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In frozen percolation, i.i.d. uniformly distributed activation times
are assigned to the edges of a graph. At its assigned time, an edge
opens provided neither of its endvertices is part of an infinite open
cluster; in the opposite case, it freezes. Aldous (2000) showed that
such a process can be constructed on the infinite 3-regular tree and
asked whether the event that a given edge freezes is a measurable
function of the activation times assigned to all edges. We give a neg-
ative answer to this question, or, using an equivalent formulation
and terminology introduced by Aldous and Bandyopadhyay (2005),
we show that the recursive tree process associated with frozen perco-
lation on the oriented binary tree is nonendogenous. An essential
role in our proofs is played by a frozen percolation process on a
continuous-time binary Galton Watson tree that has nice scale in-
variant properties.

1. Introduction.

1.1. Frozen percolation on the 3-regular tree. Let (T,E) be a regular tree
where each vertex has degree 3, and let U = (Ue)e∈E be an i.i.d. collection of
uniformly distributed [0, 1]-valued random variables, indexed by the edges
of the tree. We write Et := {e ∈ E : Ue ≤ t} (t ∈ [0, 1]). Aldous [Ald00] has
proved the following theorem.

Theorem 1 (Frozen percolation on the 3-regular tree). It is possible to
couple U to a random subset F ⊂ E with the following properties:
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(i) e 6∈ F if and only if no endvertex of e is part of an infinite cluster of
EUe\(F ∪ {e}).

(ii) The law of (U , F ) is invariant under automorphisms of the tree.

At time t ∈ [0, 1], we call edges in Et\F open, edges in Et ∩ F frozen,
and all other edges closed. Then property (i) can be described in word as
follows. Initially all edges are closed. At its activation time Ue, the edge
e opens provided neither of its endvertices is at that moment part of an
infinite open cluster; in the opposite case, it freezes.

It is not known if properties (i) and (ii) uniquely determine the joint law
of (U , F ). However, it is possible to obtain an object that is unique in law by
adding one natural additional property. To formulate this, we view T as an
oriented graph (T, ~E) where ~E :=

{
(v, w), (w, v) : {v, w} ∈ E

}
contains two

oriented edges for every unoriented edge in E. A ray is an infinite sequence
of oriented edges (vn, wn)n≥0 such that vn = wn−1 and wn 6= vn−1 (n ≥ 1).
We let

(1.1)
~E(v,w) :=

{
(v′, w′) :∃ a ray (vn, wn)n≥0 and m ≥ 0

s.t. (v0, w0) = (v, w) and (vm, wm) = (v′, w′)
}

denote the union of all rays that start with (v, w), and we let E(v,w) :={
{v′, w′} : (v′, w′) ∈ ~E(v,w)

}
denote the associated set of unoriented edges.

For each subset S of T , we let

(1.2) ∂S :=
{

(v, w) ∈ ~E : v ∈ S, w ∈ T\S
}

denote the collection of oriented edges pointing out of S, and we let ES :={
{v, w} ∈ E : v ∈ S and w ∈ S

}
denote the set of edges induced by S. We

say that S is a subtree if its induced subgraph (S,ES) is a tree.
Let U = (Ue)e∈E be as before and let ~Et := {(v, w) ∈ ~E : U{v,w} ≤ t} (t ∈

[0, 1]). The existence part of the following theorem was proved in [Ald00],
but the uniqueness part is new.

Theorem 2 (Frozen percolation on the oriented 3-regular tree). It is
possible to couple U to a random subset ~F ⊂ ~E with the following properties:

(i) (v, w) ∈ ~F if and only if there exists a ray (vn, wn)n≥0 with (v0, w0) =
(v, w) and (vn, wn) ∈ ~EU{v,w}\~F for all n ≥ 1.

(ii) The law of (U , ~F ) is invariant under automorphisms of the tree.
(iii) Let U(v,w) := (Ue)e∈E(v,w)

and ~F(v,w) := ~F ∩ ~E(v,w). Then, for each

finite subtree S ⊂ T , the random variables (U(v,w), ~F(v,w))(v,w)∈∂S are
independent of each other and of (Ue)e∈ES .
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These properies uniquely determine the joint law of (U , ~F ). Moreover, setting
F :=

{
{v, w} ∈ E : (v, w) ∈ ~F or (w, v) ∈ ~F

}
defines a pair (U , F ) with

properties (i) and (ii) of Theorem 1.

In this paper, our main interest is not in uniqueness in law but rather
in almost sure uniqueness. In [Ald00, Section 5.7], Aldous asked whether
the set F of frozen edges is measurable w.r.t. the σ-field generated by U ,
and cautiously conjectured that this might indeed be the case. In [AB05,
Thm 55], an apparent proof of this conjecture by Bandyopadhyay was an-
nounced that appeared on the arXiv [Ban04] but turned out to contain an
error. In the last posted update of [Ban04] from 2006, Bandyopadhyay re-
ported on numerical simulations (similar to those shown in Figure 3 below)
that suggested nonuniqueness, and from this moment on this seems to have
been the generally held belief. We finally settle the issue by proving this.

Theorem 3 (Frozen percolation is not almost sure unique). Let (U , F )
be the pair defined in Theorem 2 and let F ′ be a copy of F , conditionally
independent of F given U . Then F 6= F ′ a.s. In particular, the random
variable F is not measurable w.r.t. the σ-field generated by U .

The proofs of Theorems 2 and 3 will be given in Subsection 3.7.

1.2. Frozen percolation on the oriented binary tree. For a given oriented
edge (v, w) ∈ ~E of the 3-regular tree, the set ~E(v,w) of oriented edges that
lie on rays starting with (v, w) can naturally be labeled with the space T
of all finite words i = i1 · · · in (n ≥ 0) made up from the alphabet {1, 2}.
We call |i| := n the length of the word i and denote the word of length
zero by ∅, which we distinguish notationally from the empty set ∅. The
concatenation of two words i = i1 · · · in and j = j1 · · · jm is denoted by
ij := i1 · · · inj1 · · · jm.

Apart from using T to label oriented edges as above, we can also interpret
T as labeling the vertices of a binary tree with root ∅, in which each vertex
i has two descendants i1, i2 and each vertex i = i1 · · · in (n ≥ 1) except the

root has a unique predecessor
←
i := i1 · · · in−1. By definition, a ray starting

at i is a sequence (in)n≥0 such that i0 = i and
←
in = in−1 (n ≥ 1). For any

A ⊂ T and i ∈ T, we write i
A−→ ∞ if there exists a ray (in)n≥0 with i0 = i

and in ∈ A (n ≥ 0).
We write i ≺ j if j = ik for some k ∈ T. By definition, a rooted subtree of

T is a set U ⊂ T with the property that i ≺ j ∈ U implies i ∈ U. For each
nonempty rooted subtree U of T, we let ∂U := {i ∈ T\U :

←
i ∈ U} denote the
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boundary of U relative to T, and we use the convention that ∂U = {∅} if
U = ∅.

Let τ = (τi)i∈T be an i.i.d. collection of uniformly distributed [0, 1]-valued
random variables. In the picture where elements of T label oriented edges
in ~E(v,w), this corresponds to the collection of activation times (Ue)e∈E(v,w)

.
Using the same picture, let (Xi)i∈T be a collection of real random variables,
which correspond to the first time when there is an infinite open ray of edges
starting with a given oriented edge, with Xi := ∞ if this never happens.
Note that Xi takes values in I := [0, 1]∪ {∞}. By properties (ii) and (iii) of
Theorem 2, for each finite rooted subtree U ⊂ T,

(1.3) the r.v.’s (Xi)i∈∂U are i.i.d. and independent of (τi)i∈U.

Using also property (i), it is easy to see that the random variables (Xi)i∈T
satisfy the inductive relation (compare [AB05, formula (65)])

(1.4) Xi = γ[τi](Xi1, Xi2) (i ∈ T),

where γ : [0, 1]× I2 → I is defined as

(1.5) γ[t](x, y) :=

{
x ∧ y if x ∧ y > t,

∞ otherwise.

Generalising from the set-up of Theorem 2, we will more generally be inter-
ested in collections of random variables (τi, Xi)i∈T such that (τi)i∈T are i.i.d.
uniformly distributed on [0, 1] and (1.3) and (1.4) hold. As will be explained
in the next subsection, in the terminology of [AB05], such a collection forms
a Recursive Tree Process (RTP). The theory of RTPs provides us with a
convenient general framework to reformulate and prove Theorems 2 and 3.

1.3. Recursive Tree Processes. Roughly speaking, a Recursive Tree Pro-
cess (RTP) is a stationary Markov chain in which time has a tree-like struc-
ture and flows in the direction of the root. The state at each node of the tree
is a function of the states of its descendants and i.i.d. randomness attached
to the nodes. Following [AB05], we call an RTP endogenous if the state at
the root is measurable w.r.t. the σ-field generated by the i.i.d. randomness
attached to the nodes. It has been shown in [AB05, Thm 11] that endogeny
is equivalent to bivariate uniqueness. We first explain these concepts in a
general setting and then specialise to frozen percolation.

Slightly generalising our previous notation, let T denote the space of all
finite words i = i1 · · · in (n ≥ 0) made up from the alphabet {1, . . . , d}, where
d ≥ 1 is some fixed integer. All previous notation involving the binary tree
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generalizes in a straightforward manner to the d-ary tree T. Let I and Ω be
Polish spaces, let γ : Ω×Id → I be a measurable function, and let (ωi)i∈T be
i.i.d. Ω-valued random variables with common law p. Let ν be a probability
law on I that solves the Recursive Distributional Equation (RDE)

(1.6) X∅
d
= γ[ω∅](X1, . . . , Xd),

where
d
= denotes equality in distribution, X∅ has law ν, and X1, . . . , Xd

are copies of X∅, independent of each other and of ω∅. A simple argument
based on Kolmogorov’s extension theorem (see [MSS20, Lemma 8]) tells us
that the i.i.d. random variables (ωi)i∈T can be coupled to I-valued random
variables (Xi)i∈T in such a way that:

(i) For each finite rooted subtree U ⊂ T, the r.v.’s (Xi)i∈∂U are i.i.d. with
common law ν and independent of (ωi)i∈U.

(ii) Xi = γ[ωi](Xi1, . . . , Xid) (i ∈ T).

Moreover, these conditions uniquely determine the joint law of (ωi, Xi)i∈T.
We call the latter the Recursive Tree Process (RTP) corresponding to the
maps γ and solution ν of the RDE (1.6). By definition, the RTP (ωi, Xi)i∈T
is endogenous if the random variable X∅ is measurable w.r.t. the σ-field
generated by the random variables (ωi)i∈T. It has been shown in [AB05,
Thm 11] that this is equivalent to bivariate uniqueness, as we now explain.

Let P(I) denote the space of all probability measures on I. We can define
a map T : P(I)→ P(I) by

(1.7) T (µ) := the law of γ[ω∅](X1, . . . , Xd),

where X1, . . . , Xd are i.i.d. with law µ and independent of ω∅. In particular,
solutions to the RDE (1.6) correspond to fixed points of T . Similarly, we
can define a bivariate map T (2) : P(I2)→ P(I2) by

(1.8) T (2)(µ(2)) := the law of
(
γ[ω∅](X1, . . . , Xd), γ[ω∅](X∗1 , . . . , X

∗
d)
)
,

where (X1, X
∗
1 ), . . . , (Xd, X

∗
d) are i.i.d. with common law µ(2) and indepen-

dent of ω∅. A trivial way to construct a fixed point of T (2) is to set

(1.9) ν(2) := P
[
(X∅, X∅) ∈ ·

]
where the law ν of X∅ is a fixed point of T . We will refer to ν(2) as the trivial
fixed point or as the diagonal fixed point of T (2) with marginal distribution
ν. A more interesting way to construct a fixed point of T (2) goes as follows.
Let (ωi, Xi)i∈T be the RTP corresponding to the map γ and a fixed point ν
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of T , and let (X ′i)i∈T be a copy of (Xi)i∈T, conditionally independent given
(ωi)i∈T. It follows from [MSS18, Lemma 2 and Prop 4] that

(1.10) ν(2) := P
[
(X∅, X

′
∅) ∈ ·

]
is also a fixed point of T (2). Let us denote by (T (2))n the n-th iterate of the
bivariate map T (2). By [MSS18, Lemma 2 and Prop. 3], one has

(1.11) (T (2))n(ν ⊗ ν) =⇒
n→∞

ν(2).

The following theorem links endogeny to bivariate uniqueness. The essen-
tial idea goes back to [AB05, Thm 11]. In its present form, it follows from
[MSS18, Thms 1 and 5 and Lemma 14]. Below, P(I2)ν denotes the space of
all probability measures on I2 whose one-dimensional marginals are given
by ν. Note that condition (ii) below and formula (1.11) suggest a method to
numerically investigate whether an RTP is endogenous, compare Figure 3
below.

Theorem 4 (Endogeny and bivariate uniqueness). Let (ωi, Xi)i∈T be the
RTP corresponding to a map γ and a solution ν of the corresponding RDE
(1.6). Then the following statements are equivalent:

(i) The RTP (ωi, Xi)i∈T is endogenous.
(ii) ν(2) = ν(2).
(iii) The bivariate map T (2) has a unique fixed point in P(I2)ν .
(iv) (T (2))n(µ(2)) =⇒

n→∞
ν(2) for all µ(2) ∈ P(I2)ν .

Note that since we know that ν(2) and ν(2) are fixed points, the implica-
tions (iv)⇒(iii)⇒(ii) are trivial. The implication (ii)⇒(i) follows from our
characterisation of ν(2) in (1.10), so the essential claim is that (i) implies
(iv).

1.4. Nonendogeny. Specialising from the general set-up of the previous
subsection, we set d := 2 and as our i.i.d. randomness (ωi)i∈T we use an i.i.d.
collection (τi)i∈T of uniformly distributed [0, 1]-valued random variables. We
set I := [0, 1]∪{∞}, and choose for γ : Ω× I2 → I the map defined in (1.5).
Using these objects, we define a map T : P(I) → P(I) as in (1.7). The
associated RDE T (µ) = µ then takes the form (compare (1.6))

(1.12) X∅
d
= γ[τ∅](X1, X2),

where
d
= denotes equality in distribution, X∅ has law µ, and X1, X2 are

copies of X∅, independent of each other and of τ∅. Solutions to the RDE
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(1.12) are not unique. We will describe all solutions of (1.12) in Lemma 33
and Proposition 37 below.

Let (τi, Xi)i∈T be an RTP corresponding to the map γ in (1.5) and an
arbitrary solution to the RDE (1.12). We set

(1.13) Tt :=
{
i ∈ T : τi ≤ t

}
and F :=

{
i ∈ T : τi ≥ Xi1 ∧Xi2

}
,

and define I-valued random variables (X↑i )i∈T by

(1.14) X↑i := inf
{
t ∈ [0, 1] : i

Tt\F−→ ∞
}
,

with X↑i := ∞ if the set on the right-hand side is empty. In line with our

interpretation where elements of T represent oriented edges in ~E(v,w) (with
(v, w) fixed), we say that at time t ∈ [0, 1], points in Tt\F are open, points in
Tt∩F are frozen, and all other points in T are closed. We call τi the activation
time of i and refer to Xi and X↑i as its burning time and percolation time,
respectively. Note that since the subset of [0, 1] on the right-hand side of
(1.14) is a.s. closed (in the topological sense), i percolates at time t if and

only if X↑i ≤ t. Formula (1.13) says that initially, all points i ∈ T are closed.
At its activation time τi, the point i freezes if at that moment one of its
descendants is burnt, and opens otherwise.

It follows from the inductive relation (1.4) that Xi > τi a.s., i.e., a point
i can only burn after its activation time. Comparing the definition of F in
(1.13) with the definition of the map γ in (1.5), we observe that if i burns
at some time Xi ∈ [0, 1], then i must be open at that time. Moreover, by
(1.5), if i burns at some time Xi ∈ [0, 1], then there must be a ray starting
at i of points that burn at the same time as i. In particular, such a ray must
be open, which proves that

(1.15) X↑i ≤ Xi a.s. (i ∈ T).

We will prove Theorem 2 by showing that the opposite inequality holds a.s. if
and only if (τi, Xi)i∈T is the RTP corresponding to one particular solution of
the RDE (1.12). This solution is described by the following lemma, which we
cite from [Ald00, Lemma 3]. Note that (1.16) below implies that ν({∞}) =
1
2 .

Lemma 5 (Special solution to the RDE). Let ν denote the probability
measure on I defined by

(1.16) ν
(
(t, 1] ∪ {∞}

)
:= 1 ∧ 1

2t

(
t ∈ [0, 1]

)
.

Then ν solves the RDE (1.12).
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We will deduce Theorem 2 from the following, more precise theorem.
Aldous proved the “if” part of the statement below in [Ald00], but the
“only if” part is new. Theorem 6 is proved in Subsection 3.5.

Theorem 6 (Frozen percolation on the oriented binary tree). Consider
an RTP (τi, Xi)i∈T corresponding to the map γ in (1.5) and an arbitrary

solution µ to the RDE (1.12). Let (X↑i )i∈T be defined as in (1.14). Then one

has X↑∅ = X∅ a.s. if and only if µ = ν, the measure defined in (1.16).

Using the language of RTPs, we can formulate our main result as follows.
Theorem 3 will follow from the theorem below in a straightforward manner
using methods from [Ald00]. Theorem 7 is proved in Subsection 3.2.

Theorem 7 (Frozen percolation on the binary tree is nonendogenous).
The RTP (τi, Xi)i∈T corresponding to the map γ from (1.5) and the law ν
from (1.16) is nonendogenous.

