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Abstract

We study the stationary distribution of the (spread-out) d-dimensional
contact process from the point of view of site percolation. In this
process, vertices of Zd can be healthy (state 0) or infected (state 1).
With rate one infected sites recover, and with rate λ they transmit the
infection to some other vertex chosen uniformly within a ball of radiusR.
The classical phase transition result for this process states that there is
a critical value λc(R) such that the process has a non-trivial stationary
distribution if and only if λ > λc(R). In configurations sampled from
this stationary distribution, we study nearest-neighbor site percolation
of the set of infected sites; the associated percolation threshold is
denoted λp(R). We prove that λp(R) converges to 1/(1 − pc) as R
tends to infinity, where pc is the threshold for Bernoulli site percolation
on Zd. As a consequence, we prove that λp(R) > λc(R) for large
enough R, answering an open question of [LS06] in the spread-out
case.
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1 Introduction

1.1 Nearest-neighbour contact process

The (nearest-neighbor) contact process on Zd with infection rate λ > 0 is
the continuous-time Markov process (ξt)t≥0 with state space {0, 1}Zd and
infinitesimal pregenerator given by

(Lf)(ξ) =
∑
x∈Zd:
ξ(x)=1

(
f(ξ0→x)− f(ξ) +

λ

2d

∑
y∼x

(f(ξ1→y)− f(ξ))

)
, (1)

where ξ ∈ {0, 1}Zd , f : {0, 1}Zd → R is a local function, y ∼ x indicates
that the `1-norm of y − x is one, and ξi→z is the configuration obtained by
changing ξ so that the state of vertex z is set to i and the states of other
vertices are left unchanged.

The common interpretation of the dynamics is that sites of Zd are individuals,
which can be healthy (state 0) or infected (state 1). Infected individuals
recover with rate one, and with rate λ they transmit the infection; the target
of the transmission is chosen uniformly among the 2d neighbors. This process
was introduced in [Har74] and is treated in the expository text [Li99]. Here
we list some definitions and statements that will be important in order to
explain our results.

We denote by 0 and 1 the identically-zero and identically-one element of {0, 1}Zd ,
respectively. Note that 0 is an absorbing state for the contact process. The
survival probability of the infection is

ρ(λ) := Pλ( ξ{0}t 6= 0 for all t ),

where Pλ is a probability measure under which the contact process on Zd
with infection rate λ is defined and (ξ

{0}
t )t≥0 is the contact process started

with a single infected site at the origin. In our notation here and in what
follows, we omit the dependence on the dimension d. Having in mind the
simple observation that λ 7→ ρ(λ) is non-decreasing, one then defines the
critical infection rate as

λc := sup{λ > 0 : ρ(λ) = 0 }.

The contact process exhibits a phase transition, manifested by the fact
that λc ∈ (0,∞), see Corollary 4.4, page 308 in [Li85]. It is also known that

ρ(λc) = 0 and lim
λ↘λc

ρ(λ) = 0. (2)
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The first equality is the celebrated result by Bezuidenhout and Grimmett [BG90].
The second equality is a consequence of the first and the fact (whose proof
preceded [BG90]) that λ 7→ ρ(λ) is right continuous on [0,∞) (see the proof
of Theorem 1.6 in [Li85]; the assumption there is d = 1, but the proof is the
same for any dimension).

Finally, the upper invariant measure of the contact process, denoted µλ, is
defined as

µλ := lim
t→∞
(d)

ξ1
t ,

where (ξ1
t )t≥0 is the contact process started from the identically-one configura-

tion, and the limit in distribution can be shown to exist. This distribution is
invariant under the contact process dynamics, and also invariant and ergodic
with respect to translations of Zd. Moreover,

µλ( ξ(0) = 1 ) = ρ(λ). (3)

In particular, µλ is the Dirac measure concentrated on the identically-zero
configuration when λ ≤ λc, and is a non-trivial measure supported on config-
urations with infinitely many 1’s when λ > λc.

1.2 Spread-out contact process

The main process of interest in this work is the spread-out contact process,
studied in [BDS89]. Apart from the infection rate λ, this process has as an
additional parameter, the range R ∈ N; its infinitesimal pregenerator is

(Lf)(ξ) =
∑
x∈Zd:
ξ(x)=1

f(ξ0→x)− f(ξ) +
λ

|B(R)|
∑

y∈B(x,R)

(f(ξ1→y)− f(ξ))

 , (4)

where we repeat the notation of (1), B(x,R) is the `∞-ball with center x and
radius R in Zd, and |B(R)| is the cardinality of the `∞-ball with center 0
and radius R in Zd, see (14) below. Hence, in this modified version of the
contact process, infected vertices again recover with rate one and transmit
the infection with rate λ; however, the target of the transmission is chosen
uniformly at random in the translate of B(R) centered at the position of the
vertex that transmits the infection.

Making the dependence on R explicit, we again define the survival probability

ρ(λ,R) := Pλ,R( ξ
{0}
t 6= 0 for all t ),
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where Pλ,R is a probability measure under which the spread-out contact
process on Zd with infection rate λ and range R is defined. The critical
infection rate is then

λc(R) := sup{λ : ρ(λ,R) = 0 },

we again have λc(R) ∈ (0,∞), and we believe that

ρ(λc(R), R) = 0 and lim
λ↘λc(R)

ρ(λ,R) = 0

holds, but we will neither prove nor use this spread-out analogue of (2).

We obtain the upper invariant measure, now denoted µλ,R, in the same way
as before, and have

µλ,R( ξ(0) = 1 ) = ρ(λ,R), (5)

see Claim 2.5 below. The main results of [BDS89] imply that as λ is kept
fixed and R is taken to infinity, the spread-out contact process started from
a single infected site becomes in some respects similar to a continuous-time
branching process in which individuals die with rate one and give birth with
rate λ. This similarity is captured by the convergences (see Theorems 1 and 2
in [BDS89]):

lim
R→∞

λc(R) = 1 (6)

and

lim
R→∞

ρ(λ,R) = ρ(λ,∞) := 1− 1

λ
for λ > 1. (7)

Indeed, for the aforementioned branching process, the critical value of the
birth rate λ is one, and, in case λ > 1, then the probability of survival of
a population started from one individual is equal to ρ(λ,∞). Let us note
that [BDS89, Theorem 1] also identifies the rate of convergence in (6) (which
depends on d), but our current interest lies elsewhere.

1.3 Percolation under the upper invariant measure

In this paper, we will investigate site percolation on Zd, with d ≥ 2, where the
underlying configurations are sampled from the upper stationary distribution
of the (spread-out) contact process.

Define Perc ⊂ {0, 1}Zd as the set of configurations ξ ∈ {0, 1}Zd for which the
subgraph of the nearest-neighbour lattice Zd induced by {x : ξ(x) = 1} has an
infinite connected component. See (16) below for a formal definition. Then
let

λp := sup{λ : µλ(Perc) = 0 }, λp(R) := sup{λ : µλ,R(Perc) = 0 }.
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It follows from the definition of λc and (3) (respectively, from the definition
of λc(R) and (5)) that λp ≥ λc and λp(R) ≥ λc(R).
It is known that

λp <∞ and λp(R) <∞ for all R.

The first inequality follows from the fact, given in [LS06, Theorem 2.1], that

∀ p ∈ (0, 1) ∃λ > 0 : µλ stochastically dominates πp, (8)

where πp denotes the Bernoulli product measure πp on {0, 1}Zd with param-
eter p. Note that the stochastic domination result is given there for the
one-dimensional contact process, but the result for Zd readily follows, since
the contact process on Zd dominates independent one-dimensional contact
processes on lines parallel to one of the coordinate axes.
It also follows from λp <∞ that λp(R) <∞ for any R. Indeed, by using the
graphical construction of the process (which we review in Section 2.3 below), it
is possible to give a coupling (ξt, ξ

′
t)t≥0, where (ξt) is a nearest-neighbor contact

process (as defined from the generator (1)) with infection rate λ and (ξ′t) is a
spread-out contact process (as defined from the generator (4)) with range R

and infection rate |B(R)|
2d

λ, both processes started with the identically-one
configuration, and so that ξ′t(x) ≥ ξt(x) for all t ≥ 0 and x ∈ Zd. Since µλ
is the limiting distribution of ξt as t → ∞ and µ |B(R)|

2d
λ,R

is the limiting

distribution of ξ′t as t → ∞, we readily obtain that µλ is stochastically
dominated by µ |B(R)|

2d
λ,R

. In particular, if for some λ > 0 we have µλ(Perc) > 0,

then µ |B(R)|
2d

λ,R
(Perc) > 0 also holds.

We address the following question.

Question 1.1. [LS06, Section 6, Question 2] For the nearest-neighbour
contact process on Zd, d ≥ 2, do we have λc < λp?

In light of (2) and the fact that the set of infected sites under µλ has
density ρ(λ), it is natural to expect that we indeed have the strict inequality.
For example, [vdB11] showed that in the two-dimensional case the cluster
size distribution of infected sites under µλ has exponential decay if the value
of the infection parameter λ belongs to the (presumably non-empty) interval
of parameters (λc, λp).

Although we could not settle Question 1.1 (which, to the best of our knowledge,
is currently still open), we have made progress on the corresponding statement
for the spread-out contact process:
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Theorem 1.2. For the spread-out contact process on Zd, d ≥ 2, we have

lim
R→∞

λp(R) =
1

1− pc
, (9)

where pc = pc(d) is the critical parameter for Bernoulli site percolation on Zd.

Corollary 1.3. By (6) and (9), we have λc(R) < λp(R) if R is large enough.

Note that if d = 2 then the statement of Corollary 1.3 also follows from known
results and an elementary observation, see Remark 1.5 below.

