h. The Pd/GCF-AC1 catalyst fabricated
from the one-step activated (by only CO2) carbon foam showed higher activity than the
non-treated GCF-supported catalyst (Figure 5B). The 100% nitrobenzene conversion was
achieved within 2 h at 283 K (this required 4 h on the Pd/GCF catalyst). By increasing
the temperature from 303 to 323 K, the reaction rate did not show any significant increase
(Figure 5B). An intensified hydrogenation rate occurred on the Pd/GCF-AC2, activated
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in two steps (in N2 after CO2). In this case, the total quantity of the nitrobenzene was
converted after only 60 min of hydrogenation at 283 K and higher temperatures (Figure 5C).
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(A), Pd/GCF-AC1 (B), and Pd/GCF-AC2 (C) catalysts.

The non-linear regression method was used for the calculation of the reaction rate
constants (k) [33]. In the case of the Pd/GCF-AC2, the samples had higher k values
(Table 2).

By applying the reaction rate constants, the activation energy values were calculated
using the Arrhenius plot. The rate constants were plotted as a function of temperature
and the activation energy could then be calculated (Figure 5A–C inserts). The activation
energy was 20.18 ± 4.9 kJ · mol−1 in the case of the Pd/GCF. Similar results were observed
for the other two catalysts, 21.43 ± 2.9 and 22.9 ± 0.9 kJ · mol−1 (Table 3). Considering
the standard deviation values, there was no significant difference between the activation
energies. These values are lower than those found in the literature for catalysts containing
Pd, Pt, or Ru, where activation energies vary between ~25 and ~45 kJ · mol−1 [34–36].

Table 3. The activation energy (Ea) while applying the GCF-supported palladium catalysts.

Pd/GCF Pd/GCF-AC1 Pd/GCF-AC2

Ea (kJ · mol−1) 20.18 ± 4.9 21.43 ± 2.9 22.9 ± 0.9

The hydrogenation process of nitrobenzene towards aniline happens through the
transformation of azoxybenzene (AOB), nitrosobenzene (NOB), and azobenzene (AB)
intermediates (Figure 6A–G). In the case of the Pd/GCF catalyst, the total quantities
of nitrosobenzene were transformed after 4 h, even at low temperatures (Figure 6A).
However, the situation was different with azoxybenzene, as found in the samples fabricated
at low-temperature (283 K) hydrogenation. In this case, the total amount of AOB was
not converted to aniline (Figure 6B). In the case of the Pd/GCF-AC1 catalyst, the NOB
conversion was much faster, as all NOB was reacted from the reaction media in less than
40 min (Figure 6C). After 4 h of hydrogenation, AOB was not detectable in the samples
(Figure 6D). The observation was similar while using Pd/GCF-AC2 in the case of the NOB
and AOB intermediates. Although a new intermediary azobenzene (AB) appeared, which
was not transformed at low temperature (283 K), the temperature increase enhanced the
conversion rate of AB.
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Figure 6. The concentration of the intermediates (nitrobenzene-NOB, azoxybenzene-AOB, and
azobenzene-AB) in the reaction media vs. time of hydrogenation, using Pd/GCF (A,B), Pd/GCF-AC1
(C,D), and Pd/GCF-AC2 (E–G) catalysts.

Based on these results, it is clear that a temperature of 283 K was not high enough to
achieve the total transformation of all intermediates.

Several by-products can be formed during aniline synthesis but, in our experiments,
the following by-products were identified in the samples: N-methylaniline (NMA) and
N-phenyl-cyclohexylamine (PhCA). The formation of the above-mentioned by-products
started after the intermediates were sold out. After exceeding the optimum synthesis time,
methylation of the aniline and condensation and hydrogenation of the aromatic rings began
and NMA and PhCA were formed. In the case of the Pd/GCF sample, NMA production
was enhanced by increasing the temperature; it appeared at 293 K after 3 h, at 303 K after
2 h, and at 323 K after 40 min (Figure 7A). Through the application of Pd/GCF-AC1,
which showed faster nitrobenzene conversion, NMA formed in a higher concentration than
when using the Pd/GCF catalyst (Figure 7B). This tendency increased on Pd/GCF-AC2
catalyst, which resulted in a faster hydrogenation process than the other previous systems
(Figure 7D). Pd/GCF-AC1 and Pd/GCF-AC2 at the higher temperatures (303 and 323 K)
experienced the formation of PhCA in small concentrations, under 2.5 and 1.5 mmol/dm3,
respectively (Figure 7C,E).
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Figure 7. The concentration of by-products: N-methylaniline (NMA) and N-phenyl-cyclohexyl amine
(PhCA) vs. time of hydrogenation at different temperatures using Pd/GCF (A), Pd/GCF-AC1 (B,C),
and Pd/GCF-AC2 (D,E).