Because of Theorem 4 (iii), to prove Theorem 7, it suffices to show that the
bivariate RDE has, apart from the trivial solution ν(2), at least one more
solution in the space P(I2)ν . We will explicitly identify such a solution
in formula (3.86) below, so in principle the proof of Theorem 7 can be
completed by checking directly that the measure in (3.86) solves the bivariate
RDE and has the right marginals.

We will follow a somewhat less direct approach, which will yield the ad-
ditional information that the measure in (3.86) is indeed ν(2). Perhaps more
importantly, our approach explains why our formula (3.86) has the special
form that it has. First, we change the problem, replacing frozen percolation
on the oriented binary tree by frozen percolation on a continuum tree that
we will call the Marked Binary Branching Tree (MBBT), and replacing the
inductive relation (1.4) by (1.29). The advantage of the MBBT is that it
enjoys a nice scaling property, detailed in Proposition 9 and Lemma 11 be-
low, that will significantly simplify our analysis. Once we have found the
nontrivial solution ρ(2) to the bivariate RDE for frozen percolation on the
MBBT, a simple trick, explained in Subsection 3.5, also allows us to identify
the measure ν(2) that we were originally interested in.

1.5. The Marked Binary Branching Tree. Roughly speaking, the marked
binary branching tree is the family tree of a continuous-time, rate one binary
branching process, equipped with a marked Poisson point process of intensity
one and uniformly distributed [0, 1]-valued marks. We now introduce this
object more formally.
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FROZEN PERCOLATION ON THE BINARY TREE IS NONENDOGENOUS 9

Let (Ah)h≥0 be a continuous-time branching process, started with a single
particle, where each particle splits into two new particles with rate one. We
view Ah as an evolving set. In particular, the cardinality |Ah| is a Markov
process in N that jumps from a to a+ 1 with rate a, and A0 = {x0} is a set
containing a single element x0. In the next subsection, we will make a more
explicit choice for the labels of elements of Ah. We choose (Ah)h≥0 to be
right-continuous and let (Ah−)h≥0 denote its left-continuous modification.

For each pair of times g, h ≥ 0 and individuals x ∈ Ag, y ∈ Ah that
are alive at these times, let τ(x, y) denote the last time in [0, g ∧ h] that a
common ancestor existed of x and y, and let

(1.17) d
(
(x, g), (y, h)

)
:= g + h− 2τ(x, y)

denote their genetic distance. Then the random set

(1.18) T :=
{

(x, h) : x ∈ Ah−, h ≥ 0
}

equipped with the metric (1.17) is a random continuum tree. In pictures, we
draw x horizontally and h vertically, and from now on, we refer to h as the
height, rather than time, of a point (x, h) = z ∈ T . We call ∅ := (x0, 0) the
root of T .

Conditional on T , we let Π0 be a Poisson point set on T whose intensity
measure is the length measure on T , and conditional on T and Π0, we
let (τz)z∈Π0 be i.i.d. uniformly distributed [0, 1]-valued marks. We think of
z = (x, h) ∈ Π0 as a hole on T that disappears (i.e., gets filled in) at time
τz. We observe that

(1.19) Π =
{

(z, τz) : z ∈ Π0

}
is a Poisson set of intensity one on T × [0, 1] and that Π0 as well as the
marks (τz)z∈Π0 can be read off from Π. For lack of better name, we call the
pair (T ,Π) the Marked Binary Branching Tree (MBBT). See Figure 1 for
an illustration.

We set

(1.20) Πt :=
{
z ∈ Π0 : τz > t

}
(t ∈ [0, 1]).

Intuitively, Πt is the set of holes on T which are still present at time t. For

any set A ⊂ T and point z ∈ T , we write ∅ T \A−→ z if ∅ and z are connected

in T \A and we write z
T \A−→∞ if there exists an infinite, continuous, upward

path through T \A. We start with a simple observation. Note that below,
in contrast with our earlier notation Et, points in Πt play the role of points
that can not be passed at time t. The proof of the following lemma can be
found in Subsection 3.6.
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10 BALÁZS RÁTH, JAN M. SWART, AND TAMÁS TERPAI

∅ ∅

Fig 1. Scaling of the marked binary branching tree. On the left: at time t, points in Πt are
still closed and marked with white circles, while points in Π0\Πt have already opened and
are marked with black circles. On the right: removing the loose ends from the open cluster
at the root yields a stretched version of the original marked binary branching tree.

Lemma 8 (Oriented percolation on the marked binary branching tree).
One has

(1.21) P
[
∅ T \Πt−→ ∞

]
= t (0 ≤ t ≤ 1).

Indeed, if we cut T at points of Πt, then the remaining connected compo-
nent of the root is the family tree of a branching process where particles split
into two with rate one and die with rate 1− t. It is an elementary exercise in
branching theory to show that the survival probability of such a branching
process is t. The fact that the survival probability is a linear function of t
reflects a scaling property of the marked binary branching tree that will be
important in our analysis. Below, we view (T ,Π) as a marked metric space,
i.e., we consider two marked trees to be equal if one can be mapped onto
the other by an isometry that preserves the marks. The following result is
proved in Subsection 3.6.

Proposition 9 (Scaling). Let (T ,Π) be the marked binary branching
tree. Fix 0 < t < 1 and define

(1.22) T ′ :=
{
z ∈ T : ∅ T \Πt−→ z

T \Πt−→ ∞
}
, Π′ :=

{
(z, τz) ∈ Π : z ∈ T ′

}
.
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Then the probability that T ′ 6= ∅ is t and conditional on this event, the pair
(T ′,Π′), viewed as a marked metric space, is equally distributed with the
stretched marked binary branching tree (T ′′,Π′′) defined as
(1.23)
T ′′ :=

{
(x, t−1h) : (x, h) ∈ T

}
, Π′′ :=

{
(x, t−1h, tτ(x,h)) : (x, h, τ(x,h)) ∈ Π

}
.

In words, this says that if we cut off all parts of T that lie above points
z ∈ Πt, then remove the loose ends of the tree, and condition on the event
that the remaining tree is nonempty, then we end up with the family tree of
a branching process where particles split into two with rate t, equipped with
a marked Poisson point set with intensity t and i.i.d. uniformly distributed
on [0, t]-valued marks. See Figure 1 for an illustration.

1.6. Frozen percolation on the MBBT. In the previous subsection, we
have been deliberately vague about the labeling of elements of the evolv-
ing set-valued branching process (Ah)h≥0. We now make an explicit choice,
which naturally leads to an RTP that is closely related to, but different from
the one introduced in Subsection 1.4.

We will construct the branching process (Ah)h≥0 in such a way that A0 =
{∅} and Ah ⊂ T for all h ≥ 0. (Note that by a slight abuse of notation, ∅
now denotes both the root of the discrete tree T and of the continuum tree T ,
the latter being defined as ∅ = (∅, 0).) Each element i ∈ Ah branches with
rate one into two new elements labeled i1 and i2. In addition, we arrange
things in such a way that each element i ∈ Ah is with rate one replaced by
a new element labeled i1. The idea of this is to encode the Poisson point
set Π0 from the MBBT in terms of the labels of elements of Ah, in such a
way that Π0 is given by the collection of points (i, h) for which i is at time
h replaced by i1.

We will give an explicit construction of the MBBT based on three collec-
tions of i.i.d. random variables:

(i) (τi)i∈T are i.i.d. uniformly distributed on [0, 1],
(ii) (κi)i∈T are i.i.d. uniformly distributed on {1, 2},

(iii) (`i)i∈T are i.i.d. exponentially distributed with mean 1/2.

We interpret `i as the lifetime of the individual i and let

(1.24) bi1···in :=

n−1∑
k=0

`i1···ik and di1···in :=

n∑
k=0

`i1···ik

with b∅ := 0 and d∅ := `∅ denote the birth and death times of i. The
random variable κi indicates what happens with the individual i at the end
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12 BALÁZS RÁTH, JAN M. SWART, AND TAMÁS TERPAI

of its lifetime. If κi = 1, then it is replaced by a single new individual with
label i1, and if κi = 2, then it is replaced by two new individuals with labels
i1 and i2. In line with this, we let S denote the random subtree of T defined
by

(1.25) S :=
{
i1 · · · in ∈ T : im ≤ κi1···im−1 ∀ 1 ≤ m ≤ n

}
,

which is the collection of all individuals that will ever be born. Recall that
∂U denotes the boundary of a rooted subtree U ⊂ T relative to T. Likewise,
for any rooted subtree U ⊂ S we let ∇U := ∂U ∩ S denote the boundary of
U relative to S.

For h ≥ 0, we let

(1.26)
Th :=

{
i ∈ T : di ≤ h

}
, ∂Th =

{
i ∈ T : bi ≤ h < di

}
,

Sh := Th ∩ S, ∇Sh = ∂Th ∩ S

denote the sets of individuals that have died by time h and those that are
alive at time h, respectively. Note that the former are a.s. finite rooted
subtrees of T and S, respectively, and the latter are their boundaries. Then

(1.27) (∇Sh)h≥0 = (Ah)h≥0

gives an explicit construction of the branching process (Ah)h≥0 we have
earlier described in words. Defining T as in (1.18) and setting

(1.28) Π :=
{

(i, di, τi) : i ∈ S, κi = 1
}

yields an explicit construction of the MBBT (T ,Π) based on i.i.d. random-
ness.

Instead of giving a description of oriented frozen percolation on (T ,Π)
similar to Theorem 6, we immediately jump to the corresponding RTP for
the percolation times. Letting Yi denote the first time when there is an
infinite upwards open path in frozen percolation on (T ,Π) starting from
the point (i, bi), it is not hard to see that (Yi)i∈S must satisfy the inductive
relation

(1.29) Yi = χ[τi, κi](Yi1, Yi2),

where χ : [0, 1]× {1, 2} × I2 → I is the function

(1.30) χ[τ, κ](x, y) :=


x if κ = 1, x > τ,

∞ if κ = 1, x ≤ τ,
x ∧ y if κ = 2.
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FROZEN PERCOLATION ON THE BINARY TREE IS NONENDOGENOUS 13

Note that in (1.29), Yi is a priori only defined for i ∈ S. The definition
of S in (1.25) is such, however, that in cases when i ∈ S but i2 6∈ S, the
value of Yi2 is irrelevant for the outcome of the function χ. The subtree S
plays an important role in the theory of continuous-time RTPs, see [MSS20,
Sect. 1.4].

Like in the case of the oriented binary tree (as discussed in Subsection 1.4)
it is possible to go the other way, i.e., starting from a solution to the RDE
corresponding to the map χ, one can construct an RTP (τi, κi, Yi)i∈T where
now Yi is defined for all i ∈ T, and then restrict to S to construct oriented
frozen percolation on the MBBT. In the present setting, it turns out that the
“right” solution to the corresponding RDE is given by the following lemma.
Since we will later (in Subsection 3.5 below) see that frozen percolation on
the MBBT and on the oriented binary tree can be mapped into each other,
we will at this moment not explain why in the present setting, Lemma 10
describes the “right” solution to the RDE.

Lemma 10 (Special solution to the RDE). Let ρ denote the probability
measure on I defined by

(1.31) ρ
(
[0, t]

)
:= 1

2 t
(
t ∈ [0, 1]

)
, ρ({∞}) := 1

2 .

Then ρ solves the RDE

(1.32) Y∅
d
= χ[τ∅, κ∅](Y1, Y2),

where
d
= denotes equality in distribution, Y∅ has law ρ, and Y1, Y2 are copies

of Y∅, independent of each other and of τ∅, κ∅.

Proof. Let Y1, Y2 be i.i.d. with law ρ, let τ and κ be independent r.v.’s
that are uniformly distributed on [0, 1] and {1, 2}, respectively, and define
Y∅ := χ[τ, κ](Y1, Y2), where χ is defined in (1.30). We claim that Y∅ has law
ρ. Indeed, for each t ∈ [0, 1], we have

(1.33)

P[Y∅ ≤ t] = 1
2

∫ 1

0
P[χ[s, 1](Y1, Y2) ≤ t] ds+ 1

2P[Y1 ∧ Y2 ≤ t]

= 1
2

∫ 1

0
P[s ≤ Y1 ≤ t] ds+ 1

2

(
1− P[Y1 > t]2

)
= 1

2

∫ t

0
(1

2 t−
1
2s) ds+ 1

2

(
1− (1− 1

2 t)
2
)

= 1
2 t.
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14 BALÁZS RÁTH, JAN M. SWART, AND TAMÁS TERPAI

We will prove that the RTP (τi, κi, Yi)i∈T corresponding to the map χ
from (1.30) and law ρ from (1.31) is nonendogenous. We apply Theorem 4.
We will explicitly identify the special solutions ρ(2) and ρ(2) to the bivariate
RDE and show that they are not equal.

It is clear from the definitions of ρ(2) and ρ(2) in (1.9) and (1.10) that
both measures are symmetric under a permutation of the two coordinates
and that their one-dimensional marginals equal ρ. The main advantage of
working with the MBBT is that as a result of the scaling property described
in Proposition 9, the measures ρ(2) and ρ(2) are also scale invariant. We

let P∗(I2)ρ denote the space of symmetric measures µ(2) on I2 whose one-
dimensional marginals are given by ρ and that are moreover scale invariant
in the sense that

(1.34) µ(2)
(
[0, tr]× [0, ts]

)
= tµ(2)

(
[0, r]× [0, s]

) (
r, s, t ∈ [0, 1]

)
.

The following lemma is proved in Subsection 3.6.

Lemma 11 (Scale invariance). One has ρ(2), ρ(2) ∈ P∗(I2)ρ.

By Theorem 4, to show that the RTP (τi, κi, Yi)i∈T is nonendogenous,
it suffices to show that apart from the trivial fixed point ρ(2), the bivariate
map T (2) has at least one other fixed point in P(I2)ρ. The following theorem
identifies all fixed points in P∗(I2)ρ. Since there are precisely two of them, by
Lemma 11 we conclude that the nontrivial fixed point is ρ(2). The following
theorem is proved in Subsection 2.1.

Theorem 12 (Nonendogeny). The bivariate map T (2) associated with

the map χ from (1.30) has precisely two fixed points ρ
(2)
1 , ρ

(2)
2 in P∗(I2)ρ.

For each c ≥ 0, let fc : [0, 1] → [0, 1] denote the continuous function given
by the unique solution to the Cauchy problem

(1.35) ∂
∂rfc(r) =

cr

fc(r)− r/2
, 0 ≤ r < 1, fc(0) = 1

2 .

The equation

(1.36) fc(1)2 − 1
2fc(1) = 2c

is solved for precisely two values of c in [0,∞). Denoting these by c1 and c2

with c1 < c2, we have c1 = 0 and c2 ∈ (0, 1/4). The measures ρ
(2)
i (i = 1, 2)

are uniquely characterised by
(1.37)

ρ
(2)
i

(
{[0, r]×I}∪{I×[0, s]}

)
= (s∨r)fci

(r ∧ s
r ∨ s

)
,
(
(r, s) ∈ [0, 1]2\{(0, 0)}

)
.
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One has ρ
(2)
1 = ρ(2), the trivial fixed point defined as in (1.9).
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Fig 2. The nontrivial solutions ν(2) and ρ(2) of the bivariate RDE for frozen percolation
on the oriented binary tree and the MBBT, respectively. Plotted are the densities of the
restrictions of the measures to [ 1

2
, 1]2 and [0, 1]2, respectively.

Numerically, we find c2 ≈ 0.01770838. The function fc2 is increasing and
convex with fc2(0) = 1

2 and fc2(1) ≈ 0.5629165415. Lemma 11 allows us to

identify ρ
(2)
2 as ρ(2), the nontrivial fixed point defined in (1.10). As a result

of Theorem 12, we also have an explicit expression for the nontrivial solution
ν(2) to the bivariate RDE for frozen percolation on the oriented binary tree,
see formula (3.86) below. Numerical data for ν(2) and ρ(2) are plotted in
Figure 2.

1.7. Discussion.

Frozen percolation on finite graphs. Let G = (V,E) be a finite graph.
Let (Ue)e∈E be i.i.d. uniformly distributed on [0, 1] and let (Λv)v∈V be an
independent i.i.d. collection of exponentially distributed random variables
with mean λ−1. Now consider a process where edges and vertices can be in
two possible states: edges are either closed or open, and vertices are either
available or frozen. Initially, all edges are closed and all vertices are available.
The evolution is as follows:

(i) At time Ue, the edge e becomes open, provided neither of its endver-
tices is frozen.

(ii) At time Λv, all vertices of the open component containing v become
frozen.

We call such a process frozen percolation on the finite graph G, and by a
certain analogy with forest fire models, we call λ the lightning rate.
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Fig 3. Iterating the bivariate map T (2) on the product measure ρ⊗ ρ produces a series of
measures that by (1.11) converge to the nontrivial fixed point ρ(2). Plotted is the density

of the restriction of (T (2))n(ρ⊗ ρ) to the unit square for n = 0, 1, 3, 10, 40, and 100. The
last plot is already very close to the theoretical limit.

One is typically interested in the limit when G is large. Let us therefore
consider a sequence Gn = (Vn, En) of finite graphs with |Vn| = n vertices
and with lightning rates λn, and make two assumptions:

(A1) The graphs Gn converge to a weak local limit G in the sense of Ben-
jamini and Schramm.

(A2) n−1 � λn � 1 as n→∞.

We recall that a sequence of graphs converge to a weak local limit if the
neighbourhood of a typical (uniformly chosen) vertex converges in law to
a (possibly random) rooted graph; see [BS01] or [Hof17b, Section 1.4]. As-
sumption (A2) guarantees that in the limit, small open clusters with size of
order one never freeze, but giant components that occupy a positive fraction
of all vertices freeze immediately.