The limiting value λ = 1
1−pc in (9) arises as the solution to the equa-

tion ρ(λ,∞) = pc, cf. (7). To make sense of this, we observe that as the range
R of the spread-out contact process is taken to infinity (with λ fixed), one can
expect the measure µλ,R to converge weakly to a Bernoulli product measure
πρ(λ,∞) with density ρ(λ,∞). This guess comes from (7) and by analogy with
the asymptotic behavior of the (nearest-neighbor) contact process as the
dimension is taken to infinity; see the theorem in [SV86, page 388]. Although
our methods could also prove the weak convergence to Bernoulli product
measure in our context, we abstain from giving a full proof for the sake of
brevity, and only provide a sketch, see Remark 6.19 below.

Let us stress that weak convergence of µλ,R to πρ(λ,∞) does not automatically
imply the convergence (9) of the corresponding percolation thresholds. It
is believed that in many circumstances the probability of the percolation
event changes continuously with the underlying measure on configurations
(and is thus “decided locally”, since weak convergence of measures is a local
phenomenon). This is related to the so-called Schramm locality conjecture;
see for instance [BNP11, MT17, SXZ14]. However, there are also known
exceptions and pathological situations. For instance, [BGP12, Theorem 19]
states that for any p ∈ (0, 1) and any K ∈ N, there exists a probability
measure µ on {0, 1}Zd satisfying

µ
(
(ξ(x1), . . . , ξ(xK)) = (i1, . . . , iK)

)
= p

∑
k ik · (1− p)K−

∑
k ik (10)

for any (i1, . . . , iK) ∈ {0, 1}K and any K-tuple (x1, . . . , xK) of distinct vertices
of Zd and so that µ(Perc) = 0, and there exists another measure ν on {0, 1}Zd

also satisfying the property expressed in (10), but so that ν(Perc) = 1. In
words: both of the measures µ and ν “locally” look like πp, yet µ percolates
while ν one doesn’t.

In [LS06, Section 6, Question 1], it is asked if for any p ∈ (0, 1) there
exists λ > λc such that µλ is stochastically dominated by the Bernoulli
product measure πp with parameter p (and the same question can be asked for
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the spread-out process). Note that an affirmative answer would immediately
imply that λp > λc (resp. λp(R) > λc(R)). As far as we know, this question
remains open, and we do not provide an answer here. We do not know if
taking R large makes this question any easier. However, we pose the following
question about the spread-out model.

Question 1.4. Given any λ > 1 and ε > 0, can one find R0 such that

(i) µλ,R stochastically dominates πρ(λ,∞)−ε if R ≥ R0?

(ii) µλ,R is stochastically dominated by πρ(λ,∞)+ε if R ≥ R0?

Note that an affirmative answer to Question 1.4(i)&(ii) would immediately
imply our Theorem 1.2.

Let us now mention some related results (other then the already men-
tioned [LS06] and [vdB11]). In [vB20] it is proved that, if d ≥ 2 and λ > λp,
then almost surely under µλ, there is a unique infinite percolation cluster.
(Note that the value defined by us as λp is denoted in [vB20] by λc). This
result is proved by means of a standard Burton-Keane approach [BK89], which
would also work for the spread-out contact process. In [vdBB18, Theorem 1.5]
it is proved that the stationary supercritical contact process on Zd observed on
certain space-time slabs stochastically dominates an i.i.d. Bernoulli product
measure. Sharpness of the percolation phase transition for the stationary
configuration of a variant of the two-dimensional contact process with three
states is proved in [vdBBH15]. The percolation phase transition of the in-
variant distributions of the (nearest-neighbor and spread-out) voter model
is studied in [RV15] and [RV17]. The latter reference has as main theorem
an asymptotic result for the relevant percolation threshold, as the range of
interaction of the model is taken to infinity; it is analogous to our Theorem 1.2
(with a much shorter proof).

The following argument was pointed out to us by Stein Andreas Bethuelsen.

Remark 1.5. Let us note that it is easy to prove that

π λ
1+λ

stochastically dominates µλ,R (11)

(see below Claim 2.5 for the proof). From (11) one obtains that λ
1+λ

< pc
implies λ ≤ λp(R) for any λ > 0, from which pc

1−pc ≤ λp(R) follows. Thus if

d = 2 then the statement of Corollary 1.3 also follows using (6) and the fact
that pc(2) > 1

2
, cf. [H82]. However, this elementary argument breaks down for

any d ≥ 3, since pc(d) ≤ pc(3) < 1
2
, cf. [CR85].
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One may also consider the percolation threshold λ0
p(R) of the set of healthy

sites: given ξ ∈ {0, 1}Zd, let us define ξ ∈ {0, 1}Zd by letting ξ(x) = 1− ξ(x).
Let λ0

p(R) := inf{λ : µλ,R(ξ ∈ Perc) = 0 }. Now 1−pc
pc
≤ λ0

p(R) follows

from (11), thus if d ≥ 3 then λc(R) < λ0
p(R) holds using (6) and pc(d) < 1

2
.

Note that λ0
p(R) < +∞ follows from (8) (which also holds for µλ,R). Also

note that the method of proof of Theorem 1.2 could be easily modified to give
limR→∞ λ

0
p(R) = 1/pc.

If we analogously define λ0
p to be the percolation threshold of the set of healthy

sites under the upper invariant measure µλ of the nearest-neighbour contact
process (cf. (1)), then λc < λ0

p < +∞ holds if d is large enough using (11)
(which also holds in the nearest-neighbour case), limd→∞ λc = 1 (cf. [SV86,
(7)]), pc(d) < 1

2
and (8).

Our overall method of proof of Theorem 1.2 is very similar to the ones
in [RV15] and [RV17]. However, while in [RV15] we could establish a non-
trivial percolation phase transition for the nearest-neighbor voter model
in dimension 5 and higher, here we were not able to settle Question 1.1
(concerning the nearest-neighbor contact process) even in high dimensions.
The technical difficulty that explains this disparity is that the renormalization
scheme we employ involves a competition between a combinatorial complexity
factor (pertaining to the number of so-called proper embeddings of binary
trees into Zd), on the one hand, and the rate of site correlations under the
invariant measure, on the other hand. In the voter model, the correlation
structure is governed by coalescing random walks, for which good estimates
are available, and become better for our purposes as the dimension increases.
In the contact process (especially when λ is only slightly larger than λc), one
would expect the correlations to be much more complicated to analyze.

Remark 1.6. Although up to this point we have distinguished the nearest-
neighbour contact process from the spread-out contact process, from now on we
only deal with the latter, since our results only refer to it. We also frequently
drop the qualification ‘spread-out’, and write simply ‘contact process’.

1.4 Ideas and structure of proof

Our proof of Theorem 1.2 deals separately with the two statements

λ <
1

1− pc
=⇒ µλ,R(Perc) = 0 for R large enough, (12)

λ >
1

1− pc
=⇒ µλ,R(Perc) > 0 for R large enough. (13)
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In our proofs of both statements, we use a renormalization scheme introduced
in [Ra15] and employed in our works concerning percolation under the in-
variant distribution of the voter model, [RV15] and [RV17]. In very rough
terms, the scheme depends on obtaining an upper bound for the probability
of the event that inside many disjoint translates of a large box of Zd, a
configuration ξ ∼ µλ,R misbehaves in some prescribed way. In order to yield
useful bounds, the renormalization scheme needs to be combined with some
argument to guarantee that the restrictions of ξ ∼ µλ,R to boxes that are
distant from each other are not too strongly correlated.

This kind of decorrelation result is easier to achieve if instead of conside-
ring µλ,R, we could consider (for some t > 0) the measure µλ,R,t, defined as
the distribution at time t of the contact process with parameters λ,R and
started from all vertices infected at time zero (recall that µλ,R is the weak limit
of µλ,R,t as t → ∞). To argue that this truncation to a finite-time horizon
exhibits the desired spatial independence (as R gets larger, for t fixed), we
rely on a coupling between the contact process and the related model of
branching random walks. While a coupling between these two processes is
already given in [Li99, page 34], here we need a more careful construction
in order to guarantee that a certain comparison property is satisfied – see
Section 4.

Replacing µλ,R by µλ,R,t in the proof of (12) is justified by the well-known
fact that µλ,R,t stochastically dominates µλ,R, see the last paragraph in [Li99,
page 34]. With this at hand, in order to prove (12) (which already implies
Corollary 1.3) it is sufficient to prove

λ <
1

1− pc
=⇒ µλ,R,t(Perc) = 0 for some t and R large enough.

However, for (13) this stochastic domination does not help, as it goes in the
opposite direction as the one desired. Our treatment of (13) involves a result
allowing us to (stochastically) bound a coarse-graining of the upper invariant
configuration from below. As already mentioned, [LS06, Theorem 2.1] shows
that µλ,R stochastically dominates a Bernoulli product measure, but that
result is only applicable when the infection rate is sufficiently large, so it does
not fit our purposes. For this reason, we establish a result in the same spirit
of the stochastic domination of Liggett and Steif, valid for all λ > 1 and R
large enough (depending on λ), except that the domination is valid for a
coarse grained version of µλ,R instead of the measure itself.
Let us briefly describe this domination result (see Theorem 3.3 below and
the definitions that precede it). Under the assumption that λ > 1, we
prove that there are constants κ ∈ N and α ∈ (0, 1) (depending on d
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and λ, but not on R) such that the following holds. We divide space into
boxes of the form κR · z + [0, κR)d, for z ∈ Zd, and declare that each such
box is good for a configuration ξ ∈ {0, 1}Zd if it is “sufficiently infected”,
meaning that many sub-boxes of side length R have more than αRd in-
fected vertices; see Definition 3.2 below for the precise condition. We then
show that if ξ ∼ µλ,R, then the distribution of the indicator of the set {z :
the box κR · z + [0, κR)d is good} stochastically dominates a Bernoulli prod-
uct measure. As R →∞, the density of the product measure converges to
one, and this convergence is exponentially fast in Rd. We believe this result
to be of independent interest. A similar coarse-graining technique has been
employed in [BDS89]; see the explanation in the second paragraph in page 448
of that paper. However, the emphasis of [BDS89] was on proving that the
R-spread out contact process survives when λ = 1 +ε(R) (if ε(R) goes to zero
slowly enough as R → ∞) using coarse-graining, while our emphasis is on
proving that the R-spread-out contact process with a fixed λ > 1 and R� 1
looks massively supercritical if we view it through the lens of coarse-graining.