The maximum aniline yield while using Pd/GCF catalyst was 99.2% and 98.4% at 293
and 323 K, respectively, after 180 min of hydrogenation (Figure 8A). At higher temperatures,
especially at 303 and 323 K, NMA was formed in addition to aniline, which impaired the
yield. At 283 K, the transformation of azoxybenzene was not completed, which also caused
a decrease in yield. The Pd/GCF-AC1 resulted in 99.0%, 98.6%, and 97.7% aniline yield
after 120 min of hydrogenation at 293, 303, and 323 K, respectively (Figure 8B). However, a
slight decrease in the aniline yield was experienced while increasing the hydrogenation
time. This may be due to the enhanced formation of the by-products (NMA, PhCA). The
maximum aniline yield (98.0%) was reached after 80 min at 323 K when using Pd/GCF-AC2
(Figure 8C). A slight decline could be observed in this case as well, due to the formation of
NMA and PhCA. Moreover, at low temperature (283 K), the azobenzene transformation to
aniline was not completed.
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These results suggest that, for each of the three catalysts, a maximum time should be
set where the full conversion of nitrobenzene occurs without the formation of by-products.
For our experimental setup, the optimal synthesis times and temperatures given at 20 bar
pressure found for the three catalysts are summarized in Table 4.

Table 4. Optimal synthesis parameters in case of each catalysts.

Cat. Type Wt. (g) c (mol/dm3) p (bar) T (K) t (min) Yaniline (%) Ea (kJ/mol)

Pd/GCF
0.10 0.25 20

293 180 99.2 20.18 ± 4.9
Pd/GCF-AC1 293 120 99.0 21.43 ± 2.9
Pd/GCF-AC2 323 80 98.0 22.90 ± 0.9

The selectivity of aniline was above 98 n/n% in the case of the Pd/GCF-AC1 and
Pd/GCF-AC2 catalysts at 323 K (Figure 9). The Pd/GCF-AC catalyst resulted 96.7 n/n%
maximum selectivity at 303 and 323 K, which is also high. Based on the product selectivity,
nitrobenzene conversion, and yield, it can be said that the glassy-carbon-supported palla-
dium catalysts have high catalytic activity and are efficient catalysts. The excellent results
could be explained by the strong interactions between the support and the Pd nanoparticles
through surface functional groups. These groups also provided finer nanoparticles with
better arrangements and, thus, increased the catalytic effectivity of the catalyst [37,38].
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4. Conclusions

Highly efficient glassy carbon foam (GCF)-supported catalysts were developed with
small palladium nanoparticles (dPd < 10 nm). The activation process of the glassy carbon
samples with CO2 led to an increase in specific surface area from 370 to 2172 m2/g, which
is a remarkable value. The CO2 activation of the carbons resulted in a decrease in zeta
potentials, thus providing anchoring of the palladium ions on surfaces of the glassy carbon
foam supports. Another advantage of the negative zeta potentials was that this enhanced
the dispersibility of carbons in an aqueous solution of Pd-nitrate, which provided the
homogenous coverage of GCF supports by Pd particles. Moreover, the negative zeta
potential governed the small size of the Pd particles. The most negative surface potential
was observed in the case of the Pd/GCF-AC2 catalyst, which was activated in two steps
by using N2 after a CO2 atmosphere at 1273 K temperature. The Pd particle size was
the smallest on the surface of the Pd/GCF-AC2 catalyst support. Another reason for
the decreasing particle size was that the –OH groups stabilized the anchoring of the Pd
cluster as, for the electron densities, hybridization between the palladium 4d and carbon
2p orbitals is relatively more favored. Moreover, the palladium ions prefer the –OH
groups on carbon surfaces as adsorption sites, facilitating coordination or ion-exchange
interaction between –OH groups and precious metal ions, which serve as nucleation
sites for nanoparticles. All tested catalysts were efficient during the hydrogenation of
nitrobenzene to aniline. The reaction rate constants (k) were increased in the following
order: Pd/GCF < Pd/GCF-AC1 < Pd/GCF-AC2. A significant difference between the
activation energies (Ea) was not experienced. Aniline yield was more than 98% and the
complete nitrobenzene conversion was achieved in all cases. N-methylaniline (NMA) and
N-phenyl-cyclohexylamine (PhCA) were formed as by-products in small concentrations
(under 11 and 2.5 mmol/dm3, respectively). Formation of the by-products can be reduced
or avoided by the careful choice of synthesis time and temperature; accordingly, the optimal
synthesis parameters were suggested for all of the catalysts. Based on our results, it was
found that the glassy carbon foam as catalyst support is effective for catalytic applications.
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