We can think of this as a model for polymerisation, where open compo-
nents represent polymers that grow through merger with neighbours. Poly-
mers that grow too large become part of the “gel” and are unable to grow
any further. In the model we have just described, this is guaranteed by the
lightning process, which has certain mathematical advantages. However, one
can also think about alternative models where polymers are, e.g., prevented
from growing when they reach a certain deterministic size.

If pc is the critical value for percolation in the local limit graph G from
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FROZEN PERCOLATION ON THE BINARY TREE IS NONENDOGENOUS 17

assumption (A1), then up to time pc, open clusters grow as in normal per-
colation. Since beyond this time, large clusters are prevented from growing
further, one can expect the model to exhibit self-organised criticality (SOC)
in the sense of [Bak96, Jen98], i.e., in the whole time regime beyond time
pc we can expect phenomena that are usually associated with the behaviour
of large systems at their critical point. Statements of this form have indeed
been proved. With the model described above in mind, we will give a short
overview of the literature and mention some open problems.

Frozen percolation on the complete graph. Although historically not the
oldest, frozen percolation on the complete graph is one of the most natural
models to consider. Since in this case, the degree of each vertex is n, it is
more natural to take the (Ue)e∈E to be uniformly distributed on [0, n] instead
of [0, 1]. The complete graph does not have a weak local limit, but one can
take the local limit of the combined object consisting of the complete graph
and the edge activation times Ue. The resulting limiting object is called the
Poisson Weighted Infinite Tree (PWIT) [AS04, Sect 4.2].

Following a suggestion in [Ald00, Sect. 5.5], one of us has studied frozen
percolation on the complete graph. In [Rat09], it was shown that the fraction
of clusters of sizes k ∈ N at time t converges to a solution of Smoluchowski’s
equations with multiplicative kernel, an infinite system of differential equa-
tion that serves as a deterministic model of polymerisation, and that is
known to exhibit self-organised criticality (SOC).

The closely related forest fire model of [RT09] is further studied in [CFT15,
CRY18, Cra18]. In [CRY18] it is shown that the asymptotic distribution of
a typical cluster is that of a critical multi-type Galton-Watson tree after
gelation.

Aldous [Ald00, Sect. 5.5] in fact suggested to study the variant of the
mean field frozen percolation model where clusters are frozen when their
size exceeds a deterministic threshold 1� α(n)� n. This model is studied
in in [MN14]. Their Theorem 1.3 states that at any time t ≥ 1, the limiting
distribution of a typical non-frozen cluster is that of a critical Galton-Watson
tree with Poisson offspring distribution, again establishing SOC. As an open
problem, we mention:

Problem 1. Construct frozen percolation on the PWIT and show that
it is the local weak limit of the models in [Rat09, MN14].

Coagulation equations. The relation of frozen percolation on the com-
plete graph to Smoluchowski’s coagulation equations has already been men-
tioned. A remark of Stockmayer [Sto43] on these equations inspired Al-
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18 BALÁZS RÁTH, JAN M. SWART, AND TAMÁS TERPAI

dous’ work for the 3-regular tree. In [Ald00, Section 1.1] Aldous compares
the post-gel behaviour of Smoluchowski’s coagulation equations to the self-
similar behaviour of his model. In [Ald99] Aldous surveys the connections be-
tween variants of Smoluchowski’s coagulation equations and various stochas-
tic models of coagulation.

The configuration model [Hof17a] is a well-studied random graph whose
weak local limit is well-known. In particular, one can choose the parame-
ters of the configuration model so that this limit is the 3-regular or more
generally any d-regular graph. The configuration model has a dynamical con-
struction where to vertices there are assigned “half-edges” or “arms” that
are then randomly linked. In [MN15] a variant of this model is treated where
components freeze once their size exceeds a fixed threshold. They link the
model to a variant of Smoluchowski’s equations and it is shown that after
gelation, the asymptotic distribution of a typical non-frozen cluster is that
of a critical Galton-Watson tree.

The mathematical connection between more general stochastic models of
coalescence where clusters with a size above a certain threshold are frozen
and Smoluchowski’s equation with more general kernels is established in
[FL09].

Frozen percolation the 3-regular tree. Aldous’ work on frozen percolation
on the 3-regular tree is the first example of a dynamically constructed ran-
dom graph model that exhibits SOC. In [Ald00, Prop 11 and Thm 14] it
is proved that at any time t ∈ [1

2 , 1], a typical finite cluster is distributed
as a critical percolation cluster on the binary tree, and infinite clusters are
distributed as the incipient infinite cluster. As an open problem, we mention:

Problem 2. Show that frozen percolation on the 3-regular tree is the
weak local limit of frozen percolation on a suitable sequence of finite graphs.

When proving convergence, it is very useful to have a unique character-
ization of the limit. A unique characterization of frozen percolation on the
3-regular tree is provided by our Theorem 2. We do not know if condition (iii)
is in fact needed for uniqueness. Likewise, the following question is still open:

Question 3. Do conditions (i) and (ii) of Theorem 1 uniquely deter-
mine the law of (U , F )?

We note that using Theorem 3, it is not hard to show that (i) alone is not
sufficient for distributional uniqueness.

Let us note here that a variant of Aldous’ frozen percolation model on
the binary tree where clusters with size greater than a large number N are
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frozen was introduced in [BKN12]. The law of the cluster of the origin at
time t ∈ [0, 1] in the frozen percolation model with freezing threshold N
locally converges to the corresponding law in the frozen percolation model
of Aldous [Ald00] as N →∞ (see [BKN12, Theorem 1]).

Nonendogeny. In line with Problem 2, we expect that for a suitable se-
quence of finite graphs whose weak local limit is the 3-regular tree, if we
couple two frozen percolation processes on these graphs by using the same
edge activation times but independent lightning processes, then the weak lo-
cal limit should be the process (U , F, F ′) from Theorem 3. In particular, the
local limit of such processes should be a.s. different because of nonendogeny.

Even though the basic question of endogeny has now been settled for the
binary tree, more detailed questions remain open. In Section 3.3, we classify
all solutions to RDE (1.32). This leads to the question:

Question 4. For which solutions of the RDE (1.32) is the corresponding
RTP nonendogenous?

Even for the RTP in Theorem 7, one would like to understand better
what is going on.

Question 5. By Theorem 7, the σ-field generated by (τi, Xi)i∈T is larger
than the σ-field generated by (τi)i∈T. Give an explicit characterisation of the
extra randomness needed to construct (Xi)i∈T.

In this context, we mention that in [Ban06, Thm 1.2], it is proved that
the tail σ-algebra of (Xi)i∈T is trivial. Proposition 1.1 of [Ban06] states that
generally, endogeny of a RTP implies its tail-triviality, however our main
result exemplifies that the converse implication does not necessarily hold.

Related to our previous question is the following problem. Let X ′∅ denote
the first time when there is an infinite path of open or frozen edges starting at
the root. Then clearly X ′∅ ≤ X∅ a.s. If the answer to the following question
is positive, then this is all that can be said with certainty about X∅ based
on (τi)i∈T.

Question 6. Let ξ := P
[
X∅ ∈ ·

∣∣ (τi)i∈T]. Is it true that the support of
ξ is a.s. equal to [X ′∅,∞)?

In Theorem 12, we have shown that the bivariate RDE has precisely two
scale invariant fixed points. We believe that there exist fixed points that
are not scale invariant. To see why, recall that we suggested that ν(2) should
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describe the local limit of two finite frozen percolation processes that use the
same edge activation times but independent lightning processes. We believe
that the local limit of two processes that use the same lightning process
up to some time 1

2 < s < 1 and independent lightning processes thereafter

should be described by a fixed point of T (2) that is neither ν(2) nor ν(2).
It has been shown in [MSS20, Thm 1] that for each initial state, the

differential equation

(1.38) ∂
∂hµ

(2)
h = T (2)(µ

(2)
h )− µ(2)

h (h ≥ 0)

has a unique solution.

Problem 7. For frozen percolation on the oriented binary tree, find all
fixed points of (1.38) and their domains of attraction.

In [MSS20, Prop 12] Problem 7 is solved for a different RTP, which is also
nonendogenous. In that example, ν(2) and ν(2) turned out to be the only
fixed points, where the trivial fixed point ν(2) is unstable and the nontrivial
fixed point ν(2) attracts all other initial states. One wonders if the situation
for frozen percolation is similar. In general, we ask:

Question 8. For a general RTP, can one prove nonendogeny by proving
that the trivial fixed point ν(2) is unstable?

Our proof of Theorem 7 is based on an explicit formula for ν(2). Ulti-
mately, one would like to be able to prove nonendogeny without having to
solve the bivariate RDE.

Frozen percolation on regular trees. In Problem 1, we have already men-
tioned frozen percolation on the PWIT. Aldous [Ald00, Sect. 5.4] observed
that his construction can be carried out on any d-regular tree, and even gave
a formula for the distribution of freezing times on d-regular trees. This leads
to:

Question 9. Are frozen percolation on the PWIT or on general d-
regular trees endogenous?

We conjecture the answer to this question to be negative, but this does
not follow from the methods of this paper. Our main results are for the
MBBT and essentially rely on the nice scaling property of the latter that
simplifies our formulas. The fact that we are also able to treat the oriented
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binary tree and consequently the unoriented 3-regular tree depends on a
trick that uses in an essential way that the MBBT is a binary tree.

Nevertheless, we hope that our methods will be useful in answering Ques-
tion 9. The reason for this optimism is that the MBBT can be seen as the
near-critical scaling limit of percolation on a wide class of oriented trees,
such as oriented d-ary trees or the PWIT.

Indeed, since edges with Ue ≤ pc belong to finite clusters when they open,
from the point of view of frozen percolation it does not matter when they
open. In view of this, let us focus only on those edges whose activation times
lie between pc and pc + ε for some small ε > 0. If we condition on the event
that there is an infinite path starting at the root along edges with activation
times Ue ≤ pc + ε, and cut off all parts of the tree that do not lie on such an
infinite path, then the scaling limit as ε→ 0 of our tree T , and the locations
marked with the (scaled) activation times of edges with pc < Ue < pc + ε
converge to the marked Poisson process Π on T .

In view of this, we expect that on a general class of oriented trees, frozen
percolation is nonendogenous and the nontrivial fixed point ν(2) of the bi-
variate RDE will in a small neighbourhood of the critical point look similar
to the nontrivial fixed point from Theorem 12.

Frozen percolation on integer lattices. One can try to “naively” define
frozen percolation on any infinite graph as in property (i) of Theorem 1,
by specifying that clusters stop growing as soon as they reach infinite size.
It is an observation of Benjamini and Schramm that such a process cannot
be defined on the planar square lattice (for a sketch of a proof, see [BT01,
Section 3]). The following question is open:

Question 10. For which d ≥ 3 does there exists a frozen percolation
process on the nearest-neighbour lattice Zd that satisfies property (i) of The-
orem 1?

There exists an extensive literature for finite versions of frozen percolation
on the planar lattice. A model where clusters with diameter greater than
a large number N are frozen was introduced in [BLN12]. The behaviour of
this model is rather different from the the analogous model of [BKN12] on
the binary tree that we have discussed after Problem 2, because in planar
diameter-frozen percolation all frozen clusters freeze in the critical time win-
dow around the Bernoulli percolation threshold pc, the frozen clusters look
similar to critical percolation clusters, and moreover macroscopic non-frozen
clusters asymptotically have full density as N →∞, c.f. [BLN12, Kis15]. In
[BN17] it is shown that the particular mechanism to freeze clusters (the
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“boundary rules”) matters strongly, i.e., if we modify the diameter-frozen
site percolation model on the triangular lattice in a way that the outer
boundary of frozen connected components can become occupied (and later
freeze) then frozen clusters in the terminal configuration have non-vanishing
density as N →∞.

The percolation on the planar lattice where clusters with volume (cardi-
nality) greater than a large number N are frozen was introduced in [BN17],
the main result being that if we restrict the process to a large box with
side-length n, then the probability that the origin freezes depends on the re-
lation between N and n in an oscillatory fashion. Thus the behaviour of the
volume-frozen process is substantially different from that of the diameter-
frozen process. In [BKN18] it is shown that in the volume-frozen model
many frozen clusters surrounding the origin appear successively, each new
cluster having a diameter much smaller than the previous one. In [BKN18]
it is also proved that in the full planar case (n = ∞) with high probability
(as N → ∞), the origin does not belong to a frozen cluster in the final
configuration. In [BN18] it is proved that if the freezing mechanism in a box
of size n is governed by independent lightnings hitting the vertices then the
density of frozen sites depends on the relation between the lightning rate
and n in an oscillatory fashion.

Self-destructive percolation and forest fire model on infinite graphs. The
“naive” definition of the forest fire model on an infinite graph G = (V,E)
(dating back to [DS92]) is as follows: vacant sites become occupied at rate
1 and infinite occupied clusters become vacant instantaneously. Similarly to
the case of the frozen percolation model, it is a highly non-trivial question
whether such a process exists.

The model of self-destructive percolation was introduced by [BB04] in
order to address this question on the planar lattice: given some p > pc, let us
switch all of the sites which are in an infinite occupied component into vacant
state (destruction) and then turn any vacant site occupied with probability
δ (enhancement). Denote by δ(p) the smallest enhancement needed for the
appearance of an infinite cluster in the enhanced configuration. Theorem 4.1
of [BB04] states that if limp↘pc δ(p) > 0 then the forest fire process cannot
be defined on the planar lattice. Theorem 1 of [KMS15] states that indeed
limp↘pc δ(p) > 0 on the planar lattice. However, we have limp↘pc δ(p) = 0
on non-amenable graphs [AST14] and Zd for high enough d [ADKS15]. Also

note that in mean field percolation models we have limp↘pc
δ(p)
p−pc = 1. This

asymptotic relation becomes an exact equality of the lengths of growth and
recovery time intervals if one considers self-destructive (frozen) percolation
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on the MBBT, moreover the general solutions to the RDE (1.32) (c.f. Section
3.3) and the associated RTP’s (c.f. Section 3.4) also exhibit time intervals of
(supercritical) growth and (subcritical) recovery, which are of equal length.

Currently it is an open question whether it is possible to define a forest
fire process on the nearest-neighbour lattice Zd, d ≥ 3. In [BT01] a variant
of the forest fire model (with site-dependent occupation rates) is constructed
on the half-line. The construction of the variant of the forest fire model with
a positive rate of lightning per vertex on Zd is given in [Dur06a, Dur06b]:
if a lightning hits a vertex v, then all of the sites in the occupied cluster of
v become vacant instantaneously. In [Gra14, Gra16] a variant of the forest
fire model on the half-plane is defined where components that touch the
boundary (or become infinite) are destroyed. It is shown that before (and
including) the critical time, the effect of the destruction mechanism is only
felt locally near the boundary of the half-plane, whereas after the critical
time, it is felt globally on the entire half-plane.

Outline. The rest of the paper is devoted to proofs. We prove Theorem 12
in Section 2 and the remaining results in Section 3. The paper concludes with
a small appendix on skeletal branching processes, which are related to the
scaling property of the MBBT described in Proposition 9.

Even though Theorem 7, which is proved in Subsection 3.2, is our main
result, considerable extra effort is needed to prove additional results, in
particular, uniqueness of the nontrivial fixed point in Theorem 12 and its
subsequent identification as ρ(2) with the help of Lemma 11, as well as
Theorem 2, which depends on the classification of general solutions to the
RDE (1.32) in Subsection 3.3.

2. The bivariate RDE.

2.1. Main line of the proof. In this section, we prove Theorem 12. The
main steps of the proof are summarised in the following lemmas. We first
need a convenient way to parametrise elements of the space P∗(I2)ρ.

Lemma 13 (Parametrisation of the space of interest). For each ρ(2) ∈
P∗(I2)ρ, there exists a unique continuous function f : [0, 1]→ R such that
(2.1)

ρ(2)
(
{[0, r]×I}∪{I× [0, s]}

)
= (s∨r)f

(r ∧ s
r ∨ s

)
,
(
(r, s) ∈ [0, 1]2\{(0, 0)}

)
,

and such a function f uniquely characterizes ρ(2). In particular, the trivial
fixed point ρ(2) corresponds to f(r) = 1

2 , (r ∈ [0, 1]).
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There are a priori many ways of parametrising elements of P∗(I2)ρ. The
parametrisation in terms of the function f from (2.1) turns out to lead to a
particularly simple form of the bivariate RDE.

Lemma 14 (Bivariate RDE). An element ρ(2) ∈ P∗(I2)ρ is a fixed point
of the bivariate map T (2) associated with the map χ from (1.30) if and only
if the function f : [0, 1] → R from (2.1) is continuously differentiable on
[0, 1) and satisfies

(2.2)
(i) ∂

∂rf(r) =
cr

f(r)− r/2
(
r ∈ [0, 1)

)
,

(ii) f(0) = 1
2 , (iii) f(1)2 − 1

2f(1) = 2c,

for some c ≥ 0.

In particular, the trivial fixed point f(r) = 1
2 solves (2.2) with c = c :=

0. The following lemma shows that there is exactly one other, nontrivial
solution.

Lemma 15 (Nontrivial solution of (2.2)). For each c ≥ 0, there exists a
unique solution fc to (2.2) (i) and (ii). There exists a unique c2 > 0 such
that the function fc2 also satisfies (2.2) (iii). Moreover, we have c2 ∈ (0, 1

4).

In Lemma 13, we have shown that a probability law ρ(2) ∈ P∗(I2)ρ is
uniquely characterised by the corresponding function f from (2.1), but we
have not given sufficient conditions for a function f : [0, 1] → R to corre-
spond to an element of P∗(I2)ρ. In view of this, to complete the proof of
Theorem 12, we need one more lemma.

Lemma 16 (Nontrivial solution of the bivariate RDE). The function fc2
from Lemma 15 defines through (2.1) a probability measure ρ

(2)
2 ∈ P∗(I2)ρ.