The rest of the paper is organized as follows. Section 2 introduces notation
that is used throughout the paper as well as the graphical construction of the
contact process. In Section 3, we establish Theorem 3.3, which, as already
mentioned, shows that a coarse graining of the upper invariant measure of
the supercritical contact process stochastically dominates a Bernoulli product
measure. Part of the proof of this result involves adapting to the context
of oriented percolation a result of [LS06] pertaining to the contact process;
this is done in the Appendix. Section 4 develops our coupling between
the contact process and branching random walks, and also contains some
estimates concerning the collision probabilities of these branching random
walks. Section 5 reviews the renormalization technique from [Ra15]. Finally,
Section 6 contains the proof of Theorem 1.2.

2 Basic notation

We denote N = {1, 2, . . . , } and N0 = {0, 1, 2, . . . }. For any set A, the
cardinality of A is denoted by |A|.

2.1 Geometry of the lattice

For a vector x = (x1, . . . , xd) ∈ Zd, the `∞-norm of x is defined by |x| =
max1≤i≤d |xi| and the `1-norm of x is defined by |x|1 =

∑d
i=1 |xi|. Two vertices

x, y are nearest neighbors if |x− y|1 = 1; we denote this by x ∼ y. Vertices
x and y are ∗-neighbors if |x− y| = 1.
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Definition 2.1. A nearest-neighbor path in Zd is a finite or infinite sequence
γ = (γ(0), γ(1), . . .) such that γ(i) ∼ γ(i+ 1) for each i. A ∗-connected path
is a sequence γ = (γ(0), γ(1), . . .) such that γ(i) and γ(i+ 1) are ∗-neighbors
for each i.

Observe that any nearest-neighbor path is also a ∗-connected path.

Definition 2.2. Given disjoint sets A,B ⊂ Zd and a configuration ξ ∈
{0, 1}Zd, we say that A and B are connected by an open path in ξ (and

write A
ξ←→ B) if there exists a nearest-neighbor path γ = (γ(0), . . . , γ(n))

such that γ(0) ∈ A, γ(n) ∈ B and ξ(γ(i)) = 1 for all i. Similarly, we write

A
∗ξ←→ B if there exists a ∗-connected path from a vertex in A to a vertex in

B and ξ is equal to 1 at all points in this path.

Definition 2.3. Given a set A ⊂ Zd and a configuration ξ ∈ {0, 1}Zd, we

say that A is connected to infinity by an open path in ξ (and write A
ξ←→∞)

if there exists an infinite nearest-neighbor simple path from a vertex in A and
ξ is equal to 1 at all points in this path.

The balls and spheres with respect to the `∞-norm are given by

B(L) = {x ∈ Zd : |x| ≤ L}, B(x, L) = {y ∈ Zd : |x− y| ≤ L}, (14)

S(L) = {x ∈ Zd : |x| = L}, S(x, L) = {y ∈ Zd : |x− y| = L}. (15)

2.2 Set of configurations

The indicator of an event B is denoted by 1[B].

We endow {0, 1}Zd with the σ-algebra F generated by all the cylinder sets.

Let us denote by 1 the element of {0, 1}Zd for which 1(x) = 1 for all x ∈ Zd.
We adopt the convention of associating a configuration ξ ∈ {0, 1}Z with the
set {x : ξ(x) = 1}. For example, if H ⊆ Zd then |ξ ∩H| :=

∑
x∈H ξ(x).

We endow {0, 1}Zd with the partial order under which ξ ≤ ξ′ if ξ(x) ≤ ξ′(x) for
all x ∈ Zd. An event A ∈ F is called increasing if, for any ξ ∈ A and ξ′ ≥ ξ,
we have ξ′ ∈ A. If µ and µ′ are both probability measures on ({0, 1}Zd ,F)
then we say that µ′ stochastically dominates µ if for any increasing event A
we have µ′(A) ≥ µ(A).

Let us define the F -measurable percolation event Perc by

{ ξ ∈ Perc } := ∪x∈Zd{x
ξ←→ ∞}. (16)
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Note that Perc is an increasing event. In the terminology of percolation
theory, {x : ξ(x) = 1} is the set of ξ-open sites, while {x : ξ(x) = 0} is the
set of ξ-closed sites.

For p ∈ [0, 1], we denote by πp the Bernoulli(p) product measure on ({0, 1}Zd ,F).

2.3 Graphical construction of the contact process

We recall the graphical construction of the contact process from [Li99, Part
I., Section 1].

For each x ∈ Zd, let Nx denote a Poisson process of rate 1 on [0,∞), and
for each x, y ∈ Zd satisfying y ∈ B(x,R) let Nx,y denote a Poisson process of
rate λ/|B(R)| on [0,∞). All Poisson processes are independent.

We decorate the space-time picture Zd × [0,+∞) by placing a recovery
symbol × at (x, t) if t is an arrival time of Nx and placing an infection arrow
pointing from (x, t) to (y, t) if t is an arrival time of Nx,y. An infection path
in Zd × [0,+∞) is a connected oriented path which moves along the time
lines in the increasing t direction without passing through a recovery symbol,
and along infection arrows in the direction of the arrow.
If x, y ∈ Zd and 0 ≤ s ≤ t then we denote by (x, s)  (y, t) the event that
there is an infection path connecting (x, s) to (y, t).

Definition 2.4 (Infection path indicators). Let us define the {0, 1}-valued
random variables

Ξt(x, y) := 1 [(x, 0) (y, t)] , x, y ∈ Zd, t ≥ 0. (17)

For any ξ0 ∈ {0, 1}Z
d
, the contact process (ξt)t≥0 with infection rate λ, range

R and initial state ξ0 can be constructed by letting

ξt(y) = max
x∈Zd
{ξ0(x) · Ξt(x, y)} , y ∈ Zd, t ≥ 0. (18)

We will also need the following claim.

Claim 2.5 (Graphical construction of µλ,R). If we define

ξ(x) := lim
t→∞

max
y∈Zd

Ξt(x, y), x ∈ Zd, (19)

then (ξ(x))x∈Zd has the law µλ,R of the upper invariant measure of the contact
process with infection rate λ and range R.

The proof of this claim follows from the self-duality of the contact process
(see [Li99, Part I., Section 1.]) and the fact that ξ(x) in (19) is the indicator
of the event that there is an infection path from (x, 0) to infinity.

13



Proof of (11). If we define ξ◦(x) to be the indicator of the event that the
first infection arrow pointing out of x arrives earlier than the first recovery
mark at x then ξ◦ ∼ π λ

1+λ
and ξ ≤ ξ◦, from which (11) readily follows.

3 Coarse-grained upper invariant measure do-

minates Bernoulli

The goal of this section is to establish a stochastic domination result pertaining
to the upper invariant distribution µλ,R of the contact process when λ > 1
and R is large enough. The main result we will obtain is Theorem 3.3 below;
we will need many preliminary results in order to prove it. The following
diagram depicts all of them, and an arrow means that a result is used in the
proof of the result to which it points.

Theorem 3.10

(Liggett-Schonmann-Stacey)

Theorem 3.9
(proved in Appendix)

Theorem 3.3 ←−− Proposition 3.8←−− Lemma 3.11 ←−− Proposition 3.1

Lemma 3.14 −−→ Lemma 3.12 Lemma 3.13

Lemma 3.20−→ Lemma 3.16−→ Lemma 3.19 −→ Lemma 3.18−→ Proposition 3.17

We will consider large boxes of the form [0, κR)d + κRz, where z ∈ Zd and κ
is a large constant. In a configuration ξ sampled from µλ,R, we will want to
argue that inside most boxes of this form, the infected set {x : ξ(x) = 1}
satisfies a certain high density condition, see Definition 3.2. This is achieved in
Theorem 3.3 below, which states that the set of such good boxes stochastically
dominates a Bernoulli product measure with very high density. The results
of this section will only be used for the proof of lim supR→∞ λp(R) ≤ 1

1−pc in
Section 6.2.

Recalling the notation used in (4), we define the contact process with range
R and infection rate λ on a finite subset B of Zd as the Markov process with
state space {0, 1}B and infinitesimal generator

(Lf)(ξ) =
∑
x∈B:
ξ(x)=1

f(ξ0→x)− f(ξ) +
λ

|B(R)|
·

∑
y∈B(x,R)∩B

(f(ξ1→y)− f(ξ))

 .

(20)

14



Proposition 3.1 (Infection spreads to adjacent box). Let us fix d ≥ 1
and λ > 1. There exist constants

κ ∈ N, 0 < α < 1, R∗ > 0, 0 < T <∞, 0 < c <∞

(that only depend on d and λ) such that the following holds for any R ≥ R∗.
Let

B = [0, κR)d, B′ = B + κR · ~e1, B̂ = B ∪B′, (21)

where ~e1 = (1, 0, . . . , 0) is the first canonical vector of Zd.
Let (ξt)t≥0 be the contact process with infection rate λ and range R on B̂. If

|ξ0∩([0, R)d+R·z)| ≥ αRd for all z ∈ Zd such that [0, R)d+R·z ⊂ B, (22)

then

P
(
|ξT ∩ ([0, R)d +R · z)| ≥ αRd for all

z ∈ Zd such that [0, R)d +R · z ⊂ B̂

)
> 1− exp

(
−cRd

)
.

The above proposition suggests the following definition.

Definition 3.2 (Good box). Given d ≥ 1 and λ > 1, let κ and α be as in
Proposition 3.1, and fix R ∈ N.

1. Given z ∈ Zd, we say that the box B = [0, κR)d + κR · z is good for
configuration ξ ∈ {0, 1}Zd (or ξ ∈ {0, 1}B) if

|ξ∩([0, R)d+R·z′)| ≥ αRd for all z′ ∈ Zd such that [0, R)d+R·z′ ⊂ B.