The restriction of ρ
(2)
2 to [0, 1]2 has a density w.r.t. the Lebesgue measure.

In particular, ρ
(2)
2 puts no mass on the diagonal

{
(r, r) : r ∈ [0, 1]

}
.

Proof of Theorem 12. By Lemmas 13, 14, 15, and 16, the bivariate
map T (2) has, apart from the trivial fixed point ρ(2), precisely one more fixed
point in P∗(I2)ρ, which is given as in (1.37) in terms of the function fc2 .

We will prove Lemmas 13, 14, 15 and 16 in Sections 2.2, 2.3, 2.4 and 2.5,
respectively.
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2.2. Parametrisation of scale invariant measures. In this subsection we
prove Lemma 13. We also prepare for the proof of Lemma 16 by giving
sufficient conditions for a function f : [0, 1]→ R to define a measure ρ(2) ∈
P∗(I2)ρ through (2.1).

Lemma 17 (Encoding ρ(2) as a bivariate function). Any ρ(2) ∈ P(I2)ρ is
uniquely characterised by the continuous function F : [0, 1]2 → [0, 1] defined
as

(2.3) F (r, s) := ρ(2)
(
{[0, r]× I} ∪ {I × [0, s]}

)
,

(
r, s ∈ (0, 1]

)
.

Moreover, ρ(2) ∈ P∗(I2)ρ if and only if F is symetric in the sense that
F (r, s) = F (s, r) and

(2.4) F (tr, ts) = tF (r, s)
(
r, s, t ∈ [0, 1]

)
.

Proof. Since both marginals of ρ(2) are equal to ρ, formula (2.3) is equiv-
alent to

(2.5)

(i) ρ(2)
(
{∞} × {∞}

)
= 1− F (1, 1),

(ii) ρ(2)
(
[0, r]× {∞}

)
=F (r, 1)− 1

2 ,

(iii) ρ(2)
(
{∞} × [0, s]

)
=F (1, s)− 1

2 ,

(iv) ρ(2)
(
[0, r]× [0, s]

)
= 1

2r + 1
2s− F (r, s).

Since these functions uniquely determine the restrictions of ρ(2) to {(∞,∞)},
[0, 1]×{∞}, {∞}×[0, 1], and [0, 1]2, the function F determines ρ(2) uniquely.
Moreover, we see from (2.5) (iv) that ρ(2) is scale invariant in the sense of
(1.34) if and only if (2.4 holds. Since the marginals of ρ(2) are equal to ρ,
and ρ has no atoms in [0, 1], we see from (2.5) (iv) that F is a continuous
function.

If a closed subset C of Rd is the closure of its interior, then we say that a
function is n times continuously differentiable on C is all partial derivatives
up to n-th order exist on the interior of C and can be extended to continuous
functions on C.

Lemma 18 (Sufficient conditions on F corresponding to ρ(2) ∈ P(I2)ρ).
Let ∆ :=

{
(r, s) ∈ [0, 1]2 : 0 ≤ r ≤ s

}
and let F : ∆ → [0,∞) be a twice

continuously differentiable function such that:

(i) F (1, 1) ≤ 1, (ii) F (0, s) = 1
2s, (iii) r 7→ F (r, 1) is nondecreasing,

(iv) ∂
∂rF (r, s)

∣∣
r=s

= ∂
∂sF (r, s)

∣∣
r=s

, (v) g(r, s) := − ∂2

∂r∂sF (r, s) ≥ 0.
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Extend F and g to [0, 1]2 by setting F (s, r) := F (r, s) and g(s, r) := g(r, s)
for
(
(r, s) ∈ ∆

)
. Then there exists a unique probability measure ρ(2) ∈ P(I2)ρ

such that (2.3) holds, and the restriction of ρ(2) to [0, 1]2 has density g with
respect to the Lebesgue measure.

Proof. Uniqueness follows from Lemma 17. By (2.5), condition (i) guar-
antees that the mass at (∞,∞) is nonnegative, while conditions (ii) and (iii)
guarantee that the restrictions of ρ(2) to [0, 1] × {∞} and {∞} × [0, 1] are
nonnegative measures.

To complete the proof, we will show that conditions (ii), (iv) and (v) imply
that (2.5) (iv) defines a measure on [0, 1]2 with density g. Equivalently, we
must show that

(2.6) D(r, s) :=

∫ r

0
dr′
∫ s

0
ds′ g(r′, s′)− 1

2r −
1
2s+ F (r, s)

(
(r, s) ∈ ∆

)
is identically zero. Conditions (ii), (iv) and (v) imply that

(2.7) D(0, s) = 0, ∂
∂rD(r, s)

∣∣
r=s

= ∂
∂sD(r, s)

∣∣
r=s

, and ∂2

∂r∂sD(r, s) = 0

((r, s) ∈ ∆) The third equality implies that D(r, s) = u(r) + v(s) for
some differentiable functions u and v, but then D(0, s) ≡ 0 implies that
u(0) + v(s) ≡ 0, thus v is constant and therefore u′(r) = ∂

∂rD(r, s)
∣∣
r=s

=
∂
∂sD(r, s)

∣∣
r=s

= v′(r) = 0, so u is also a constant, so D(r, s) = 0 for any
0 ≤ r ≤ s ≤ 1.

Proof of Lemma 13. Given ρ(2) ∈ P∗(I2)ρ, let F be as in (2.3) and let
f : [0, 1]→ R be the continuous function defined by

(2.8) f(r) := F (r, 1) = ρ(2) ({[0, r]× I} ∪ {I × [0, 1]}) , 0 ≤ r ≤ 1.

Then F (r, s) = sf(r/s) (s 6= 0) by (2.4) and hence (2.1) follows by symmetry.
The fact that f uniquely characterizes the measure ρ(2) follows from (2.1)
and Lemma 17. The trivial fixed point ρ(2) of T (2) is the distribution of
(Y, Y ), where Y ∼ ρ. In this case f(r) = P({Y ≤ r} ∪ {Y ≤ 1}) = 1

2 for any
r ∈ [0, 1].

Lemma 19 (Sufficient conditions on f corresponding to ρ(2) ∈ P∗(I2)ρ).
Let f : [0, 1]→ R be a twice continuously differentiable function such that

(i) f(1) ≤ 1, (ii) f(0) = 1
2 , (iii) r 7→ f(r) is nondecreasing,

(iv) 2f ′(1) = f(1), (v) f ′′(r) ≥ 0 (r ∈ [0, 1]).

imsart-aop ver. 2014/10/16 file: frozen_revis2.tex date: December 28, 2020



FROZEN PERCOLATION ON THE BINARY TREE IS NONENDOGENOUS 27

Then there exists a unique probability measure ρ(2) ∈ P∗(I2)ρ such that (2.1)
holds, and the restriction of ρ(2) to [0, 1]2 has a density with respect to the
Lebesgue measure.

Proof. For 0 ≤ r ≤ s, define F (r, s) := sf(r/s) if s 6= 0 and := 0 other-
wise, and F (s, r) := F (r, s). Then (2.1) is equivalent to (2.5) so uniqueness
follows from Lemma 17. Since F is symmetric and satisfies (2.4), the same
lemma shows that if ρ(2) exists, then ρ(2) ∈ P∗(I2)ρ.

To get existence, we apply Lemma 18. We claim that conditions (i)–(v) of
that lemma follow from the corresponding conditions of the present lemma.
This is trivial for conditions (i)–(iii). Condition (iv) of Lemma 18 yields

(2.9) f ′
(r
s

)
= f

(r
s

)
− r

s
f ′
(r
s

)
(r = s),

which corresponds to the present condition (iv). Finally, condition (v) of
Lemma 18 requires that

(2.10) − ∂2

∂r∂ssf
(r
s

)
= − ∂

∂sf
′(r
s

)
=

r

s2
f ′′
(r
s

)
≥ 0,

which corresponds to the present condition (v).

2.3. Bivariate RDE and controlled ODE . In this subsection we prove
Lemma 14, i.e., we equivalently reformulate the bivariate fixed point prop-
erty T (2)ρ(2) = ρ(2) for a scale invariant measure ρ(2) ∈ P∗(I2)ρ as the
controlled ODE problem (2.2) for the function f defined in (2.8). We start
by deriving an integral expression for the map T (2). Equation (2.11) below
is an adaptation of equations (11) and (12) of [Ban04] to the MBBT.

Lemma 20 (Bivariate map). Let ρ(2) ∈ P(I2)ρ, let T (2) denote the bi-
variate map defined as in (1.8) for the map χ in (1.30), taking uniformly
distributed τ∅, κ∅ as its input. Let F be defined in terms of ρ(2) as in (2.3)
and let F̃ be defined similarly in terms of T (2)(ρ(2)). Then

(2.11) F̃ (r, s) = F (r, s)− F (r, s)2

2
+
r2

8
+
s2

8

+ 1
2

∫ r∧s

0
(F (r, s)− F (t, s)− F (r, t) + F (t, t)) dt, r, s ∈ (0, 1].

Proof. Let τ∅ and κ∅ denote independent random variables, where τ∅ ∼
Uni[0, 1] and κ∅ is uniformly distributed on {1, 2}. Let (Y1, Y

∗
1 ) and (Y2, Y

∗
2 )
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denote I2-valued random variables with distribution ρ(2), independent from
each other and of τ∅, κ∅. Let us define

(2.12) Y∅ := χ[τ∅, κ∅](Y1, Y2), Y ∗∅ := χ[τ∅, κ∅](Y ∗1 , Y
∗

2 ),

where χ is defined in (1.30). Then the distribution of (Y∅, Y
∗
∅) is T (2)(ρ(2)).

It follows that
(2.13)
F̃ (r, s) = 1

2P[Y∅ ≤ r or Y ∗∅ ≤ s |κ∅ = 1] + 1
2P[Y∅ ≤ r or Y ∗∅ ≤ s |κ∅ = 2].

Here

(2.14) P[Y∅ ≤ r or Y ∗∅ ≤ s |κ∅ = 1]

(1.30)
=

∫ 1

0
P[Y1 ∈ (t, t ∨ r] or Y ∗1 ∈ (t, t ∨ s] ) dt

=

∫ 1

0
P[Y1 ∈ (t, t ∨ r] ] dt+

∫ 1

0
P[Y ∗1 ∈ (t, t ∨ s] ] dt

−
∫ 1

0
P[Y1 ∈ (t, t ∨ r], Y ∗1 ∈ (t, t ∨ s] ] dt

(1.31)
=

∫ r

0

1
2(r − t) dt+

∫ s

0

1
2(s− t) dt−

∫ r∧s

0
P[Y1 ∈ (t, r], Y ∗1 ∈ (t, s] ] dt

(∗)
=
r2

4
+
s2

4
−
∫ r∧s

0
(F (t, s) + F (r, t)− F (t, t)− F (r, s)) dt,

where in (∗) we used (2.3) and inclusion-exclusion. Moreover

(2.15) P[Y∅ ≤ r or Y ∗∅ ≤ s |κ = 2]
(1.30)

= 1− P[Y1 ∧ Y2 > r, Y ∗1 ∧ Y ∗2 > s ]

= 1− P[Y1 > r, Y ∗1 > s ]2 = 1− (1− F (r, s))2 = 2F (r, s)− F (r, s)2.

Now (2.11) follows as a combination of (2.13), (2.14) and (2.15).

Lemma 21 (Scale invariant bivariate fixed point). ρ(2) ∈ P∗(I2)ρ satis-
fies T (2)(ρ(2)) = ρ(2) if and only if the function f in (2.1) satisfies
(2.16)

f(r)2 =
1

4
+ rf(r)−

∫ r

0
f(u) du+

(
1

4
+
f(1)

2
−
∫ 1

0
f(s) ds

)
r2, r ∈ [0, 1].

Proof. If ρ(2) ∈ P(I2)ρ then ρ(2) is symmetric, so Lemmas 17 and 20
imply that T (2)(ρ(2)) = ρ(2) holds if and only if for any 0 < r ≤ s ≤ 1

(2.17) F (r, s)2 =
r2

4
+
s2

4
+

∫ r

0
(F (r, s)− F (t, s)− F (t, r) + F (t, t)) dt.
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If ρ(2) ∈ P∗(I2)ρ, then the function F from (2.3) can be expressed in the
function f from (2.1) as

(2.18) F (r, s) = sf
(r
s

)
, 0 < r ≤ s ≤ 1.

Plugging this into (2.17), dividing both sides by s2 and using the substitution
u = t/s in the integral we obtain
(2.19)

f
(r
s

)2
=

(r/s)2

4
+

1

4
+

∫ r/s

0

(
f
(r
s

)
− f(u)− r

s
f

(
u

r/s

)
+ uf(1)

)
du,

which holds for all 0 < r ≤ s ≤ 1 if and only if
(2.20)

f(r)2 =
1

4
+
r2

4
+

∫ r

0

(
f(r)− f(u)− rf

(u
r

)
+ uf(1)

)
du, 0 < r ≤ 1.

Evaluating the integrals, using the substitution s = u/r, we arrive at (2.16),
which also holds for r = 0 since f is continuous.

Remark 22. For any ρ(2) ∈ P∗(I2)ρ, setting s = 1 in (2.1) yields (2.8),
which shows that f is nondecreasing. Since the marginals of ρ(2) are ρ, we
have f(0) = 1

2 . If f(1) = 1
2 , then we must have f(r) = 1

2 , r ∈ [0, 1]. In this
case (2.16) holds. This is the f associated to the (scale invariant) diagonal
fixed point ρ(2) of T (2).

Lemma 23 (Controlled ODE). Let f : [0, 1]→ [0,∞) be continuous and
nondecreasing with f(1) > 1

2 . Then f satisfies (2.16) if and only if f is
continuously differentiable and solves

(2.21) (i) f(0) =
1

2
, (ii) f ′(r) =

cr

f(r)− r/2
, r ∈ [0, 1],

where

(2.22) c =
1

4
+
f(1)

2
−
∫ 1

0
f(s) ds > 0.

Proof. Plugging in r = 0 into (2.16) we obtain f(0) = 1
2 . Using this, we

have
(2.23)

(i) f(r)2 =
1

4
+

∫ r

0
2f(u)df(u), (ii) rf(r)−

∫ r

0
f(u) du =

∫ r

0
udf(u),
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where both integrals in (2.23) are Stieltjes. Inserting this into (2.16) yields

(2.24)

∫ r

0
(2f(u)− u) df(u) = cr2, 0 ≤ r ≤ 1,

with c as in (2.21). Since f is nondecreasing with f(0) = 1
2 , we observe that

2f(u)−u ≥ 2f(0)−u > 0 for all u ∈ [0, 1). Combining this with the assump-
tion f(1) > 1

2 we get m := min0≤u≤1 (2f(u)− u) > 0, since u 7→ 2f(u) − u
is a continuous function on the compact interval [0, 1]. Since the right-hand
side of (2.24) is has Lipschitz constant 2c, we conclude that f is 2c/m-
Lipschitz-continuous on [0, 1]. Thus, by the Radon-Nykodim theorem, there
exists a Lebesgue-a.s. unique measurable function f◦ : [0, 1] → [0, 2c/m]
such that

∫ r
0 f
◦(u) du = f(r)− 1

2 for all 0 ≤ r ≤ 1.
By (2.24) we have

∫ r
0 (2f(u) − u) f◦(u) du = cr2 for any 0 ≤ r ≤ 1, thus

(2f(r)−r)f◦(r) = 2cr for Lebesgue-almost all r ∈ [0, 1], from which it follows
that the Radon-Nykodim derivative f◦ can be chosen to be the continuous
function f◦(r) = 2cr

2f(r)−r , therefore f is continuously differentiable, f ′ = f◦

and (2.21) holds.
Since f is nondecreasing, (2.21) implies c ≥ 0. Solving (2.21) with c = 0

yields f(1) = 1
2 , contradicting f(1) > 1

2 , so we conclude that c > 0.
Assume, conversely, that f solves (2.21) and (2.22). Then (2.21) (ii) im-

plies (2.24) and (2.21) (i) yields (2.23) (i). Combining this with (2.23) (ii)
and (2.22), we see that f solves (2.16).

Lemma 24 (Well-defined ODE). For each c ∈ [0,∞), there exists a
unique continuous function fc : [0, 1]→ R that solves (2.2) (i) and (ii).

Proof. Solutions to (2.2) (i) and (ii) exist and are unique up to the first
time τ when f(r) = 1

2r. Since solutions are nondecreasing with f(0) = 1
2 , we

have τ ≥ 1. If τ = 1 then f(1) = 1
2 which corresponds to the case f(r) = 1

2
(r ∈ [0, 1]), so f is in any case continuous on [0, 1].

Lemma 25 (Integral equation for fc). The function fc from Lemma 24
satisfies

(2.25) fc(r)
2 = 1

4 + rfc(r)−
∫ r

0
fc(u) du+ cr2, 0 ≤ r ≤ 1, c ∈ [0,∞).

Proof. (2.25) holds for r = 0 since fc(0) = 1
2 and the derivatives of the

two sides of (2.25) are equal for all 0 ≤ r ≤ 1 by (2.21).

Proof of Lemma 14. We note that the function f(r) = 1
2 (r ∈ [0, 1])

solves (2.21) for r ∈ [0, 1) and c = 0. In view of this, Lemma 21, Remark 22,

imsart-aop ver. 2014/10/16 file: frozen_revis2.tex date: December 28, 2020



FROZEN PERCOLATION ON THE BINARY TREE IS NONENDOGENOUS 31

and Lemma 23 show that T (2)(ρ(2)) = ρ(2) if and only if the function f from
(2.1) satisfies (2.2) (i) and (ii) with c = 1

4 + 1
2f(1) −

∫ 1
0 f(s)ds ≥ 0. To see

that this latter condition is equivalent to (2.2) (iii), we insert r = 1 into

(2.25) which yields 1
4 + fc(1)

2 −
∫ 1

0 fc(s) ds = fc(1)2 − fc(1)
2 − c.