2. Given ξ ∈ {0, 1}Zd, define ωξ ∈ {0, 1}Z
d

by

ωξ(z) = 1
[

the box [0, κR)d + κR · z is good for ξ
]
, z ∈ Zd. (23)

Theorem 3.3 (Good boxes under µλ,R dominate product Bernoulli). Let us
fix d ≥ 1 and λ > 1. There exist R∗∗ > 0 and γ > 0 (that only depend on
d and λ) such that the following holds for any R ≥ R∗∗. Let ξ be a random
configuration sampled from µλ,R, and let ωξ be the corresponding configuration
of good boxes, as in (23). Then the law of ωξ stochastically dominates a
Bernoulli product measure with density 1− exp(−γRd).

Remark 3.4. It follows from (11) that there exists γ′ > 0 that only depends
on d and λ such that µλ,R(|ξ ∩ [0, κR)d| = 0) ≥ exp(−γ′Rd) for all R ∈ N,
which certainly implies µλ,R(ωξ(0) = 1) ≤ 1−exp(−γ′Rd) (for any α ∈ (0, 1)),
thus Theorem 3.3 is sharp in this sense. However, the values of α and γ
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that we produce in our proofs are far from being optimal. Note that an
affirmative answer to Question 1.4(i) would easily imply Theorem 3.3. Let
us also note that in our proof of lim supR→∞ λp(R) ≤ 1

1−pc in Section 6.2, we
will only use that ωξ stochastically dominates a Bernoulli product measure

with density 1− exp(−Rδ), where δ > ln(2)
ln(6)

.

The rest of Section 3 is devoted to the proof of the above stated results. We
encourage the reader to skip to Section 4 at first reading.
The rest of Section 3 is organized as follows: we first deduce Theorem 3.3
from Proposition 3.1 in Section 3.1, then we prove Proposition 3.1 in Section
3.2.

3.1 Good boxes under µλ,R dominate product Bernoulli

In this section, we prove Theorem 3.3 using Proposition 3.1. We fix d ≥ 1
and λ > 1 throughout.
We start by defining an auxiliary discrete-time Markov process (ηn)n≥0 taking
values in {0, 1}Zd .

Definition 3.5 (Oriented percolation). Given p ∈ [0, 1], let Pp be a probability
measure under which we have defined random variables Z(z, n), for z ∈
Zd and n ∈ N0, all independent and Bernoulli(p). Define (ηn)n≥0 on this
probability space by taking η0 ∈ {0, 1}Z

d
arbitrarily and letting

ηn+1(z) = Z(z, n+ 1) ·max (ηn(z), ηn(z + ~e1)) , z ∈ Zd, n ∈ N0, (24)

where ~e1 denotes the first canonical vector of Zd.

Note that (ηn) is a “probabilistic cellular automaton”, or “oriented percola-
tion process”, in which any space-time point (z, n+ 1) is in state one with
probability p in case at least one of (z, n) and (z + ~e1, n) is in state one;
otherwise (z, n+ 1) is in state zero. We note the following for future use:

Claim 3.6. The evolution of (ηn) in each line of the form {z + k~e1 : k ∈ Z},
with z ∈ {0} × Zd−1, is independent of the evolution in all other such lines.

Definition 3.7. We denote by νp the upper invariant distribution of the
process (ηn)n≥0, that is, νp is the weak limit, as n → ∞, of the law of ηn
started from η0 = 1.

We will establish Theorem 3.3 as a consequence of the following two results.
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Proposition 3.8 (ωξ under µλ,R dominates νθ1(R)). Let κ, α,R∗, c be as in
Proposition 3.1, and assume R ≥ R∗. Let ξ be a random configuration sampled
from µλ,R, and let ωξ be the corresponding configuration of good boxes, as
in (23). Then the law of ωξ stochastically dominates νθ1(R), where

θ1(R) :=
(

1− exp
{
− c

3
Rd
})2

. (25)

Our next result is the discrete-time analogue of [LS06, Theorem 2.1] (which
pertains to the upper invariant distribution of the contact process).

Theorem 3.9. If p ≥ 3
4
, then νp dominates a Bernoulli product measure

πθ2(p) with parameter

θ2(p) := 1−
(

1− p+
√

1− p
p

)2

. (26)

Before we prove Proposition 3.8 and Theorem 3.9, let us deduce Theorem 3.3
from them.

Proof of Theorem 3.3. The theorem follows readily from Proposition 3.8 and
Theorem 3.9 by choosing γ > 0 small enough and R∗∗ ≥ R∗ large enough so
that θ1(R) > 3

4
and θ2(θ1(R)) > 1− exp{−γRd} for all R ≥ R∗∗.

As for the proof of Theorem 3.9, the authors of [LS06] observe (see the
remark following Theorem 2.1 there) that their proof can be adapted to
discrete-time versions of the contact process, such as the oriented percolation
process (ηn) under consideration here. We go over the main steps of the proof
of Theorem 3.9 in the Appendix, both for completeness and because we wish
to be clear about how the exact value θ2(p) arises.

We now turn to Proposition 3.8. Before we give its proof, we recall the
well-known Liggett-Schonmann-Stacey [LSS97] stochastic domination result:

Theorem 3.10 ([Li99], Theorem B26). Let {Xx : x ∈ Zd} be {0, 1}-valued
random variables (jointly defined under some probability measure P ) satisfying,
for some k ∈ N and p ≥ 1

4
,

P (Xx = 1 | Xy : |y − x| > k ) ≥ 1− (1−√p)|Bk(0)| a.s. for all x ∈ Zd.

Then the law of this family stochastically dominates the Bernoulli product
measure πp with density p on Zd.

We apply this result to obtain the following.
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Lemma 3.11 (One-step domination). Let κ, α,R∗, c and T be as in Proposi-
tion 3.1. Assume R ≥ R∗ and ξ0 ∈ {0, 1}Z

d
. Let (ξt)t≥0 be the contact process

with infection rate λ and range R started from ξ0, and let (ηn)n≥0 be the
process of Definition 3.5 with p = θ1(R) (cf. (25)) and started from η0 = ωξ0.
Then the law of ωξT stochastically dominates the law of η1.

Proof. For each z ∈ Zd, define the sets

B(z) = [0, κR)d +κR · z, B′(z) = B(z) +κR ·~e1, B̂(z) = B(z)∪B′(z).

Let (ξ
(z)
t )t≥0 denote the contact process with range R and infection rate

λ on B̂(z). Let us construct a joint realization of (ξ
(z)
t )t≥0 for all z ∈ Zd

simultaneously on the same probability space as follows. We let ξ
(z)
0 be the

restriction of ξ0 to B̂(z), and the dynamics of (ξ
(z)
t )t≥0 be given using the

same graphical construction as the one used for (ξt)t≥0 in Section 2.3, but only

the Poisson processes involving vertices and edges contained in the box B̂(z).
We then define the family of {0, 1}-valued random variables {Xz : z ∈ Zd} by
prescribing that for each z, we set Xz = 1 if one of the following conditions
hold:

(a) both B(z) and B′(z) are not good for ξ0 (i.e., ωξ0(z) = ωξ0(z+~e1) = 0);

(b) at least one of B(z) and B′(z) is good for ξ0, and moreover B(z) is

good for ξ
(z)
T (i.e., max{ωξ0(z), ωξ0(z + ~e1)} = 1 and ω

ξ
(z)
T

(z) = 1).

We set Xz = 0 otherwise. This gives

ω
ξ
(z)
T

(z) ≥ Xz ·max{ωξ0(z), ωξ0(z + ~e1)}, z ∈ Zd. (27)

By Proposition 3.1, we have

P(Xz = 1) ≥ 1− exp{−cRd}

(condition (a) in the definition of Xz is only present to make this lower bound
trivially correct in case neither of the boxes involved are good for ξ0).

Note that the values of X· in each line of the form {z + k~e1 : k ∈ Z}
are independent of the values of X· in all other such lines. Moreover, Xz

is independent of {Xz+k~e1 : k ∈ Z\{−1, 0, 1}} under the joint realization
described above.

By these considerations, we can use Theorem 3.10 with d = 1, k = 1 and p
such that 1 − (1−√p)3 = 1 − exp{−cRd}, that is, p = θ1(R) (cf. (25)), to
conclude that {Xz : z ∈ Zd} stochastically dominates a field of independent,
Bernoulli(θ1(R)) random variables. Comparing (24) and (27), the proof is
then complete.
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Proof of Proposition 3.8. Let µ(t) be the distribution, at time t, of the con-
tact process (ξ.) with range R, infection parameter λ and initial state ξ0 = 1.
Let ν(n) be the distribution, at time n, of the process (η.) from Definition 3.5
with p = θ1(R) and initial state η0 = 1. It is easy to see that µ(mT )
stochastically dominates ν(m), for every m ∈ N by using Lemma 3.11 it-
eratively together with the fact that the contact process is attractive (cf.
below equation (1.1) of [Li99, Part 1, Section 1]). The result then follows by
taking m→∞.

3.2 Propagation of good boxes

In this section, we prove Proposition 3.1. Again we fix d ≥ 1 and λ > 1.
We start by giving the value of the constant κ that appears in the statements
of Proposition 3.1: we choose (and fix) κ = κ(d, λ) ∈ N large enough that

κ > 4, λ

(
1− 1

κ

)d
> 1 +

3

4
(λ− 1). (28)

The reason we need the second inequality will become apparent in Section 3.2.2,
but heuristically we want κ to be big enough so that the contact process
with infection rate λ and range R on [0, κR)d already exhibits “supercritical
behavior”. Proposition 3.1 will follow from the next two lemmas.