2.4. Finding the nontrivial control parameter . The goal of this subsec-
tion is to prove Lemma 15. By Lemma 24, the ODE (2.2) (i) with the left
boundary condition (2.2) (ii) has a unique solution fc for all c ≥ 0. We need
to prove the existence and uniqueness of a control parameter c2 > 0 for
which fc2 also solves the right boundary condition (2.2) (iii). In Lemma 26
we solve the ODE and obtain an implicit equation for fc(1). In Lemma 28
we use this to rewrite (2.2) (iii) as h(c) = 1 for some explicit function h
(see (2.33)). In Lemma 29 we show that there is a unique c2 > 0 such that
h(c2) = 1 holds, and c2 ∈ (0, 1

4).
Given any c ∈ (0,∞), let us define g+(c), g−(c), A+(c), A−(c) by

(2.26) g±(c) :=
1

4

(
1±
√

1 + 16c
)
, A±(c) := −1

2
± 1

2
√

1 + 16c
.

Lemma 26 (Solution of ODE for fc). For any c > 0, the function fc
from Lemma 24 is given by fc(r) = rgc(r) (r ∈ (0, 1]), where gc(r) is the
unique element of (g+(c),+∞) that satisfies

(2.27) 1
2 (gc(r)− g+(c))A+(c) (gc(r)− g−(c))A−(c) = r.

Proof. If we define gc(r) := fc(r)/r for any r ∈ (0, 1], then we can use
(2.2) (i) to show that the function r 7→ gc(r) solves the ODE

(2.28)
gc(r)− 1/2

c− gc(r)(gc(r)− 1/2)
g′c(r) =

1

r
, r ∈ (0, 1].

We first find the general solution of this ODE by integrating both sides of
(2.28). In order to calculate the indefinite integral of the l.h.s., we perform
the substitution g = gc(r) and apply the partial fraction decomposition

(2.29)
1/2− g

g2 − g/2− c
(2.26)

=
A+(c)

g − g+(c)
+

A−(c)

g − g−(c)
.

Integrating and then exponentiating both sides of (2.28), we obtain that the
general solution of (2.28) satisfies the implicit equation R(gc(r)) = r for any
r ∈ (0, 1], where

(2.30) R(g) := α∗ (g − g+(c))A+(c) (g − g−(c))A−(c) , g ∈ (g+(c),+∞)
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for some positive constant α∗. Note that the function g 7→ R(g) is strictly
decreasing (since both A+(c) and A−(c) are negative) and that it satisfies
limg→g+(c)R(g) = +∞ as well as limg→∞R(g) = 0. Therefore, the equation
R(g) = r has a unique solution g for any r ∈ (0, 1]. In order to identify the
value of α∗, we observe that (2.2) (ii) is equivalent to limr→0+ gc(r)r = 1

2 ,
which is in turn equivalent to

(2.31) lim
g→∞

gα∗ (g − g+(c))A+(c) (g − g−(c))A−(c) = 1
2 .

Noting that A+(c) + A−(c) = −1 (c.f. (2.26)), we obtain α∗ = 1
2 using

(2.31).

Lemma 27 (fc is increasing and concave). For any c > 0, the function fc
from Lemma 24 is twice continuously differentiable with fc(0) = 1

2 , f ′c(r) ≥
0, and f ′′c (r) > 0

(
r ∈ (0, 1]

)
.

Proof. The facts that fc(0) = 1
2 and f ′c(r) ≥ 0 are immediate from

(2.2) (i) and (ii). To see that fc is twice continuously differentiable with
f ′′c (r) ≥ 0, we observe that by (2.2) (i),

(2.32) f ′′c (r) = ∂
∂r

c

r−1fc(r)− 1
2

= ∂
∂r

c

gc(r)− 1
2

,

where gc is the function in Lemma 26. Since the function in (2.30) is strictly
decreasing, gc(r) is strictly decreasing, and hence the right-hand side of
(2.32) is strictly positive for r > 0.

Let us define

(2.33) h(c) := 1
4

(√
1 + 32c−

√
1 + 16c√

1 + 32c+
√

1 + 16c

) 1√
1+16c 1

c
, c ∈ (0,∞).

Lemma 28 (Right boundary condition). Let c ∈ (0,+∞). The following
conditions are equivalent:

2c = fc(1)2 − 1
2fc(1)(2.34)

fc(1) = 1
4

(
1 +
√

1 + 32c
)

(2.35)

h(c) = 1(2.36)

Proof. The positive solution of the quadratic equation (2.34) is (2.35).
By Lemma 26, fc(1) is the unique element of (g+(c),+∞) that satisfies

(2.37) 1
2 (fc(1)− g+(c))A+(c) (fc(1)− g−(c))A−(c) = 1.
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Now by (2.37) and A+(c) +A−(c) = −1, (2.35) is equivalent to

(2.38) 2
(√

1 + 32c−
√

1 + 16c
)A+(c) (√

1 + 32c+
√

1 + 16c
)A−(c)

= 1.

Finally, the equivalence of the condition (2.38) and (2.36) (c.f. (2.33)) follows
using elementary algebra.

Lemma 29 (Existence and uniqueness of the positive root). There exists
exactly one c2 ∈ (0,+∞) such that h(c2) = 1. Moreover we have

(2.39) c2 ∈ (0, 1
4).

Proof. Let us first observe that limc→0+ h(c) = 1, thus h is a continuous
function on [0,+∞) if we define h(0) := 1. Next we observe that

(2.40) h(1/4)
(2.33)

=

(
3−
√

5

3 +
√

5

) 1√
5

< 1.

We will show that

(2.41) ∃ c̃ ∈ (0,+∞) : h′(c) > 0 if c ∈ (0, c̃), but h′(c) < 0 if c ∈ (c̃,+∞).

Once we have this, the statement of Lemma 29 will follow from the facts
that h(0) = 1 and h(1/4) < 1.

It remains to prove (2.41). Let us define

(2.42) k(c) := ln(h(c/16)), r(c) := (1 + c)3/2k′(c).

Let us observe that in order to prove (2.41), it is enough to prove

(2.43) ∃ ĉ ∈ (0,+∞) : r(c) > 0 if c ∈ (0, ĉ), but r(c) < 0 if c ∈ (ĉ,+∞),

where actually ĉ = 16c̃. It remains to prove (2.43). First note that we have
(2.44)

k′(c) =
−c+ (1 + 2c)−1/2 − 1

c2 + c
− 1

2
(1 + c)−3/2 ln

(√
1 + 2c−

√
1 + c√

1 + 2c+
√

1 + c

)
,

thus limc→0+ k
′(c) = +∞. Also note that ∃ c : k′(c) < 0, since k(0) = 0 and

k(4) < 0 by (2.40) and (2.42). These observations imply that the function
c 7→ r(c) takes both positive and negative values. Thus in order to prove
(2.43), it is enough to prove that r : (0,+∞)→ R is a decreasing function.
(2.45)

r′(c) =

√
1 + c

2c2(2c+ 1)3/2
q(c), where q(c) :=

√
2c+ 1(2−2c2+3c)−2−6c.

It remains to check that q(c) < 0 for all c > 0. This readily follows after we
observe that q(0) = 0, q′(0) = −1 and q′′(c) = −15c√

2c+1
for any c > 0.
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Remark 30. Although it is just elementary calculus, the proof of the
uniqueness part of Lemma 29 is one of the trickiest of the paper. Since
ultimately, the uniqueness of the nontrivial scale invariant fixed point of
Theorem 12 hinges on this, one would like to find a more elegant and in-
sightful proof. It is tempting to try and prove that the function h, or the
function c 7→ ch(c), are either convex or concave on the entire positive axis,
but this is not true. The function c 7→ fc(1)2− 1

2fc(1) that occurs in (2.2) (iii)
appears to be concave, but we have been unable to prove so.

2.5. Non-trivial solution of the bivariate RDE .

Proof of Lemma 16. We apply Lemma 19 to the function fc2 . Condi-
tion (i) is satisfied since

(2.46) fc2(1)
(2.35)

= 1
4

(
1 +
√

1 + 32c2

) (2.39)
< 1

4

(
1 +
√

9
)

= 1.

Conditions (ii), (iii) and (v) of Lemma 19 are satisfied by Lemma 27, so
it remains to check condition (iv), which requires 2f ′c2(1) = fc2(1). Using
(2.21) (ii), we can rewrite this as

(2.47)
2c2

fc2(1)− 1
2

= fc2(1),

which is satisfied by Lemmas 28 and 29.

Remark 31. Formula (2.47) shows that condition (2.2) (iii) is equivalent
to the statement that the measure ρ(2) associated with f puts no mass on
the diagonal

{
(r, r) : r ∈ [0, 1]

}
.

3. Frozen percolation.

3.1. Outline. In the previous section, we have proved Theorem 12, which
implies that the RTP (τi, κi, Yi)i∈T corresponding to the map χ from (1.30)
and law ρ from (1.31) is nonendogenous. In the present section, we provide
the proofs of our remaining results, which are Theorems 2, 3, 6, and 7, as
well as Lemma 8, Proposition 9, and Lemma 11.

In Subsection 3.2, we show that there is a one-to-one correspondence
between solutions to the RDEs (1.12) and (1.32), under which the measure
ν from (1.16) corresponds to the measure ρ from (1.31). We also prove a
correspondence between solutions to the associated bivariate RDEs and use
this to derive Theorem 7 from Theorem 12.
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In Subsection 3.3, we classify all solutions to the RDE (1.32). Using results
from the preceding subsection, this also leads to a description of general
solutions to the RDE (1.12).

Theorem 6 is proved in Subsections 3.4 and 3.5. In Subsection 3.4, we use
the classification of solutions to (1.32) to prove a version of Theorem 6 for
frozen percolation on the MBBT. In Subsection 3.5 this is then translated
into a result for the oriented binary tree using a coupling between two RTPs,
one for frozen percolation on the MBBT, and the other for the oriented
binary tree.

In Subsection 3.6, we prove Lemma 8 as well as Proposition 9 and Lemma
11 about scale invariance of the MBBT. Lemma 11 allows us to identify the

nontrivial solution ρ
(2)
2 of the bivariate RDE from Theorem 12 as ρ(2). Using

results from Subsection 3.3, we use this to obtain an explicit formula for ν(2)

based on our formula for ρ(2).
In Subsection 3.7 we mainly rely on arguments from [Ald00] to translate

results about frozen percolation on the oriented binary tree into results about
frozen percolation on the 3-regular tree. In particular, we derive Theorem 2
from Theorem 6 and Theorem 3 from Theorem 7.

3.2. Equivalence of RDEs. In this subsection, we show that there is a
one-to-one correspondence between solutions to the RDEs (1.12) and (1.32),
under which the measure ν from (1.16) corresponds to the measure ρ from
(1.31). We also prove a correspondence between solutions to the associated
bivariate RDEs and use this to derive Theorem 7 from Theorem 12. We
start with a simple observation.

Lemma 32 (No burning before the critical point). Every solution µ to
the RDE (1.12) is concentrated on I ′ := [1

2 , 1] ∪ {∞}.

Proof. If µ solves the RDE (1.12), then we can construct an RTP
(τi, Xi)i∈T corresponding to the map γ from (1.5) and µ. Then by (1.15),
(3.1)

µ
(
[0, 1

2 ]
)

= P[X∅ ≤ 1
2 ] ≤ P[X↑∅ ≤ 1

2 ] = P
[
∅ T1/2\F−→ ∞

]
≤ P

[
∅ T1/2

−→∞
]

= 0,

where the last equality follows from the fact that a branching process with
a binomial offspring distribution with parameters 2, 1

2 is critical and hence
dies out a.s.

The next lemma, which is the first main result of the present subsection,
says that there is a one-to-one correspondence between solutions to the
RDEs (1.12) and (1.32). The idea behind the proof (and in particular the
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occurrence of the geometric distribution in (3.6)) will become more clear in
Section 3.5 below.

Lemma 33 (Equivalence of RDEs). Let I ′ := [1
2 , 1]∪{∞} and let H : I →

I ′ be the bijection defined by H(t) := 1/(2− t) (t ∈ [0, 1]) and H(∞) :=∞.
If µ solves the RDE (1.32), then its image under the map H solves the RDE
(1.12). Conversely, if µ′ solves the RDE (1.12), then its image under the
map H−1 solves the RDE (1.32).

Proof. Let Ty be defined as in (1.7) but for the map χ in (1.30), i.e.,

(3.2) Ty(µ) := the law of χ[τ∅, κ∅](Y1, Y2)

where Y1, Y2 are i.i.d. with law µ and independent of (τ∅, κ∅). Then we can
write

(3.3) Ty = 1
2TΦ + 1

2Tmin,

where

(3.4) TΦ(µ) := the law of Φ[τ∅](Y1) and Tmin(µ) := the law of Y1∧Y2,

and Φ : [0, 1]× I → I denotes the function

(3.5) Φ[t](x) :=

{
x if x > t,

∞ if x ≤ t.

Note that the map TΦ is linear, but Tmin is not. Let us define

(3.6) Tz :=

∞∑
n=1

2−nTn−1
Φ Tmin.

We claim that µ is a fixed point of Ty if and only if it is a fixed point of
Tz. Indeed, Ty(µ) = µ implies Tmin(µ) = 2µ − TΦ(µ) and hence, using the
linearity of TΦ,

(3.7) Tz(µ) =

∞∑
n=1

2−nTn−1
Φ

(
2µ− TΦ(µ)

)
= µ.

Conversely, since

(3.8) Tz = 1
2Tmin + 1

2TΦ ◦ Tz
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Tz(µ) = µ implies µ = 1
2Tmin(µ) + 1

2TΦ(µ) = Ty(µ).
We observe that

(3.9) Tz(µ) := the law of Φ[τ1]◦· · ·◦Φ[τN ](Y1∧Y2) = γ[τ1∨· · ·∨τN ](Y1, Y2),

where (τk)k≥1 are uniformly distributed on [0, 1], the r.v.’s Y1, Y2 have law
µ, the r.v. N is geometrically distributed with P[N = n] = 2−n−1 (n ≥ 0),
and all r.v.’s are independent. Since

(3.10) P
[
τ1 ∨ · · · ∨ τN ≤ t

]
=

∞∑
n=0

2−n−1tn =
1
2

1− 1
2 t

= H(t)
(
t ∈ [0, 1]

)
,

we have that τ := H(τ1 ∨ · · · ∨ τN ) satisfies P[τ = 1
2 ] = P[N = 0] = 1

2 and
(3.11)
P
[
τ < t

]
= P

[
τ1 ∨ · · · ∨ τN < H−1(t)

]
= H

(
H−1(t)

)
= t

(
t ∈ [1

2 , 1]
)
.

Then, using the fact that

(3.12) γ[H(t)]
(
H(x), H(y)

)
= H

(
γ[t](x, y)

) (
x, y ∈ I, t ∈ [0, 1]

)
and using also Lemma 32, we see that the law µ of an I-valued random
variable Y solves the RDE Tz(µ) = µ or equivalently

(3.13) Y
d
= γ[τ1 ∨ · · · ∨ τN ](Y1, Y2),

if and only if X := H(Y ), X1 := H(Y1), and X2 := H(Y2) solve the RDE
(1.12).

Lemma 34 (Equivalence of special solutions). The measure ν in (1.16)
is the image of the measure ρ in (1.31) under the map H.

Proof. Since H−1(t) = 2 − 1/t (t ∈ [1
2 , 1]) is the inverse of H(t) :=

1/(2− t) (t ∈ [0, 1]), we see that

(3.14) ρ
(
[0, H−1(t)]

)
= 1

2H
−1(t) = 1− 1

2t
= ν

(
[0, t]

) (
t ∈ [1

2 , 1]
)
,

which shows that ν is the image of ρ under H.

We next turn our attention to the bivariate RDEs.

Lemma 35 (Equivalence of bivariate RDEs). Let H : I → I ′ be the map

defined in Lemma 33. Let T
(2)
x and T

(2)
y be the bivariate maps defined as in

(1.8) for the maps γ in (1.5) and χ in (1.30), respectively. Then a measure

µ(2) ∈ P(I2) solves the bivariate RDE T
(2)
y (µ(2)) = µ(2) if and only if its

image ν(2) under the map (y1, y2) 7→
(
H(y1), H(y2)

)
solves the bivariate

RDE T
(2)
x (ν(2)) = ν(2).
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Proof. Let TH : P(I)→ P(I ′) be the function that maps a measure on I
to its image under the map H. The proof of Lemma 33 consisted of showing
that for any µ ∈ P(I), one has Ty(µ) = µ if and only if Tz(µ) = µ, and more-
over TxTH = THTz. With exactly the same proof, these statements remain
true if we replace the maps Tx, Ty, Tz, and TH with their bivariate versions

T
(2)
x , T

(2)
y , T

(2)
z , and T

(2)
H . It follows that µ(2) ∈ P(I2) solves T

(2)
y (µ(2)) = µ(2)

if and only if ν(2) := T
(2)
H (µ(2)) solves T

(2)
x (ν(2)) = ν(2), which is the claim

of the lemma.

Our results so far allow us to prove Theorem 7.

Proof of Theorem 7. By Theorem 12, the bivariate map T
(2)
y has a

fixed point ρ
(2)
2 ∈ P(I2)ρ that is not concentrated on the diagonal

{(y, y) : y ∈ I}. Let ν
(2)
2 denote the image of ρ

(2)
2 under the map (y1, y2) 7→(

H(y1), H(y2)
)
. Then ν

(2)
2 ∈ P(I2)ν by Lemma 34. By Lemma 35, ν

(2)
2 is

a fixed point of T
(2)
x . Since ν

(2)
2 is not concentrated on the diagonal, The-

orem 4 (i) and (iii) imply that the RTP associated with ν is nonendoge-
nous.