Lemma 3.12 (Infection spreads everywhere in a box). There exists δ > 0
and m0 > 0 (that only depend on d and λ) such that the following holds.
Let R > 1 and

B = [0, κR)d, B′ = B + κR · ~e1, B̂ = B ∪B′, (29)

where ~e1 denotes the first canonical vector. Let (ξt) be the contact process

on B̂ with infection rate λ and range R. If m := |ξ0| ≥ m0, then

P

(
|ξ(4κ)d ∩ ([0, R)d +R · z)| ≥ δm for

all z ∈ Zd such that [0, R)d +R · z ⊂ B̂

)
> 1− exp(−δm). (30)

We will prove Lemma 3.12 in Section 3.2.1.

Lemma 3.13 (Supercritical behavior in a box). There exist constants

R̄ > 0, α ∈ (0, 1), T0 > 0, c0 > 0 (31)

(that only depend on d and λ) such that the following holds for any R ≥ R̄.
Letting B = [0, κR)d and (ξt) be the contact process on B with infection rate λ,
range R and initial configuration satisfying |ξ0| ≥ αRd, we have

P
(
|ξT0| ≥ δ−1 · αRd

)
> 1− exp(−c0R

d), (32)

where δ is the constant of Lemma 3.12.
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We will prove Lemma 3.13 in Section 3.2.2.

Proof of Proposition 3.1. Let κ be as fixed in (28), δ,m0 as in Lemma 3.12
and R̄, α, T0, c0 as in Lemma 3.13. Choose R ≥ R̄, and also large enough
that δ−1αRd ≥ m0. Define boxes B,B′, B̂ as in (21) and assume ξ0 is
a configuration satisfying (22). We clearly have |ξ0 ∩ B| ≥ αRd, hence
by Lemma 3.13, with probability above 1 − exp(−c0R

d), we have |ξT0 ∩
B| ≥ δ−1 · αRd. Conditioned on this, by Lemma 3.12, with probability
above 1− exp(−δ · δ−1αRd) we have |ξT0+(4κ)d ∩ ([0, R)d +R · z])| ≥ αRd for

all z ∈ Zd such that [0, R)d + R · z ⊂ B̂. This implies that both B and B′

are good (cf. Definition 3.2) at time T0 + (4κ)d.

The constants in the statement of Proposition 3.1 should thus be chosen as
follows: κ and α as already described, T = T0 + (4κ)d and finally, R∗ and c
so that R∗ ≥ max(R̄, (δm0/α)1/d) and

exp(−c0R
d) + exp(−αRd) ≤ exp(−cRd) for all R ≥ R∗.

3.2.1 Infection spreads everywhere in a box

The goal of Section 3.2.1 is to prove Lemma 3.12. Let us note that this proof
does not use supercriticality (i.e., λ > 1) in an essential way: in fact the
very same proof works for λ = 1 as well. The proof of Lemma 3.12 will be
obtained as a consequence of the following.

Lemma 3.14 (Infection of a nearby box). There exists δ0 = δ0(d) > 0 such
that the following holds for any R ≥ 2 and λ > 1. Let

A = [0, bR/2c)d, A′ = A+ u, Â = A ∪ A′,

where u ∈ Zd is chosen so that maxx∈A, y∈A′ |x− y| ≤ R. Then, letting (ξt)t≥0

denote the contact process on Â and m = |ξ0 ∩ A|, we have

P (|ξ1 ∩ A′| > δ0m) ≥ 1− exp (−δ0m) , m ≥ 2. (33)

Proof of Lemma 3.14. First assume that |ξ0∩A′| ≤ m/2, so that |ξ0∩A\A′| ≥
m/2. Recalling the graphical construction of Section 2.3, let Z be the set
of x ∈ A \ A′ such that ξ0(x) = 1 and there is no recovery mark at x in the
time interval [0, 1] (so that ξt(x) = 1 for each t ∈ [0, 1]). Note that

|Z| stochastically dominates Bin(bm/2c, e−1). (34)
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Note that the expectation of this binomial distribution is greater than or
equal to m

4e
. For each y ∈ A′, let Yy be the indicator of the event that there is

no recovery mark at y in the time interval [0, 1], and moreover there is x ∈ Z
and t ∈ [0, 1] such that there is an infection arrow from (x, t) to (y, t). Note
that

ξ1(y) ≥ Yy for all y ∈ A′. (35)

We have maxx∈Z, y∈A′ |x− y| ≤ R, thus for all y ∈ A′ we obtain that

P(Yy = 1 | Z) = e−1 ·
(

1− exp

(
− λ|Z|
|B(R)|

))
λ>1

≥ e−1|Z|
2|B(R)|

. (36)

Next we show that

conditioned on Z, the random variables (Yy)y∈A′ are independent. (37)

Indeed, Z only depends on the recovery marks of the vertices of ξ0 ∩ A \ A′,
and given Z, Yy (where y ∈ A′) only depends on the recovery marks of y and
the infection arrows that point from Z to y. Recalling from Section 2.3 that
these Poisson processes are all independent, we infer that (37) holds.
Let us define Y =

∑
y∈A′ Yy. Putting together (36) and (37), we obtain that

Y stochastically dominates Bin

(⌊
R

2

⌋d
,
e−1|Z|

2|B(R)|

)
. (38)

Conditional on Z, the expectation of this binomial distribution is greater
than equal to δ′′|Z|, where δ′′ only depends on d (but not on R). We estimate

P
(
Y ≥ δ′′

16e
m

)
≥ P

(
Y ≥ δ′′|Z|

2

∣∣∣∣ |Z| = ⌈m8e⌉
)
P
(
|Z| ≥ m

8e

)
. (39)

We now use (34), (38) and the fact that

Z ∼ Bin(n, p) =⇒ P(Z ≥ 1
2
np) ≥ 1− exp

(
−1

8
np
)
, (40)

which is an easy consequence of the Chernoff bound, see for instance Theo-
rem 2.21, page 70 in [vdH09]. Combining (40) with the lower bounds on the
expectations of the binomial distributions that appear in (34) and (38), we
see that the product on the r.h.s. of (39) is larger than(

1− exp

(
−1

8
δ′′
m

8e

))(
1− exp

(
−1

8

m

4e

))
.

The desired bound (33) now follows using (35) if δ0 is taken small enough.
The case where |ξ0 ∩ A′| ≥ m/2 is much easier, so we omit it.
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Proof of Lemma 3.12. We abbreviate

K := (4κ)d.

Let Ξ be a set of boxes of the form [0, bR
2
c)d + x with x ∈ Zd such that

B̂ =
⋃
A∈Ξ

A and |Ξ| ≤ K, (41)

where B̂ was defined in (29).
Noting that m = |ξ0| ≤ K ·maxA∈Ξ |ξ0 ∩ A|, there exists A∗ ∈ Ξ such that

|ξ0 ∩ A∗| ≥
m

K
.

Now let Γ be the set of all sequences of the form γ = (A0, A1, . . . , AK) of
elements of Ξ with A0 = A∗ such that

max
x∈Ai, y∈Ai+1

|x− y| ≤ R, 0 ≤ i ≤ K − 1.

For each γ ∈ Γ, define the event Eγ =
⋂K
i=1

{
|ξi ∩ Ai| ≥ (δ0)i · m

K

}
, where

δ0 was defined in Lemma 3.14. Observe that it follows from (41) and the
definition of Γ that⋂

γ∈Γ

Eγ ⊂

{
|ξK ∩ ([0, R)d +R · z)| ≥ (δ0)K

K
m for

all z ∈ Zd such that [0, R)d +R · z ⊂ B̂

}
and, by Lemma 3.14 and a union bound, we obtain

P

(⋃
γ∈Γ

Ec
γ

)
≤ (K)K ·

K∑
i=1

exp

(
−δ0 ·

(δ0)i

K
·m
)
,

thus we can choose δ = δ(d, λ) > 0 so that (30) holds for large enough m.

3.2.2 Supercritical behavior in a box

The goal of Section 3.2.2 is to prove Lemma 3.13. We will first need several
preliminary definitions. Recall that we have already fixed the value of κ =
κ(d, λ) in (28). Throughout this section, we write B = [0, κR)d.
Let P = (P (x, y) : x, y ∈ B) denote the sub-stochastic matrix given by

P (x, y) :=
1

|B(R)|
· 1[y ∈ B(x,R)]. (42)

This is the transition matrix of the discrete-time random walk on B with
range R which gets killed if it jumps out of B.
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Remark 3.15. Let us denote by µ the principal eigenvalue of P . It is easy
to see that the expected population size of the branching random walk (BRW)
on B with range R, birth rate λ and death rate 1 grows/decays exponentially
with rate λµ− 1. We have µ < 1, but µ gets arbitrarily close to 1 if κ is big
enough, so one can guarantee supercriticality of the BRW on B (i.e., λµ > 1)
for any given λ > 1 by making κ big enough.

We will show that the function h defined in (44) below satisfies Ph ≥ (1− 1
κ
)dh

and our condition (28) on κ will guarantee that contact process on B with
range R, birth rate λ and death rate 1 tends to behave in a supercritical fashion
as long as the density of infected sites in B is low enough.

We define the functions ` : [0, κ]→ R+ and h : B → R+ by

`(u) :=
1

κ
+ min{u, κ− u}, (43)

h(x) :=
d∏
i=1

`
(xi
R

)
, x = (x1, . . . , xd) ∈ B. (44)

Lemma 3.16 (Perron-Frobenius bounds). There exists R� = R�(d, λ) such
that for any R ≥ R� we have Ph ≥ (1− 1

κ
)dh, that is,

1

|B(R)|
·

∑
y∈B∩B(x,R)

h(y) ≥
(

1− 1

κ

)d
h(x) for every x ∈ B. (45)

We will prove Lemma 3.16 in Section 3.2.3.
We define g : B → R+ by normalizing h:

g(x)
(44)
:=

h(x)

maxy∈B h(y)
, x ∈ B. (46)

In Section 3.2.2, (ξt)t≥0 denotes the contact process on B = [0, κR)d. Denote
by (Ft)t≥0 the natural filtration of (ξt)t≥0. We define

Nt :=
∑
x∈B

ξt(x) = |ξt|, Xt :=
∑
x∈B

g(x)ξt(x). (47)

Roughly speaking, our goal is to show that (Nt) grows exponentially as long
as Nt/R

d is small enough to guarantee that the fraction of healthy individuals
in any ball of radius R is close enough to 1. We would like to achieve this
using that the infection rate λ is strictly greater than the recovery rate 1.
However, the effective outgoing infection rate of infected individuals near the
boundary of the box B can be strictly smaller than 1, so it will be easier to

23



prove that (Xt) grows exponentially (using Pg ≥ (1− 1
κ
)dg along the way). A

lower bound on N0 implies a lower bound on X0 and a lower bound on (Xt)
implies a lower bound on (Nt), since

gmin := min
x∈B

g(x) ≥
( 1

κ
1
κ

+ κ
2

)d
, gmax := max

x∈B
g(x) = 1, (48)

therefore Xt and Nt are comparable:

gmin ·Nt ≤ Xt ≤ Nt, t ≥ 0. (49)

Roughly speaking, we will show that Xt grows exponentially with rate at
least λ−1

4
as long as Nt/R

d is small enough, so in order to guarantee (32), we
define T0 = T0(d, λ) > 0 such that

gmin

2
exp

{
λ− 1

4
T0

}
= δ−1, (50)

where δ = δ(d, λ) is the constant of Lemma 3.12.
However, we will only guarantee exponential growth of Xt with rate at
least λ−1

4
as long as Nt ≤ βRd, where β > 0 is small enough to guarantee

that the fraction of healthy individuals in any ball of radius R is close enough
to 1 (so that the contact process locally exhibits a positive expected rate of
growth):

λ

((
1− 1

κ

)d
− β ·Rd

|B(R)| · gmin

)
> 1 +

1

2
(λ− 1), ∀R ≥ 1. (51)

Such a choice of β is possible by (28), so let us fix β = β(d, λ) > 0 satisfy-
ing (51) for the rest of Section 3.2.2.

In order to guarantee that Nt ≤ βRd holds for 0 ≤ t ≤ T0, we will argue that
the exponential growth rate of Nt is at most 2(λ− 1) and choose the constant
α = α(d, λ) > 0 (cf. (31)) so that

2α exp{2(λ− 1)T0} = β. (52)

Define, for t ≥ 0,

a(t) := α
gmin

2
exp

{
λ− 1

4
· t
}
Rd, b(t) := 2α exp{2(λ− 1)t}Rd. (53)

Let us define the stopping times

τa := inf{ t : Xt ≤ a(t) }, τb := inf{ t : Nt ≥ b(t) }, τ := τa ∧ τb. (54)
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Note that for every 0 ≤ t ≤ T0 we have

αgmin

2
Rd ≤ a(t) ≤ Xt ≤ Nt ≤ b(t)

(52)

≤ βRd on {τ > t}. (55)

Our goal will be to show that P(τ ≤ T0) is very small. In order to do so, we
define the stochastic processes (Ut)0≤t≤T0 and (Vt)0≤t≤T0 by

Ut := exp{−ε(Xt − a(t) + a(0))}, Vt := exp{ε(Nt − b(t) + b(0))}, (56)

where

ε = ε(d, λ) :=
λ− 1

4(λ+ 1)
gmin. (57)

Proposition 3.17 (Exponential submartingales). If we define R�, T0, α, τ ,
(Ut) and (Vt) as above and assume |ξ0| = bαRdc, then for any R ≥ R�

(Ut∧τ )0≤t≤T0 and (Vt∧τ )0≤t≤T0 are supermartingales w.r.t. (Ft)0≤t≤T0 . (58)

Before we prove Proposition 3.17, we deduce Lemma 3.13 from it.

Proof of Lemma 3.13. We have already fixed T0 = T0(d, λ) in (50) and α =
α(d, λ) in (52). We will use Proposition 3.17, so we assume R ≥ R�. By
the monotonicity of the contact process, it suffices to prove that (32) holds
when ξ0 satisfies |ξ0| = bαRdc. We start the proof of (32) by observing that

P
(
|ξT0 | ≤ δ−1 · αRd

) (47),(49)

≤ P
(
XT0 ≤ δ−1 · αRd

) (50),(53)
=

P (XT0 ≤ a(T0))
(54)

≤ P (τ ≤ T0) = P(τ = τa ≤ T0) + P(τ = τb ≤ T0). (59)

We will bound the two terms on the right-hand side. We treat the second
term first:

exp{εbαRdc} (47),(56)
= V0

(58)

≥ E[VT0∧τ ] ≥ E[Vτb · 1{τ=τb≤T0}]
(54),(56)

≥

exp{ε · b(0)} · P(τ = τb ≤ T0)
(53)
= exp{ε · 2αRd} · P(τ = τb ≤ T0). (60)

Rearranging this, we obtain P(τ = τb ≤ T0) ≤ exp{−εαRd}.
Similarly, we bound

exp{−εgminbαRdc} (47)
= exp{−εgminN0}

(49)

≥ exp{−εX0}
(56)
= U0

(58)

≥

E[UT0∧τ ] ≥ E[Uτa · 1{τ=τa≤T0}]
(54),(56)

≥ exp{−εa(0)} · P(τ = τa ≤ T0)
(53)
=

exp{−εgmin
1
2
αRd} · P(τ = τa ≤ T0).
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Rearranging this and introducing a factor 1
2

to take care of the rounding, we
obtain P(τ = τa ≤ T0) ≤ exp{−εgmin

1
4
αRd)}. Putting together the bounds

that we have obtained on the two terms on the right-hand side of (60), we
see that indeed there exists R̄ = R̄(d, λ) < +∞ and c0 = c0(d, λ) > 0 such
that (32) holds for any R ≥ R̄. The proof of Lemma 3.13 is complete.

It remains to prove Proposition 3.17.
Recall the definition of R� = R�(d, λ) (cf. Lemma 3.16), (Nt) and (Xt) (cf.
(47)), β = β(d, λ) (cf. (51)) and ε = ε(d, λ) > 0 (cf. (57)).

Lemma 3.18 (Exponential drift bounds). For all t ≥ 0 the following state-
ments hold.

(i) We have
d

ds
E
[
eεNt+s|Ft

]∣∣∣∣
s=0

≤ 2ε(λ− 1) ·Nt · eεNt . (61)

(ii) For all R ≥ R�, on the event
{
Nt ≤ βRd

}
, we have

d

ds
E
[
e−εXt+s|Ft

]∣∣∣∣
s=0

≤ −ε(λ− 1)

4
·Xt · e−εXt . (62)

Before we prove Lemma 3.18, let us deduce Proposition 3.17 from it.

Proof of Proposition 3.17. It suffices to prove that, for 0 ≤ t < T0,

d

ds
E[U(t+s)∧τ |Ft]

∣∣∣∣
s=0

≤ 0,
d

ds
E[V(t+s)∧τ |Ft]

∣∣∣∣
s=0

≤ 0. (63)

For the first inequality in (63), we assume that R ≥ R�, and we estimate

d

ds
E[U(t+s)∧τ |Ft]

∣∣∣∣
s=0

= 1{τ>t}
d

ds
E[eε(a(t+s)−a(0))e−εXt+s|Ft]

∣∣∣∣
s=0

= 1{τ>t}e
ε(a(t)−a(0))

(
d

ds
E[e−εXt+s|Ft]

∣∣∣∣
s=0

+ εa′(t)e−εXt
)

(∗)
≤ 1{τ>t}e

ε(a(t)−a(0))e−εXt
ε(λ− 1)

4
(−Xt + a(t))

(∗∗)
≤ 0,

where in (∗) we used (62) (which can be applied, since {τ > t} ⊆
{
Nt ≤ βRd

}
,

cf. (55)) together with a′(t) = λ−1
4
a(t) (cf. (53)), and in (∗∗) we used that

{τ > t} ⊆ {Xt ≥ a(t)}, cf. (55).
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For the second inequality in (63), we analogously estimate

d

ds
E[V(t+s)∧τ |Ft]

∣∣∣∣
s=0

= 1{τ>t}
d

ds
E[e−ε(b(t+s)−b(0))eεNt+s |Ft]

∣∣∣∣
s=0

= 1{τ>t}e
−ε(b(t)−b(0))

(
d

ds
E[eεNt+s|Ft]

∣∣∣∣
s=0

− εb′(t)eεNt
)

(53),(61)

≤ 1{τ>t}e
−ε(b(t)−b(0))eεNt2ε(λ− 1)(Nt − b(t))

(55)

≤ 0.

The proof of Proposition 3.17 is complete.

It remains to prove Lemma 3.18. Recall the definition of R� = R�(d, λ) (cf.
Lemma 3.16), g : B → R+ (cf. (46)) and β = β(d, λ) (cf. (51)).

Lemma 3.19 (Local supercriticality at low density). If R ≥ R� and ξ ∈
{0, 1}B satisfies |ξ| ≤ βRd, then for any x ∈ B we have

λ

|B(R)|
·

∑
y∈B∩B(x,R)

(1− ξ(y)) · g(y) >
1 + λ

2
· g(x). (64)

Before we prove Lemma 3.19, let us deduce Lemma 3.18 from it.