Each solution µ to an RDE defines an RTP, which through (1.10) defines
a special solution µ(2) to the corresponding bivariate RDE. In particular, we

define ν(2) and ρ(2) in this way starting from the measures ρ and ν defined in
(1.31) and (1.16). The final result of this subsection relates these measures
to each other.

Lemma 36 (Nontrivial solutions to bivariate RDE). Let (Y∅, Y
′
∅) be a

random variable with law ρ(2) and let H be the function from (3.56). Then(
H(Y∅), H(Y ′∅)

)
has law ν(2).

Proof. We will use a characterization of ρ(2) and ν(2) from [MSS18]. We
first need some abstract definitions. Let I be a Polish space. If ξ is a random
probability law on I, and η ∈ P(P(I)) is the law of ξ, then

(3.15) η(n) := E
[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

]
is called the n-th moment measure of η. In [MSS18, Lemma 2] it was shown
that for each map T of the form (1.7), there exists a higher level map Ť :
P(P(I))→ P(P(I)) that is uniquely characterised by

(3.16) Ť (η)(n) = T (n)(η(n))
(
n ≥ 1, η ∈ P(P(I))

)
,
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where T (n) is the associated n-variate map. Let ν be a solution to the RDE
(1.6) and let P(P(I))ν denote the space of all η ∈ P(P(I)) with η(1) = ν.
In [MSS18, Prop 3], it was shown that the set {η ∈ P(P(I))ν : Ť (η) =
η}, equipped with the convex order, has a unique minimal element ν and
maximal element ν. Moreover, by [MSS18, Lemma 2 and Props 3 and 4],
the measures ν(2) and ν(2) from (1.9) and (1.10) are the second moment
measures of ν and ν.

We now return to our special setting with I = [0, 1] ∪ {∞}. Let Tx, Ty,
and TH be as in the proof of Lemma 35. In Lemma 33, we have proved that
µ ∈ P(I) satisfies Ty(µ) = µ if and only if ν := TH(µ) satisfies Tx(ν) =
ν. In Lemma 35, we have shown that the same is true for the bivariate

maps T
(2)
x , T

(2)
y , and T

(2)
H . The argument carries over without a change for

general n-variate maps and therefore, by (3.16), the statement is also true
for the associated higher-level maps Ťx, Ťy, and ŤH . In particular, using also
Lemma 34, we obtain that the image of the set

(3.17) A :=
{
η ∈ P(P(I))ρ : Ťy(η) = η

}
under the higher-level map ŤH is the set

(3.18) B :=
{
η ∈ P(P(I ′)))ν : Ťx(η) = η

}
.

Since by [MSS18, Prop 3], higher-level maps are monotone w.r.t. the convex
order, ŤH maps the minimal element of A, which is ρ, into the minimal

element of B, which is ν. By (3.16), this implies that the bivariate map T
(2)
H

maps ρ(2) to ν(2), which is the claim we wanted to prove.

3.3. General solution of the RDE. In this subsection, we classify all so-
lutions to the RDE (1.32). Through Lemma 33, this then also implies the
form of a general solution of the RDE (1.12), significantly extending [Ald00,
Lemma 3], who only considered solutions without atoms in [0, 1].

Let O ⊂ (0, 1] be open. Then O is a countable union of disjoint open
intervals (Ok)0≤k<n+1 for some 0 ≤ n ≤ ∞ (with ∞ + 1 := ∞). Without
loss of generality we can assume that ∅ 6= Ok ⊂ (0, 1) for all 1 ≤ k < n+ 1
while either 1 ∈ O0 or O0 = ∅. We let xk ∈ (0, 1) and ck > 0 denote the
center and radius of Ok, respectively, i.e., Ok = (xk − ck, xk + ck), and we
choose x0 ∈ (0, 1]∪ {2} and c0 > 0 such that O0 = (x0− c0, x0 + c0)∩ (0, 1].
We define a measure µ on [0, 1] by

(3.19) µ(dt) := 1
21[0,1]\O(t)dt+ 1{x0 6=2}c0δx0(dt) +

n∑
k=1

ckδxk(dt).
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40 BALÁZS RÁTH, JAN M. SWART, AND TAMÁS TERPAI

It is easy to see that µ([0, 1]) ≤ 1, so we can unambiguously extend µ to a
probability measure on I = [0, 1] ∪ {∞}. We will prove the following result.

Proposition 37 (General solution to RDE). The probability measure
µ defined in (3.19) solves the RDE (1.32), and conversely, every solution of
(1.32) is of this form.

We need one preparatory lemma.

Lemma 38 (RDE for MBBT). A probability measure µ on I solves the
RDE (1.32) if and only if

(3.20)

∫
[0,t]

µ(ds) s = µ
(
[0, t]

)2 (
t ∈ [0, 1]

)
.

Proof. Let Φ be the function defined in (3.5). Then

(3.21) χ[τ, 1](x, y) = Φ[τ ](x) and χ[τ, 2](x, y) = x ∧ y.

Using this and the fact that the function F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]) uniquely

characterizes µ, we see that (1.32) is equivalent to

(3.22)

F (t) = P[Y∅ ≤ t] = 1
2

∫ 1

0
dsP

[
Φ[s](Y1) ≤ t

]
+ 1

2P[Y1 ∧ Y2 ≤ t]

= 1
2

∫ 1

0
dsP[s < Y1 ≤ t] + 1

2

(
1− P[Y1 > t]2

)
= 1

2

∫ t

0
ds
{
F (t)− F (s)

}
+ 1

2

(
1− (1− F (t))2

)
= 1

2 tF (t)− 1
2

∫ t

0
ds F (s) + F (t)− 1

2F (t)2,

which can be rewritten as

(3.23)
(
t− F (t)

)
F (t) =

∫ t

0
ds F (s)

(
t ∈ [0, 1]

)
.

Using the fact that

(3.24) tF (t) =

∫
[0,t]

d(sF (s)) =

∫
[0,t]

s dF (s) +

∫
[0,t]

F (s) ds,

we can rewrite (3.23) as (3.20).
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Proof of Proposition 37. We first prove that the measure in (3.19)
solves (3.20). With xk and ck as in (3.19), we will prove that the measure
µ′ on [0,∞) defined by

(3.25) µ′(dt) := 1
21[0,∞)\O(t)dt+

n∑
k=0

ckδxk(dt)

solves (3.20) for all t ≥ 0. Restricting µ′ to [0, 1] we then see that µ satisfies
(3.20) for all t ∈ [0, 1].

If µ′(ds) := 1
2ds then the left-hand side of (3.20) is 1

2 ·
1
2 t

2 while the right-
hand side is (1

2 t)
2, so (3.20) holds. Next, if we modify µ′ by concentrating

all the mass in an interval of the form (x − c, x + c) in the middle of that
interval, then (3.20) remains true for all t ≤ x − c and t ≥ x + c. Applying
this observation inductively and taking the limit, we see that µ′ solves (3.20)
for all t ∈ [0,∞)\O. But the left- and right-hand sides of (3.20) are constant
on the intervals [xk − ck, xk) and [xk, xk + ck] (k ≥ 0) so (3.20) holds for all
t ≥ 0.

The proof that all solutions of (3.20) are of the form (3.19) goes in a
number of steps. Taking increasing limits, we observe that (3.20) implies

(3.26)

∫
[0,t)

µ(ds) s = µ
(
[0, t)

)2 (
t ∈ (0, 1]

)
.

We next claim that:
(3.27)

If µ solves (3.20) and µ
(
[0, t)

)
= 1

2u with 0 ≤ t ≤ u, then µ
(
[t, u]

)
= 0.

Indeed, we obtain from (3.20) that

(3.28)

∫
[0,t)

µ(ds) s+

∫
[t,u]

µ(ds) s =
[
µ
(
[0, t)

)
+ µ

(
[t, u]

)]2
,

which using (3.26) and our assumption that µ
(
[0, t)

)
= 1

2u yields

(3.29) µ
(
[t, u]

)2
=

∫
[t,u]

µ(ds) s− uµ
(
[t, u]

)
≤ 0.

Our next claim is that:

(3.30)
If µ solves (3.20) and c := µ({t}) > 0 for some t ∈ [0, 1],
then c = 2

[
1
2 t− µ

(
[0, t)

)]
.

Indeed, (3.20) implies

(3.31)

∫
[0,t)

µ(ds) s+ ct =
[
µ
(
[0, t)

)
+ c
]2
,
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which using (3.26) implies

(3.32) ct = 2cµ
(
[0, t)

)
+ c2.

Using our assumption that c > 0, we arrive at (3.30). Let F denote the
function F (t) := µ

(
[0, t]

)
(t ∈ [0, 1]). We need one more claim, which says

that:

(3.33)
If µ solves (3.20) and has no atoms in [s, u),
then µ

(
[0, s)

)
< 1

2s implies µ
(
[s, u)

)
= 0.

Indeed, if µ has no atoms in [s, u), then the function F (t) := µ
(
[0, t]

)
(t ∈

[0, 1]) solves

(3.34) tµ(dt) = tdF (t)
(3.20)

= d
(
F (t)2

)
= 2F (t)dF (t) = 2F (t)µ(dt)

on [s, u), which shows that the restriction of µ to [s, u) is concentrated on
{t ∈ [s, u) : F (t) = 1

2 t}. Now if (3.33) would not hold, then τ := inf{t ∈
[s, u) : F (t) = F (s) + ε} would satisfy s < τ < u for some ε > 0. But then
µ
(
[s, τ ]

)
= 0 and hence F (τ) = F (s), which is a contradiction.

Claim (3.27) says that if F (t) > 1
2 t, then F must stay constant until the

next time when F (t) = 1
2 t. Claim (3.33) says that if F (t) < 1

2 t, then F must
stay constant until the next time when it makes a jump. Claim (3.30) says
that if F makes a jump at time t, then it jumps from 1

2 t−
1
2c to 1

2 t+ 1
2c for

some c > 0. Using these facts, it is easy to see that µ must be of the form
(3.19).

3.4. Frozen percolation on the MBBT. In this subsection, we prove a
version of Theorem 6 for frozen percolation on the MBBT, from which in
the next subsection we will derive Theorem 6. We first need some definitions
concerning general RTPs corresponding to the RDE (1.32), similar to those
introduced in Subsection 1.4 for general RTPs corresponding to the RDE
(1.12).

Let (τi, κi, Yi)i∈T be an RTP corresponding to the map χ from (1.30) and
a general solution µ to the RDE (1.32). Generalising the definition in (1.25),
we set

(3.35) Si :=
{
ij1 · · · jn ∈ T : jm ≤ κij1···jm−1 ∀1 ≤ m ≤ n

}
.

Modifying the definition of Tt in (1.13), in the present context, we set

(3.36)
Tt :=

{
i ∈ T : κi = 2 or τi ≤ t

}
, Sti := Tt ∩ Si,

and Fy :=
{
i ∈ T : κi = 1, τi ≥ Yi1

}
.
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Similar to (1.14), we define I-valued random variables (Y ↑i )i∈T by

(3.37) Y ↑i := inf
{
t ∈ [0, 1] : i

Sti\Fy−→ ∞
}
,

with inf ∅ := ∞. Note that if i ∈ S, then in (3.37) we can equivalently
replace Sti by St∅ =: St. At time t ∈ [0, 1], we call points in Tt\Fy open,
points in Tt ∩ Fy frozen, and all other points in T closed. We call τi the

activation time of i and refer to Yi and Y ↑i as its burning time and percolation
time, respectively. Note that our modified definition of Tt has the effect
that branching points, i.e., points i for which κi = 2, are always open. The
remaining blocking points, i.e., points i for which κi = 1 are initially closed.
At its activation time, a blocking point i either freezes or opens, depending
on whether at that moment i1 is burnt or not.

It follows from the inductive relation (1.29) that if κi = 1, then Yi > τi,
i.e., a blocking point can only burn after its activation time. We see from
the definition of Fy in (3.36) and the definition of the map χ in (1.30) that
if a blocking point i burns at some time Yi ∈ [0, 1], then i must be open at
that time. Formula (1.30) moreover implies that if a point i ∈ T burns at
some time Yi ∈ [0, 1], then starting at i there must be a ray in Si consisting
of points that burn at the same time as i. By our earlier remark and since
branching points are always open, such a ray must be open, which proves
that (compare (1.15))

(3.38) Y ↑i ≤ Yi a.s. (i ∈ T).

The next proposition says that the opposite inequality holds only if µ is the
special solution ρ to the RDE defined in (1.31).

Proposition 39 (Percolation probability). Let (τi, κi, Yi)i∈T be an RTP
corresponding to the map χ from (1.30) and a solution µ to the RDE (1.32).
Then

(3.39) P
[
Y ↑i ≤ t

]
= F (t) ∨

(
t− F (t)

) (
t ∈ [0, 1]

)
,

where F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]). Moreover, one has Y ↑∅ = Y∅ a.s. if and

only if µ is the measure ρ in (1.31).

The proof of Proposition 39 needs some preparations. We will be inter-
ested in the law of the open connected component of the root conditional
on the root not being burnt. In the next lemma we condition on the origin
not being burnt and calculate the probability that (i) the root is a branch-
ing point, (ii) the root is a blocking point and its descendant is not burnt,
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(iii) the root is a blocking point and its descendant is burnt. We show that
conditional on the event (ii), the activation time of the root is uniformly
distributed.

Lemma 40 (Law conditioned on not being burnt). Let (τi, κi, Yi)i∈T be
an RTP corresponding to the map χ from (1.30) and a solution µ to the
RDE (1.32). Then

(3.40)

(i) P
[
κ∅ = 2

∣∣Y∅ > t
]

= 1
2

(
1− F (t)

)
,

(ii) P
[
κ∅ = 1, Y1 > t

∣∣Y∅ > t
]

= 1
2 ,

(iii) P
[
κ∅ = 1, Y1 ≤ t

∣∣Y∅ > t
]

= 1
2F (t),

where F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]). Moreover,

(3.41) P
[
τ∅ ≤ s

∣∣κ∅ = 1, Y1 > t, Y∅ > t
]

= s
(
s, t ∈ [0, 1]

)
.

Proof. One has
(3.42)

P
[
κ∅ = 2, Y∅ > t

]
=P
[
κ∅ = 2, Y1 > t, Y2 > t

]
= 1

2

(
1− F (t)

)2
,

P
[
κ∅ = 1, Y1 > t, Y∅ > t

]
= 1

2P[Y1 > t] = 1
2

(
1− F (t)

)
.

Dividing by P[Y∅ > t] = 1−F (t) yields (3.40) (i) and (ii), and the remaining
formula follows since the total probability is one. Since κ∅ = 1 and Y1 > t
a.s. imply Y∅ > t, and since τ∅ is independent of Y1, κ∅ and uniformly
distributed, we also obtain (3.41).

For t ∈ [0, 1], we inductively define (Ot
n)n≥0 by Ot

0 := {∅} and

(3.43) Ot
n :=

{
ij : i ∈ (Ot

n−1 ∩ Tt)\Fy, 1 ≤ j ≤ κi
}
.

We call Ot :=
⋃∞
n=0 Ot

n the open component of the root. Note that Ot
n consists

of all descendants of open elements of Ot
n−1, while elements of Ot

n−1 that
are closed or frozen produce no offspring. As a result, the root percolates
at time t ∈ [0, 1] if and only if Ot is infinite. The next lemma says that
conditional on the event that the root is not burnt, (Ot

n)n≥0 is a branching
process that can be subcritical, critical, or supercritical, depending on t and
our choice of the solution µ to the RDE (1.32).

Lemma 41 (The open unburnt component of the root). Fix t ∈ [0, 1] and
write Ot

n = {ij : i ∈ Ot
n−1, 1 ≤ j ≤ λti} with λti ∈ {0, 1, 2}. If (Uk)0≤k<n is a

possible realization of (Ot
k)0≤k<n, then conditional on the event At := {Y∅ >
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t, (Ot
k)0≤k<n = (Uk)0≤k<n}, the random variables (λti)i∈Un−1 are i.i.d. with

law

(3.44)
P[λti = 0 | At] = 1

2

(
1− t+ F (t)

)
, P[λti = 1 | At] = 1

2 t,

P[λti = 2 | At] = 1
2

(
1− F (t)

)
,

where F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]).

Proof. Fix t ∈ [0, 1]. We claim that Y∅ > t implies Yi > t for all i ∈ Ot.
Indeed, if i ∈ Ot

n−1 is open and not burnt, then all its descendants must be
unburnt, while elements that are not open have no descendants in Ot

n, so
the claim follows by induction.

Fix (Uk)0≤k<n and define At as in the lemma, which by what we have
just proved is the same as the event

(3.45) At =
{
Yi > t ∀i ∈ U, (Ot

k)0≤k<n = (Uk)0≤k<n
}
,

where U :=
⋃

0≤k<nUk. By Lemma 40, independently for each i ∈ Un−1,

(3.46)

(i) P
[
κi = 2

∣∣At]= 1
2

(
1− F (t)

)
,

(ii) P
[
κi = 1, τi ≤ t, Yi1 > t

∣∣At]= 1
2 t,

(iii) P
[
κi = 1, τi > t, Yi1 > t

∣∣At]= 1
2(1− t),

(iv) P
[
κi = 1, Yi1 ≤ t

∣∣At]= 1
2F (t),

which are the conditional probabilities that (i) i is a branching point, (ii) i is
an open blocking point, (iii) i is a closed blocking point and its descendant
is not burnt, (iv) i is a blocking point and its descendant is burnt, which is
only possible if i is closed or frozen. Since λti = 2 in case (i), λti = 1 in case
(ii), and λti = 0 in the remaining cases, the lemma follows.