Proof of Lemma 3.18. We begin with the proof of (61):

d

ds
E
[
eεNt+s|Ft

]∣∣∣∣
s=0

= eεNt · d
ds

E
[
eε(Nt+s−Nt)|Ft

]∣∣∣∣
s=0

(20)
=

eεNt
∑
x∈B

ξt(x)

e−ε − 1 +
λ

|B(R)|
·

∑
y∈B(x,R)∩B

(1− ξt(y)) · (eε − 1)


≤ eεNt

∑
x∈B

ξt(x)
(
e−ε − 1 + λ(eε − 1)

) (∗∗)
≤ 2ε(λ− 1) ·Nt · eεNt , (65)

where in (∗∗) we used (47) and that e−ε − 1 + λ(eε − 1) ≤ 2ε(λ− 1) holds by
our choice of ε in (57).
Now we prove (62). We have

d

ds
E
[
e−εXt+s|Ft

]∣∣
s=0

= e−εXt · d
ds

E
[
e−ε(Xt+s−Xt)|Ft

]∣∣
s=0

(66)
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and

d

ds
E
[
e−ε(Xt+s−Xt)|Ft

]∣∣
s=0

(20)
=

∑
x∈B

ξt(x)

eεg(x) − 1 +
λ

|B(R)|
·

∑
y∈B(x,R)∩B

(1− ξt(y)) · (e−εg(y) − 1)


= ε

∑
x∈B

ξt(x)

g(x)− λ

|B(R)|
·

∑
y∈B(x,R)∩B

(1− ξt(y)) · g(y)

 (67)

+
∑
x∈B

ξt(x)

Ex(ε) +
λ

|B(R)|
·

∑
y∈B(x,R)∩B

(1− ξt(y)) · Ẽy(ε)

 , (68)

where we write

Ex(ε) := eεg(x) − 1− εg(x) ≥ 0, Ẽx(ε) := e−εg(x) − 1 + εg(x) ≥ 0. (69)

By our assumption R ≥ R� and Lemma 3.19, on the event {Nt ≤ βRd}, the
term in (67) is less than or equal to

ε
∑
x∈B

ξt(x)

(
g(x)− λ+ 1

2
g(x)

)
(47)
= −ε(λ− 1)

2
·Xt. (70)

Let us denote M = maxx∈B

(
Ex(ε) ∨ Ẽx(ε)

)
. We bound the term in (68) by

∑
x∈B

ξt(x)(M + λM)
(47)
= M(1 + λ)Nt

(49)

≤ M(1 + λ)

gmin

Xt

(∗)
≤ ε(λ− 1)

4
Xt, (71)

where in (∗) we used

M
(57),(69)

≤ max
x∈B

(εg(x))2
(48)

≤ ε2 (57)
=

ε(λ− 1)

4(1 + λ)
gmin.

Putting together the upper bounds we obtained for the terms in (67) and (68),
we see that the right-hand side of (66) satisfies the desired inequality for (62).
The proof of Lemma 3.18 is complete.

Proof of Lemma 3.19. Since gmax = 1, the left-hand side of (64) is larger than

λ

|B(R)|
·

 ∑
y∈B∩B(x,R)

g(y)− |ξ|

 . (72)
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Assuming R ≥ R�, we can use (45), (46) and the assumption |ξ| ≤ βRd to
bound (72) from below by

λ

((
1− 1

κ

)d
g(x)− β ·Rd

|B(R)|

)
≥ λ

((
1− 1

κ

)d
− β ·Rd

|B(R)|gmin

)
g(x). (73)

By our choice of β in (51), the right-hand side of (73) is greater than or equal
to 1+λ

2
·g(x) for any R ≥ R� and any x ∈ B, completing the proof of (64).

3.2.3 Perron-Frobenius bounds

The goal of Section 3.2.3 is to prove Lemma 3.16.
Recall from (43) that `(u) = 1

κ
+ min{u, κ− u}, 0 ≤ u ≤ κ.

We define a : [0, κ]→ R by

a(u) :=
1

2

∫ (u+1)∧κ

(u−1)∨0

`(v) dv −
(

1− 1

κ

)
`(u). (74)

Lemma 3.20 (Plain calculus). We have min0≤u≤κ a(u) > 0.

Before we prove Lemma 3.20, let us deduce Lemma 3.16 from it.

Proof of Lemma 3.16. By (44), the left-hand side of (45) is equal to

d∏
i=1

1

2R + 1

∑
yi∈{0,...,κR−1},
|yi−xi|≤R

`
(yi
R

)
,

so (45) will follow if we prove that, for each x ∈ B and for each i ∈ {1, . . . , d},
1

2R + 1

∑
yi∈{0,...,κR−1},

0≤|yi−xi|≤R

`
(yi
R

)
≥
(

1− 1

κ

)
`
(xi
R

)
. (75)

This amounts to the same as proving the lemma in the case d = 1, so we
assume d = 1 (and thus drop the subscript i) in the rest of this proof.
Denote

aR(x) :=
1

2R + 1

∑
y∈{0,...,κR−1},

0≤|y−x|≤R

`
( y
R

)
−
(

1− 1

κ

)
`
( x
R

)
, x ∈ {0, . . . , κR−1}.

Comparing this to the definition of the function a from (74), we readily obtain

lim
R→∞

max
x∈{0,...,κR−1}

|aR(x)− a(x/R)| = 0.

Then, by Lemma 3.20, we conclude that ifR is large enough, we have aR(x) > 0
for all x ∈ {0, . . . , κR− 1}, completing the proof of (75).
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Proof of Lemma 3.20. By symmetry, it is sufficient to prove that a(u) > 0
for all u ∈ [0, κ/2]. Recall from (28) that κ > 4, thus κ

2
+ 1 < κ, so we can

write

a(u) =
1

2

∫ u+1

0

`(v) dv − 1

2

∫ (u−1)∨0

0

`(v) dv −
(

1− 1

κ

)
`(u), u ∈ [0, κ

2
],

and then

a′(u) =


1
2
· `(u+ 1)−

(
1− 1

κ

)
· `′(u) if u ∈ (0, 1);

1
2
· (`(u+ 1)− `(u− 1))−

(
1− 1

κ

)
· `′(u) if u ∈ (1, κ

2
).

Using that `(u) = ( 1
κ

+ u) · 1[0,κ/2)(u) + ( 1
κ

+ κ− u) · 1[κ/2,κ](u), we obtain

a′(u) =


u
2

+ 3
2κ
− 1

2
if u ∈ (0, 1);

1
κ

if u ∈ (1, κ
2
− 1);

−u+ κ
2

+ 1
κ
− 1 if u ∈ (κ

2
− 1, κ

2
).

(76)

Note that the middle interval (1, κ
2
− 1) is non-empty, since κ > 4.

Using (76) we see that a is concave on [1, κ/2]. One can easily compute
a(1) = 1

κ2
+ 1

κ
> 0 and a(κ/2) = 1

κ2
> 0, so a(u) > 0 for all u ∈ [1, κ/2].

Also, (76) shows that a is convex on [0, 1]; to show that it is positive in this
interval, note that a′(u) = 0 is solved there at u? = 1− 3

κ
, for which we can

compute a(u?) = 1
κ
− 5

4κ2
> 0, since κ > 5/4. This completes the proof of

Lemma 3.20.

4 Coupling branching random walks and in-

fection path indicators

The aim of Section 4 is to couple the infection path indicators of Definition
2.4 with independent branching random walks (BRWs) and to bound the
probabilities of the bad events that can ruin our coupling. We construct
the coupling in Section 4.1. The basic idea of the coupling is simple: (i) as
long as we do not observe collisions of BRW particles, they coincide with the
infection path indicators, (ii) if we observe collisions, we immediately remove
all BRW particles with the same ancestor as the one that was involved in the
collision, because we don’t want them to cause further collisions. We bound
the generating function of the number of BRW family trees that survive these
collisions in Section 4.2 and in Section 4.3 we bound the terms that appear
in our generating function estimate (i.e., we bound collision probabilities). In
Section 4.4 we collect some useful facts about branching processes.
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4.1 Coupling

Let us fix a finite subset X ⊂ Zd for the rest of Section 4. The goal of Section
4.1 is to construct a coupling between the infection path indicators Ξt(x, y) (cf.
(17)) and independent branching random walks Zt(x, y) (see below), where
x ∈ X and y ∈ Zd. We consider the c.à.d.l.à.g. versions of all the stochastic
processes that we define.

Definition 4.1 (Labeled branching random walks (BRWs)). At time zero,
for each x ∈ X , there is one particle with label x at location x. Independently,
particles die with rate one and give birth to new particles with rate λ; a
newborn particle has the same label as the parent, and is placed at a site
chosen uniformly at random in the translate of B(R) centered at the position
of the parent.
For x ∈ X , y ∈ Zd and t ≥ 0 we let Zt(x, y) be the number of particles with
label x located at site y at time t.

The label of a particle at time t encodes the location of its ancestor at time
0. We have Z0(x, y) = 1[x = y ∈ X ]. For each x ∈ X , the particles with
label x form a continuous-time BRW on Zd with one single ancestor at time
zero at location x. The branching random walks with different labels evolve
independently from each other.

Claim 4.2 (Labeled branching processes). Denote by

Zt(x) :=
∑
y∈Zd

Zt(x, y), t ≥ 0, x ∈ X (77)

the total number of BRW particles with label x at time t. For x ∈ X , the
process (Zt(x))t≥0 is a continuous-time branching process in which individuals
die with rate one and give birth with rate λ. The branching processes with
different labels evolve independently from each other.

Next we define the following stopping times:

τx := min
{
t :
∑

y∈Zd
Zt(x, y)(Zt(x, y)− 1) > 0

}
, x ∈ X (78)

τx,x′ := min
{
t :
∑

y∈Zd
Zt(x, y)Zt(x

′, y) > 0
}
, x 6= x′ ∈ X (79)

Thus τx is the first time when there are two particles with label x at the same
site, while τx,x′ is the first time when a particle with label x and a particle
with label x′ are at the same site. Both of these stopping times correspond
to collisions, and we will define annihilating BRWs by postulating that if a
particle with label x is involved in a collision then we immediately remove
(annihilate) all particles with label x. We will denote by Xt the set of labels
which did not yet get annihilated by time t.
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Definition 4.3 (Set of alive/annihilated labels). For each t ≥ 0 we define
Xt ⊆ X in the following way: let X0 = X . Then we increase t, and if t
reaches τx for some x ∈ Xt then we remove x from Xt. Similarly, if t reaches
τx,x′ where x and x′ are both still in Xt, then we remove both x and x′ from
Xt. We say that Xt is the set of alive labels at time t. If x ∈ X \ Xt, we say
that the label x got annihilated by time t.