Proof of Proposition 39. By (3.38),

(3.47)
P
[
Y ↑∅ ≤ t

]
=P
[
Y∅ ≤ t

]
+ P

[
Y∅ > t

]
P
[
Y ↑∅ ≤ t

∣∣Y∅ > t
]

=F (t) +
(
1− F (t)

)
P
[
Ot
n 6= ∅ ∀n ≥ 0

∣∣Y∅ > t
]
.

By Lemma 41, the probability

(3.48) p := P
[
Ot
n 6= ∅ ∀n ≥ 0

∣∣Y∅ > t
]

is the survival probability of a branching process with offspring distribution
as in (3.44). It is well-known [AN72, Thm III.4.1] that the survival probabil-
ity is the largest solution in [0, 1] of the equation Ψ(p) = p, where (compare
formula (A.1) in the appendix)

(3.49) Ψ(p) := 1
2

(
1− F (t)

)
p(1− p)− 1

2

(
1− t+ F (t)

)
p.
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Assuming that F (t) < 1, it follows that

(3.50) p = 0 ∨
{

1− 1− t+ F (t)

1− F (t)

}
= 0 ∨ t− 2F (t)

1− F (t)
.

Inserting this into (3.47) we arrive at (3.39). This argument does not work
if F (t) = 1, which by Proposition 37 is only possible if t = 1 and µ = δ1. In
this case, no freezing takes place until at time t = 1 all i ∈ T are open, so
the left- and right-hand sides of (3.39) are both trivially equal to one.

Formula (3.38) says that Y ↑∅ ≤ Y∅ a.s., so we have Y ↑∅ = Y∅ a.s. if and
only if

(3.51) P
[
Y ↑∅ ≤ t

]
= P[Y∅ ≤ t] = F (t)

(
t ∈ [0, 1]

)
,

which by (3.39) happens if and only if F (t) ≥ 1
2 t (t ∈ [0, 1]). By Propo-

sition 37, the only solution to the RDE (1.32) with this property is the
measure ρ in (1.31).

3.5. Frozen percolation on the binary tree. In this subsection we derive
Theorem 6 from Proposition 39. Our main tool is a coupling between, one
the one hand, an RTP (τi, κi, Yi)i∈T corresponding to the map χ from (1.30),
and on the other hand, an RTP (τi, Xi)i∈T corresponding to the map γ from
(1.5). We first describe the main idea of the construction and then fill in the
technical details.

It is easy to see that for an RTP corresponding to the map χ from (1.30),
the number of blocking points between two consecutive branching points is
geometrically distributed with parameter 1/2. Imagine, for the moment, that
instead there would always be exactly one blocking point between two con-
secutive branching points. Then, comparing (1.5) and (1.30), one can check
that the inductive relation satisfied by the burning times (Yi)i∈S, κi=1 of
blocking points would be exactly the same as the inductive relation satisfied
by the burning times (Xi)i∈T of arbitrary points in an RTP corresponding to
the map γ from (1.5). Inspired by this, starting from an RTP corresponding
to the map χ from (1.30), we will construct an associated RTP corresponding
to the map γ from (1.5) along the following steps:

(i) If there are two or more blocking points between two consecutive
branching points, then we replace them by one point, whose new ac-
tivation time is the maximum of the activation times of the blocking
points it replaces.

(ii) If there are no blocking points between two consecutive branching
points, then we add one such point, and assign it an activation time
that is uniformly distributed on [−1, 0].
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(iii) We transform the activation times that we obtain by this procedure
using a monotone mapping from [−1, 1] to [0, 1], which has the result
that the transformed times are uniformly distributed on [0, 1].

We now formulate this a little more precisely. Let

(3.52) 1n := 1 · · · 1︸ ︷︷ ︸
n times

denote the word of length n ≥ 0 that contains only 1’s. For each i ∈ S, we
set

(3.53) b(i) := i1Ni
with Ni := inf{n ≥ 0 : κi1n = 2}.

In words, b(i) is the next branching point above i (which may be i itself).
We inductively define a map ψ : T→ S by ψ(∅) = ∅ and

(3.54) ψ(ij) := b
(
ψ(i)

)
j (i ∈ T, j = 1, 2).

Note that points of the form ψ(i) with i ∈ T\{∅} are direct descendants of
branching points, and Nψ(i) is the number of steps we have to walk up from
ψ(i) to reach the next branching point.

We let (τ̃i)i∈T be an i.i.d. collection of uniformly distributed [−1, 0]-valued
random variables, independent of everything else. For each i ∈ T, we define

(3.55) σi :=

{
max

{
τψ(i)1n : 0 ≤ n ≤ Nψ(i) − 1

}
if Nψ(i) ≥ 1,

τ̃i otherwise,

i.e., σi is the maximum of the activation times of blocking points that lie
directly below the branching point b(ψ(i)), if there are any, and σi = τ̃i
otherwise. For each i ∈ T, the number Nψ(i) of blocking points that lie below
the branching point b(ψ(i)) is geometrically distributed with parameter 1/2,
and the values of their activation times are i.i.d. uniformly distributed on
[0, 1] and independent of Nψ(i). These quantities are moreover independent
for different i ∈ T. As a result, the (σi)i∈T are i.i.d. with distribution function

(3.56) P[σi < s] = H(s) :=


1
2(1 + s) if s ∈ [−1, 0],

1

2− s
if s ∈ [0, 1],

where we have used the calculation in (3.10) and we extend the function
H : [0, 1]→ [1

2 , 1] from Lemma 33 into a function H : [−1, 1]→ [0, 1].
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Proposition 42 (Coupling of RTPs). Let (τi, κi, Yi)i∈T be an RTP cor-
responding to the map χ from (1.30) and any solution to the RDE (1.32).
Let (τ̃i)i∈T be an independent i.i.d. collection of uniformly distributed [−1, 0]-
valued random variables, and let ψ : T→ T, (σi)i∈T, and H : [−1, 1]→ [0, 1]
be defined as in (3.54), (3.55), and (3.56). Then setting

(3.57) τ i := H(σi) and Xi := H(Yψ(i)) (i ∈ T)

defines an RTP (τ i, Xi)i∈T corresponding to the map γ from (1.5). Moreover,
any RTP corresponding to γ is equal in distribution to an RTP constructed
in this way. Finally, one has

(3.58) X↑i := H(Y ↑ψ(i)) (i ∈ T),

where X↑i is defined in (1.14) and Y ↑ψ(i) is defined in (3.37).

Proof. We claim that (Yψ(i))i∈T satisfy the inductive relation

(3.59) Yψ(i) = γ[σi]
(
Yψ(i1), Yψ(i2)

)
(i ∈ T),

where we define γ[t](x, y) as in (1.5) also for negative t. Indeed, if Nψ(i) = 0,
then σi ≤ 0 while Yψ(i1), Yψ(i2) > 0 a.s., and

(3.60) Yψ(i) = χ[2]
(
Yψ(i)1, Yψ(i)2

)
= Yψ(i1) ∧ Yψ(i2).

On the other hand, if Nψ(i) ≥ 1, then
(3.61)

Yψ(i) =χ[τψ(i), 1] ◦ · · · ◦ χ[τψ(i)1Nψ(i)
, 1] ◦ χ[2]

(
Yψ(i)1Nψ(i)

1, Yψ(i)1Nψ(i)
2

)
= γ[τψ(i) ∨ · · · ∨ τψ(i)1Nψ(i)

]
(
Yψ(i1), Yψ(i2)

)
.

Using (3.59) and (3.12), we conclude that (Xi)i∈T satisfy the inductive re-
lation (1.4). By (3.56), the random variables (τ i)i∈T are i.i.d. and uniformly
distributed on [0, 1]. Moreover, for any finite rooted subtree U ⊂ T, the r.v.’s
(Xi)i∈∂U are independent of (τ i)i∈∂U and i.i.d.

This completes the proof that (τ i, Xi)i∈T is an RTP corresponding to
the map γ from (1.5). Using Lemma 33, we see that every RTP (τi, Xi)i∈T
corresponding to the map γ from (1.5) and some solution µ to the RDE
(1.12) is equal in distribution to an RTP constructed in this way.

To prove also (3.58), we observe that the frozen set Fx from (1.13) for the
RTP (τ i, Xi)i∈T is given by
(3.62)

F =
{
i ∈ T : τ i ≥ Xi1 ∧Xi2

}
=
{
i ∈ T : σi ≥ Yψ(i1) ∧ Yψ(i2)

}
=
{
i ∈ T : Nψ(i) ≥ 1, τψ(i)1n ≥ Yψ(i)1n+1

for some 0 ≤ n < Nψ(i)

}
=
{
i ∈ T : Nψ(i) ≥ 1, ψ(i)1n ∈ Fy for some 0 ≤ n < Nψ(i)

}
,
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and hence at time t there exists a ray in Stψ(i)\Fy starting at ψ(i) if and only

if at time s := H(t) there exists a ray in Ts\F starting at i.

Proof of Theorem 6. By Lemma 32, µ is concentrated on I ′ = [1
2 , 1]∪

{∞}. Let µ′ be the image of µ under the inverse of the map H : I → I ′

defined in Lemma 33. Then µ′ solves the RDE (1.32). Let (τi, κi, Yi)i∈T be
the RTP corresponding to the map χ from (1.30) and the measure µ′. We
couple this RTP to (τi, Xi)i∈T as in Proposition 42. Since the function H is

strictly increasing, we see that X↑∅ = X∅ a.s. if and only if Y ↑∅ = Y∅ a.s. By
Proposition 39 this is equivalent to µ′ being the measure ρ in (1.31), which
by Lemma 34 is equivalent to µ being the measure ν in (1.16).

3.6. Scale invariance of the MBBT. The aim of the present subsection
is to prove Proposition 9 and Lemma 11 about scale invariance of (frozen
percolation on) the MBBT. Lemma 11, in particular, allows us to identify

the nontrivial fixed point ρ
(2)
2 from Theorem 12 as ρ(2). Combining this with

Lemma 36, we also obtain an explicit expression for ν(2). As a preparation
for this, we first prove Lemma 8.

Proof of Lemma 8. It is well-known [AN72, Thm III.4.1] that the sur-
vival probability is the largest solution in [0, 1] of the equation Ψ(p) = p,
where (compare formula (A.1) in the appendix)
(3.63)
Ψ(p) = {(1−p)− (1−p)2}+ (1− t){(1−p)− (1−p)0} = p(1−p)− (1− t)p.

Since Ψ(p) = 0 has two roots, p = 0 and p = t, we conclude that the survival
probability is t.

We next turn our attention to the proof of Proposition 9. Let (T ,Π) be
the MBBT. If we cut T at points in Πt, then the connected component of
the root is the family tree of a continuous-time branching process where
particles split into two with rate one and die with rate 1 − t. The tree T ′
defined in (1.22) is the skeleton of this process. It is well-known that T ′ is
the family tree of a branching process, which is known as the skeletal process.
There exist standard ways to find the skeletal process associated with a given
branching process. Using these, it is easy to check that T ′ is the family tree
of a binary branching process with branching rate t. In Appendix A, we
outline a proof of this fact along these lines, with references to the relevant
literature.
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To prove Proposition 9, we need a bit more, however, since we need to
determine the joint law of T ′ and Π′. To prove also Lemma 11, we will
moreover need a scaling property of RTPs corresponding to the map χ in
(1.30) and law ρ from (1.31). In view of this, we find it more convenient to
give self-contained proofs of Proposition 9 and Lemma 11, not referring to
the abstract theory of skeletal processes.

Let (τi, κi, Yi)i∈T be the RTP corresponding to the map χ from (1.30) and
law ρ from (1.31), and let (`i)i∈T be an independent i.i.d. collection of expo-
nentially distributed random variables with mean 1/2. As in Subsection 1.6,
we use the random variables (τi, κi, `i)i∈T to define an MBBT (T ,Π). In
particular, T is the family tree of a branching process (∇Sh)h≥0 where S,
defined in (1.25), is the collection of all individuals that will ever live.

We fix 0 < t ≤ 1 and define

(3.64) Y ∗i :=

{
t−1Yi if Yi ≤ t,
∞ otherwise.

We also define (T ′,Π′) as in (1.22) and define (T ∗,Π∗) by
(3.65)
T ∗ :=

{
(x, th) : (x, h) ∈ T ′

}
, Π∗ :=

{
(x, th, t−1τ(x,h)) : (x, h, τ(x,h)) ∈ Π′

}
.

As in Proposition 9, we view (T ′,Π′) and (T ∗,Π∗) as marked metric spaces,
i.e., we do not care about the precise labeling of elements of T ′ or T ∗.
Proposition 9 can be rephrased by saying that the conditional law of (T ∗,Π∗)
given ∅ T \Πt−→ ∞ is equal to the original law of (T ,Π). The following lemma
says that in a sense, (T ∗,Π∗) contains all relevant information about Y ∗∅ .

Lemma 43 (Relevant information). One has

(3.66) P
[
Y ∗∅ ∈ ·

∣∣ (τi, κi)i∈T] = P
[
Y ∗∅ ∈ ·

∣∣ (T ∗,Π∗)] a.s.

The following proposition extends Proposition 9 to a scaling property of
the joint law of (Y ∗∅ , T ∗,Π∗). In particular, this implies Proposition 9.

Proposition 44 (Scaling of the joint law). One has

(3.67) P
[
(Y ∗∅ , T ∗,Π∗) ∈ ·

∣∣ T ∗ 6= ∅] = P
[
(Y∅, T ,Π) ∈ ·

]
.

Before we prove Lemma 43 and Proposition 44, we first show how they
imply Lemma 11.
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Proof of Lemma 11. Conditional on (τi, κi)i∈T, let (Y ′i )i∈T be an in-
dependent copy of (Yi)i∈T. Then, according to the definitions in (1.9) and
(1.10)

(3.68) ρ(2) = P
[
(Y∅, Y∅) ∈ ·

]
and ρ(2) = P

[
(Y∅, Y

′
∅) ∈ ·

]
.

Clearly, these measures are symmetric and their one-dimensional marginals
are given by ρ. It remains to show that they have the scaling property (1.34).
The claim for ρ(2) follows easily from the fact that Y∅ has the law ρ in (1.31).
It remains to prove the statement for ρ(2).

Fix r, s, t ∈ [0, 1]. Since Y∅ = ∞ a.s. on the complement of the event

∅ T \Πt−→ ∞, we have

(3.69)
P
[
(Y∅, Y

′
∅) ∈ [0, tr]× [0, ts]

]
= P

[
(Y∅, Y

′
∅) ∈ [0, tr]× [0, ts]

∣∣∅ T \Πt−→ ∞
]
P
[
∅ T \Πt−→ ∞

]
.

Here P
[
∅ T \Πt−→ ∞

]
= t by Lemma 8, so to show that ρ(2) has the scaling

property (1.34), it suffices to show that

(3.70) P
[
(Y∅, Y

′
∅) ∈ [0, tr]×[0, ts]

∣∣∅ T \Πt−→ ∞
]

= P
[
(Y∅, Y

′
∅) ∈ [0, r]×[0, s]

]
.

Since Y∅ and Y ′∅ are conditionally independent given the σ-field generated

by (τi, κi)i∈T, and since the event that ∅ T \Πt−→ ∞ is measurable w.r.t. this
σ-field, we can rewrite the left-hand side of (3.70) as
(3.71)

E
[
P
[
Y∅ ∈ [0, tr]

∣∣∅ T \Πt−→ ∞, (τi, κi)i∈T
]

· P
[
Y∅ ∈ [0, ts]

∣∣∅ T \Πt−→ ∞, (τi, κi)i∈T
]]

1
= E

[
P
[
Y ∗∅ ∈ [0, r]

∣∣ T ∗ 6= ∅, (T ∗,Π∗)
]
P
[
Y ∗∅ ∈ [0, s]

∣∣ T ∗ 6= ∅, (T ∗,Π∗)
]]

2
= E

[
P
[
Y∅ ∈ [0, r]

∣∣ (T ,Π)
]
P
[
Y∅ ∈ [0, s]

∣∣ (T ,Π)
]]

3
= E

[
P
[
Y∅ ∈ [0, r]

∣∣ (τi, κi)i∈T]P[Y∅ ∈ [0, s]
∣∣ (τi, κi)i∈T]],

which equals the right-hand side of (3.70). Here, in step 1, we have used the

definition of Y ∗∅ in (3.64), as well as the fact that the event {∅ T \Πt−→ ∞} is the
same as the event {T ∗ 6= ∅}, which is measurable with respect to the σ-fields
generated by (τi, κi)i∈T and (T ∗,Π∗), and we have applied Lemma 43. Step 2
follows from Proposition 44. In step 3 we have again applied Lemma 43 but
this time for t = 1, in which case (Y ∗∅ , T ∗,Π∗) = (Y∅, T ,Π).
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Proof of Propositions 9 and 44. Let (τi, κi, Yi)i∈T be the RTP cor-
responding to the map χ from (1.30) and law ρ from (1.31), and let (`i)i∈T
be an independent i.i.d. collection of exponentially distributed random vari-
ables with mean 1/2. Fix t ∈ (0, 1]. For any A ⊂ T and i ≺ j ∈ T, we write

i
A−→ j if there exist i0, . . . , in ∈ A, n ≥ 0, such that i0 = i, in = j, and

←
ik = ik−1 (k = 1, . . . , n). Let us say that i ∈ T is active if it is either open
or frozen, i.e., if κi = 2 or τi ≤ t, and let

(3.72) A :=
{
i ∈ T : ∅ St−→ i

St−→∞
}
,

with St as in (3.36) denote the collection of points that lie on an active ray
in S starting at the root. Note that by Lemma 8, the probability that A is
not empty is t. We give each i ∈ A a type ωi ∈ [0, t)∪{1, 2}, which is defined
as follows:
(3.73)

ωi :=


τi if κi = 1,
1 if κi = 2 and {i1, i2} ∩ A has precisely one element,
2 if κi = 2 and i1, i2 are both elements of A.

Let An := {i ∈ A : |i| = n}. We claim that conditional on the event that A 6=
∅, the process (An)n≥0 with the types assigned to its elements is a multitype
branching process with the following description. In each generation, we first
assign types to the particles that are alive in an i.i.d. fashion according to
the law
(3.74)
P[ω ≤ s] := 1

2s
(
s ∈ [0, t]

)
, P[ω = 1] := 1− t, and P[ω = 2] = 1

2 t,

and then let particles of type 2 produce two offspring while all other particles
produce one offspring. To see this, observe that by Lemma 8, for each i ∈ T
and s ∈ [0, t],

(3.75)

P
[
κi = 1, τi ≤ s, i1

Sti−→∞
]

= 1
2st,

P
[
κi = 2, i1

Sti−→∞ or i2
Sti−→∞ but not both

]
= t(1− t),

P
[
κi = 2, i1

Sti−→∞ and i2
Sti−→∞

]
= 1

2 t
2.

If we condition on (Ak)0≤k≤n and also on the types of particles in generations
0, . . . , n− 1, then the types of particles in the n-th generation are i.i.d. and
their law is the distribution in (3.75) normalised to make it a probability
law, which is the distribution P in (3.74).
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Let (T ,Π) be the MBBT constructed as in Subsection 1.6 from the ran-
dom variables (τi, κi, `i)i∈T, and let (T ′,Π′) be as in (1.22). Then (T ′,Π′)
is uniquely determined by the branching process A and the types ωi and
lifetimes `i of elements i ∈ A. However, A contains, in a sense, too much in-
formation, since points i ∈ A with type ωi = 1 are not visible in (T ′,Π′). To
remedy this, we need a procedure to remove these points, which we describe
now.

For i ∈ A with ωi 6= 2, let f(i) := ij where j is the unique element of
{1, 2} such that ij ∈ A, and let

(3.76) b(i) := fn(i)(i) with n(i) := inf{k ≥ 0 : ωfk(i) 6= 1}

denote the next point above i that is not of type 1. Let B := {i ∈ A : ωi 6= 1}.
We inductively define a map ψ : B→ T by ψ

(
b(∅)

)
:= ∅ and

(3.77)
ψ
(
b(ij)

)
:=ψ(i)j (j = 1, 2) if ωi = 2,

ψ
(
b(i1)

)
:=ψ(i)1 if ωi ∈ [0, t).

We let S′ denote the image of B under the map ψ and assign types to the
elements of S′ by

(3.78) ω′ψ(i) := ωi (i ∈ B).

We also define new lifetimes by

(3.79) `′ψ(i) :=

n(f(i))∑
k=0

`fk(i)

where n(i) is defined as in (3.76). Then the set S′ and the random variables
(ω′i, `

′
i)i∈S contain precisely the information needed to construct (T ′,Π′), and

nothing more.
Let S′n := {i ∈ S′ : |i| = n}. The process (S′n)n≥0 inherits the branching

property from the process (An)n≥0. To get the new generation, we first assign
i.i.d. types to the particles in the present generation according to the law

(3.80) P′[ω ≤ s] :=
s

2t

(
s ∈ [0, t]

)
, P′[ω = 2] = 1

2 ,

which is the law in (3.74) conditioned on ω 6= 1, and then let particles
with type in [0, t) and {2} produce one or two offspring, respectively. Each
lifetime `′i is the sum of a geometric number of exponentially distributed
random variables. From this, it is easy to see that conditional on S′ and the
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types, the lifetimes (`′i)i∈S′ are i.i.d. and exponentially distributed with mean
1
2 t
−1. Since the random tree T ′ is the family tree of the branching process

(S′n)n≥0 with the lifetimes (`′i)i∈S′ , and the Poisson set Π′ records points with
type ωi ∈ [0, t) together with their activation times τ ′i := ωi ∈ [0, t), this
completes proof of Proposition 9.

We could have obtained Proposition 9 faster by referring to the the ab-
stract theory of skeletal processes (see Appendix A). The advantage of our
explicit construction, however, is that it also easily yields the stronger state-
ment of Proposition 44. To see this, we define (Y ′i )i∈S′ by

(3.81) Y ′ψ(i) :=

{
Yi if Yi ≤ t
∞ otherwise.

(i ∈ B).

Since we started from an RTP corresponding to the law ρ from (1.31), and

since Yi > t a.s. on the complement of the event i
St−→ ∞, we see that

conditional on (S′k)0≤k≤n and the types of particles in generations 0, . . . , n−
1, the random variables (Y ′i )i∈S′n are i.i.d. with law P[Y ′i ≤ s] = 1

2s/t (s ∈
[0, t]). We claim that they satisfy the inductive relation

(3.82) Y ′i = χ[ω′i](Y
′
i1, Y

′
i2) (i ∈ S′),

where (compare (1.30))

(3.83) χ[ω](x, y) :=


x if ω ∈ [0, t), x > ω,

∞ if ω ∈ [0, t), x ≤ ω,
x ∧ y if ω = 2.

Note that i2 6∈ S′ if ωi ∈ [0, t), but since in this case, χ[ωi](x, y) does not
depend on y, (3.82) is unambiguous. Indeed, (3.82) follows from the fact that
the original random variables (Yi)i∈T satisfy the inductive relation (1.29)
and, in view of (3.73), Yi = Yi1 if i ∈ A is of type ωi = 1.

These observations imply the statement of Proposition 44. Indeed, if we
set

(3.84) Y ∗i := t−1Y ′i , ω∗i :=

{
t−1ω′i if ω′i ∈ [0, t),
2 if ω′i = 2,

`∗i := t−1`′i,

then the random variables S′ and (ω∗i , `
∗
i )i∈S′ define a marked tree (T ∗,Π∗)

such that the joint law of (Y ∗∅ , T ∗,Π∗), conditioned on T ∗ 6= ∅, is equal to
the joint law of (Y∅, T ,Π).
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Proof of Lemma 43. We use notation as in the proof of Propositions 9
and 44. We adapt the proof of [MSS20, Lemma 46] to our present setting.
We set T(n) := {i ∈ T : |i| < n} and let F (n) and F be the σ-fields generated
by the random variables τi, κi with i ∈ T(n) and i ∈ T, respectively. We also
set S′(n) := S′ ∩ T(n), we let F(n) be the σ-field generated by the random

variables S′(n) and (ω′i)i∈S′(n)
, and we define F similarly, with S′(n) replaced

by S′. We observe that F(n) ⊂ F (n) (n ≥ 1).
The inductive relation (3.82) shows that conditional on F(n), the state

at the root Y ′∅ is a deterministic function of (Y ′i )i∈Tn . Since (Y ′i )i∈Tn are
independent of F (n), it follows that Y ′∅ is conditionally independent of F (n)

given F(n), i.e.,

(3.85) P
[
Y ′∅ ∈ A

∣∣F (n)

]
= P

[
Y ′∅ ∈ A

∣∣F(n)

]
a.s.

for any measurable A ⊂ R. Letting n → ∞, using martingale convergence
and observing that Y ′∅ contains the same information as Y ∗∅ while (T ∗,Π∗)
contains the same information as F , the claim follows.

Remark 45. It follows from Lemma 11 that ρ(2) = ρ
(2)
2 , the nontrivial

scale-invariant fixed point from Theorem 12. Therefore, combining Lemma
36 with formula (1.37), we obtain a formula for ν(2). Indeed,

(3.86) ν(2)
(
[0, r]× [0, s]

)
= 2− 1

2r
− 1

2s
−
(

2− 1

s ∨ r

)
fc2

(
2− 1

s∧r
2− 1

s∨r

)

(1
2 < r, s ≤ 1), where fc2 is the function defined in Theorem 12.

3.7. Frozen percolation on the 3-regular tree. In this subsection, we use
methods from [Ald00] to derive Theorems 2 and 3, which are concerned with
the unoriented 3-regular tree, from Theorems 6 and 7, which are concerned
with the oriented binary tree. We start with a preparatory lemma.

Let (U , ~F ) satisfy properties (i)–(iii) of Theorem 2 and let F be defined
in terms of ~F as in that theorem. Recall that we call edges in Et\F open,
edges in Et ∩ F frozen, and all other edges closed. A similar convention
applies in the oriented setting. For each w ∈ T and t ∈ [0, 1], let Ct(w) resp.
~Ct(w) denote the set of vertices that can at time t be reached by an open
unoriented resp. oriented path starting at w.

Lemma 46 (Finite unoriented clusters). Almost surely, for all t ∈ [0, 1],
if Ct(w) is finite, then Ct(w) = ~Ct(w).
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Proof. Clearly Ct(w) ⊂ ~Ct(w) regardless of whether Ct(w) is finite or
not. To see that equality holds if Ct(w) is finite, assume the converse. Then
there must be x ∈ Ct(w) and y 6∈ Ct(w) such that the oriented edge (x, y)
is open at time t. Among all such edges, we can choose the unique one for
which s := U{x,y} is minimal. Since y 6∈ Ct(w), the oriented edge must have
frozen at time s, so by property (i) of Theorem 2, at time s there must be
an open ray starting at x not using y. Such a ray must use an oriented edge
to leave Ct(w) that is open at time s and hence also at the later time t,
contradicting the minimality of U{x,y}.

Proof of Theorem 2. We first prove uniqueness. Assume that ~F sat-
isfies properties (i)–(iii). For each (v, w) ∈ ~E, let
(3.87)
X(v,w) := inf

{
t ∈ [0, 1] : ∃ ray (vn, wn)n≥0 starting with (v0, w0) = (v, w)

such that (vn, wn) ∈ ~F ∀n ≥ 0
}
,

with inf ∅ :=∞. Let γ be the map in (1.5). Property (i) implies that

(3.88) X(x,v) := γ[U{x,v}](X(v,y), X(v,z))

whenever v ∈ T and x, y, z are the three neighbours of v. Let S be a finite
subtree of (T,E). Then, for each (v, w) ∈ ∂S, the set ~E(v,w) is naturally
isomorphic to the oriented binary tree T. Formula (3.88) and properties (ii)
and (iii) imply that (U{x,y}, X(x,y))(x,y)∈ ~E(v,w)

is an RTP corresponding to the

map γ and some solution µ to the RDE (1.12). Property (i) and Theorem 6
imply that µ = ν, the measure defined in (1.16). By property (iii), the RTPs
corresponding to different (v, w) ∈ ∂S are independent. By (3.88), these
RTPs uniquely determine X(x,y) for each (x, y) ∈ ~E. This shows that the
joint law of U = (U{x,y}){x,y}∈E and (X(x,y))(x,y)∈E is uniquely determined.
Since

(3.89) (x, v) ∈ ~F if and only if U{x,v} ≥ X(v,y) ∧X(v,z)

whenever v ∈ T and x, y, z are the three neighbours of v, the joint law of
(U , ~F ) is also uniquely determined.

As Aldous already showed in [Ald00], existence follows basically from the
same argument. We fix a finite subtree S of (T,E), construct independent
RTPs corresponding to γ and ν for each (v, w) ∈ ∂S, inductively define
X(x,y) for each (x, y) ∈ ~E by (3.88), and then define ~F by (3.89). It follows
from the properties of RTPs that if we add a vertex to S or remove a vertex,
then the law of the object we have just constructed does not change. As a
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result, our construction is independent of the choice of S, the law of (U , ~F )
is invariant under automorphisms of the tree, and property (iii) holds for
general S. Property (i) now follows from Theorem 6, completing the proof
that an object satisfying (i)–(iii) exists.

It is clear that (U , F ), defined in terms of (U , ~F ), is invariant under auto-
morphisms of the tree. To see that it also satisfies property (i) of Theorem 1,
we observe that by the way F has been defined in terms of ~F and property (i)
of Theorem 2, {v, w} 6∈ F if and only if for each t < U{v,w}, the oriented

clusters ~Ct(v) and ~Ct(w) are both finite. By Lemma 46, this is equivalent to
Ct(v) and Ct(w) being finite, proving property (i) of Theorem 1.

The following simple abstract lemma prepares for the proof of Theorem 3.

Lemma 47 (Almost surely not equal). Let (ωi, Xi)i∈T be a nonendoge-
nous RTP, where T denotes the space of all finite words made up from the
alphabet {1, . . . , d}, with d ≥ 2. Let (X ′i)i∈T be a copy of (Xi)i∈T, condition-
ally independent given (ωi)i∈T. Then (Xi)i∈T 6= (X ′i)i∈T a.s.

Proof. Let ν denote the solution of the RDE used to construct the RTP.
Let Tn := {i ∈ T : |i| = n}. Then (Xi, X

′
i)i∈Tn are i.i.d. with common law

ν(2) as in (1.10). By Theorem 4, ν(2) 6= ν(2), which implies that p := P[Xi 6=
X ′i ] > 0 and hence

(3.90) P
[
(Xi)i∈T 6= (X ′i)i∈T

]
≤ P

[
Xi = X ′i for all i ∈ Tn

]
≤ (1− p)dn .

Since d ≥ 2 and n is arbitrary, the claim follows.

Proof of Theorem 3. We use the construction of (U , ~F ) in the proof
of Theorem 2. We fix a finite subtree S of (T,E). Independently for each
(v, w) ∈ ∂S, we construct an RTP (U{x,y}, X(x,y))(x,y)∈ ~E(v,w)

corresponding

to the map γ in (1.5) and measure ν in (1.16), and we let (X ′(x,y))(x,y)∈ ~E(v,w)

be a copy of (X(x,y))(x,y)∈ ~E(v,w)
, conditionally independent given the random

variables (U{x,y}){x,y}∈E(v,w)
. Using (3.88), we inductively define X(x,y) and

X ′(x,y) for all (x, y) ∈ ~E and in terms of these random variables we define

~F and ~F ′ as in (3.89), which are finally used to define F and F ′ as in
Theorem 2. Then F and F ′ are conditionally independent given U .

It follows from Theorem 7 and Lemma 47 that a.s. X(x,y) 6= X ′(x,y) for

some (x, y) ∈ ~F . By (3.87), this implies that ~F 6= ~F ′ a.s. By Lemma 46 and
property (i) of Theorem 2, the set ~F is a.s. determined by the pair (U , F ),
and likewise ~F ′ is a.s. determined by (U , F ′), so ~F 6= ~F ′ a.s. implies F 6= F ′

a.s.
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APPENDIX A: SKELETAL BRANCHING PROCESSES

Informally speaking, the skeletal process of a branching process is the
process consisting of those particles whose offspring will never die out. It is
well-known that the skeletal process of a branching process is itself a branch-
ing process. For discrete time processes, a proof can be found in [AN72,
Thm I.12.1]. There is also an extensive literature about skeletal processes
of superprocesses, see [EKW15] and references therein. In this appendix, we
show how the skeletal process of a continuous-time branching process can
be calculated, and use this to sketch an alternative proof that T ′, defined
in (1.22), is the family tree of a binary branching process with branching
rate t.

Generalising our set-up, let (Zh)h≥0 be a continuous-time branching pro-
cesses in which each particle is with rate r(k) replaced by k new particles. A
sufficient condition for (Zh)h≥0 to be well-defined and nonexplosive is that∑

k r(k)k < ∞. A convenient tool is the generating semigroup (Uh)h≥0 de-
fined as Uhφ := uh (φ ∈ [0, 1]), where (uh)h≥0 is the unique solution with
initial state u0 = φ to the differential equation

(A.1)

∂
∂huh = Ψ(uh) (h ≥ 0)

with Ψ(u) :=
∑
k≥0

r(k)
{

(1− u)− (1− u)k
} (

u ∈ [0, 1]
)
.

The generating semigroup uniquely determines the transition probabilities
of (Zh)h≥0 through the relation

(A.2) E
[
(1− φ)Zh

]
= E

[
(1− Uhφ)Z0

]
(h ≥ 0).

This can be deduced, for example, from [AN72, Sect. III.3], although the
notation there is quite different.

Let p be the survival probability of (Zh)h≥0, which is the largest root in
[0, 1] of the equation Ψ(p) = 0. Then we claim that setting

(A.3) U ′hφ := p−1Uh(pφ)
(
φ ∈ [0, 1]

)
defines a generating semigroup, which corresponds to the skeletal process
(Z ′h)h≥0 of (Zh)h≥0. For discrete time processes, a proof can be found in
[AN72, Thm I.12.1]. The statement for continuous-time processes can easily
be derived from this by adding independent exponentially distributed life-
times to the discrete time process. In particular, if r(0) = 1 − t, r(2) = 1,
and all other rates are zero, then the differential equation in (A.1) reads

(A.4) ∂
∂huh = Ψ(uh) = uh(1− uh)− (1− t)uh (h ≥ 0),
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and (U ′h)h≥0 is given by the solutions to the differential equation
(A.5)
∂
∂hvh = t−1Ψ(tvh) = t−1

(
tvh(1− tvh)− (1− t)tvh

)
= tvh(1−vh) (h ≥ 0),

which we recognise as the generating semigroup of a branching process where
particles split into two with rate t and never die.

The transformation in (A.3) can be traced back to [Har48] while the inter-
pretation in terms of the skeletal process dates back to [AN72, Thm I.12.1].
See also [FS04, Thm 9] for a statement in the context of superprocesses. It
is possible to go further and write (Zh)h≥0 as the union of skeletal and non-
skeletal particles, which then form a two-type branching process. This sort
of statements date back to [OCo93] and have been developed and exploited
in a superprocess setting; see [EKW15] and references therein.
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18200 Praha 8, Czech Republic
E-mail: swart@utia.cas.cz

Tamás Terpai
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