See Figure 1 for an illustration of this definition.

Figure 1: Illustration of the coupling of infection paths and branching random
walks, the stopping times τx and τx,x′ and the label process (Xt)t≥0 for a case
where X consists of five points, x1, x2, x3, x4, x5. The symbols ◦,�, �,∆,∇
represent particles with labels x1, x2, x3, x4, x5, respectively. The dark (resp.
light) color represents particles whose label is alive (resp. annihilated). (Al-
though the figure might give the impression that the dynamics is in discrete
time, time is of course continuous). The contents of the sets Xs and Xt are
made explicit for two times s < t. Note that at time τx4,x5 , the label x5

remains alive, since it collides with a particle with label x4, which has already
been annihilated.

Now we can state the key lemma of Section 4.1 relating the infection path
indicators Ξt(x, y) (cf. Definition 2.4), the independent labeled BRWs Zt(x, y)
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(cf. Definition 4.1) and the set of alive labels Xt defined above.

Lemma 4.4 (Coupling). There is a way to couple (Ξt(x, y))x∈X ,y∈Zd,t≥0 and
(Zt(x, y))x∈X ,y∈Zd,t≥0 so that

for any x ∈ Xt and y ∈ Zd we have Zt(x, y) = Ξt(x, y). (80)

Before we prove Lemma 4.4, let us make a couple of remarks.

Remark 4.5. Our naive goal is to sample a configuration (ξ(x))x∈X dis-
tributed according to µλ,R using (19), but we want to use our independent
labeled BRWs instead of the infection path indicators, since we want to argue
that (ξ(x))x∈X is close to being an i.i.d. Bernoulli configuration. Therefore,
we want to control the size of the set X \ Xt of labels where (80) fails. Also,
we want X to have a large cardinality, since percolation connectivity events
involve the simultaneous status of many sites. Also, naively we would like
to let t → ∞, cf. (19). Nevertheless, if X is too “fat” then we see many
collisions in the beginning, while making t too big results in many collisions
in the long run (since our BRWs are supercritical). In the end, it will be
sufficient to choose a set X with a “thin” fractal structure (see Section 5) and
work with a large but fixed time t (see Section 6), while we are free to choose
the range R of the BRW jump distribution to be very large, which clearly helps
if we want to reduce the number of collisions.

Proof of Lemma 4.4. We begin by providing a suitable graphical construction
of the independent labeled branching random walks (Zt(x, y))x∈X ,y∈Zd,t≥0.
For each y ∈ Zd and ` ∈ N, let N `

y denote a Poisson process of rate 1 on
[0,∞), and for each y, z ∈ Zd satisfying z ∈ B(y,R) and each ` ∈ N, let N `

y,z

denote a Poisson process of rate λ/B(R) on [0,∞). All Poisson processes are
independent.

An arrival time of N `
y at time t will be interpreted as a death mark which

kills the `’th particle at location y at time t. An arrival time of N `
y,z at time

t will be interpreted as a reproduction arrow : assuming that the label of the
`’th particle at location y at time t is x, this reproduction arrow will trigger
this particle to produce a newborn particle with label x at location z.

To be more specific, for each x ∈ X , we start with one particle with label x
at location x at time zero. Assume that we have already constructed the
evolution of the labeled BRW particle configuration as well as the set of alive
labels up to time t in terms of these Poisson point processes. For x ∈ X ,
y ∈ Zd we let Zt(x, y) be the number of particles with label x located at site y
at time t. Note that by Definition 4.3, there is at most one particle with
label belonging to Xt at site y at time t (since two such particles would have
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already annihilated each other by time t). Altogether, there are
∑

x∈X Zt(x, y)
particles sharing the same location y at time t. We would like to talk about
the `’th particle at location y at time t (where 1 ≤ ` ≤

∑
x∈X Zt(x, y)), so

let us order these particles with one rule in mind: if there is a particle at
time t at location y with label belonging to Xt, this particle has to be the
first one in the ordering, so that it gets to use the Poisson processes with
upper index ` = 1. Now each particle waits for the next instruction encoded
by its own Poisson point processes. As soon as any of the particles receives
the next instruction, we update the particle configuration, the set of alive
vertices and the ordering of particles at each location accordingly. Let us note
here that we assumed |X | <∞, and therefore the total number of particles
remains finite after each such step, thus there is always a well-defined “next
instruction”, allowing us to proceed inductively.

It is easy to see that this construction indeed produces independent labeled
BRWs (Zt(x, y))x∈X ,y∈Zd,t≥0 satisfying Definition 4.1, which also shows that
the total number of particles does not explode in finite time.

In order to define infection path indicators (Ξt(x, y))x∈X ,y∈Zd,t≥0 satisfying
Definition 2.4 on the same probability space, we perform the graphical con-
struction described in Section 2.3, using the Poisson point processes with
upper index ` = 1, more specifically, using N1

y , y ∈ Zd as recovery marks and
N1
y,z with y, z ∈ Zd, z ∈ B(y,R) as infection arrows.

Now it is easy to prove (80) inductively: one just has to observe that the
time evolution of Ξt(x, y) (cf. (17)) agrees with that of Zt(x, y) as long as
x ∈ Xt (since both graphical constructions use the same Poisson processes
with upper index ` = 1 as an input, and they use this input to perform the
same updates).

Having proved Lemma 4.4, we see that the coupling (80) will only be useful
if we can control the size of X \ Xt. This is what we do in Section 4.2.

4.2 Generating function bounds

Variants of our next lemma have already appeared in our earlier work, cf.
[RV15, (5.14)] and [RV17, Lemma 2.4], however those earlier lemmas pertained
to annihilating random walks, while Lemma 4.6 below pertains to annihilating
BRWs, where the situation is a bit more complicated, since different types of
annihilation events correspond to the collision times τx (cf. (78)), where only
one label is involved, and τx,x′ (cf. (79)), where a pair of distinct labels are
involved.
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Our next lemma bounds the generating function of the number of labels from
X that got annihilated by time t (cf. Definition 4.3). Let ≺ denote a total
ordering of Zd.
Lemma 4.6 (Generating function bounds). For any s ∈ [0,+∞) we have

E
(
s|X\Xt|

)
≤
∏
x∈X

(1 + P(τx ≤ t)s)
∏

x,y∈X :x≺y

(
1 + P(τx,y ≤ t)s2

)
. (81)

Proof. If e = {x, y} ∈
(X

2

)
, let us denote τe := τx,y and

ηt(e) := 1
[
τe < t, X(τe)+ = X(τe)− \ e

]
, e ∈

(
X
2

)
, (82)

ηt(x) := 1
[
τx < t, X(τx)+ = X(τx)− \ {x}

]
, x ∈ X . (83)

In words: ηt(e) (where e = {x, y}) is the indicator of the event that the labels
x and y annihilated each other before time t, while ηt(x) is the indicator of
the event that the collision of two particles with label x annihilated the label
x before time t.
Denote by A the set of edges e ∈

(X
2

)
for which ηt(e) = 1 and denote by B

the set of vertices x ∈ X for which ηt(x) = 1.

Let us note that as soon as a label gets annihilated, it is gone forever, i.e.,
any label can be annihilated at most once, therefore the pair (A,B) is a
random element of H, where H denotes the set of pairs (A,B) which satisfy
(i) A ⊆

(X
2

)
, (ii) B ⊆ X , (iii) A is a partial matching (i.e., e 6= e′ ∈ A implies

e ∩ e′ = ∅) and (iv) B is disjoint from ∪e∈Ae.
Using the notation introduced above, we obtain

E
(
s|X\Xt|

)
= E

(
s2|A|+|B|) =

∑
(A,B)∈H

P(A = A, B = B)s2|A|s|B| ≤

∑
(A,B)∈H

P(∀e ∈ A : τe < t, ∀x ∈ B : τx < t )s2|A|s|B|
(∗)
=

∑
(A,B)∈H

∏
e∈A

P(τe < t)
∏
x∈B

P(τx < t)s2|A|s|B| ≤

∑
A⊆(X2)

∑
B⊆X

∏
e∈A

P(τe < t)
∏
x∈B

P(τx < t)s2|A|s|B| =

∏
e∈(X2)

(
1 + P(τe < t)s2

) ∏
x∈X

(1 + P(τx < t)s) , (84)

where in (∗) we used criteria (iii) and (iv) of the definition of H as well as
the fact that branching random walks with different labels are independent,
cf. Definition 4.1. The proof of Lemma 4.6 is complete.
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In order to bound the right-hand side of (81), we need to bound probabilities
of form P(τx ≤ t) and P(τx,y ≤ t). This is what we will do in Section 4.3.

4.3 BRW collision probability bounds

The goal of Section 4.3 is to prove the following bounds on the probability
that BRW particles with the same label (cf. (85)) or different labels (cf. (86))
collide. We assume that birth rate of the BRW satisfies λ > 1.

Lemma 4.7 (Collision probability bounds). Recall the definitions of τx and
τx,y from (78) and (79).

(i) For any λ > 1, T0 ∈ R+ we have

lim
R→∞

P(τ0 ≤ T0) = 0. (85)

(ii) For any λ > 1, T0 ∈ R+ there exist C ′ = C ′(λ, T0) < +∞ and C ′′ =
C ′′(λ, T0) < +∞ such that

P(τx,y ≤ T0) ≤ C ′

Rd
exp

(
−|x− y|

C ′′R

)
, x 6= y ∈ Zd, R ∈ N. (86)

The proofs are standard, but we include them for completeness. We encourage
the reader to skip the rest of Section 4.3 at first reading.

Proof of Lemma 4.7(i). The argument is quite simple, but for brevity and to
avoid introducing too much notation, we only sketch the main idea. Recall
from (78) that τ0 denotes the first time when two particles with label 0 collide.
Note that these particles are all descendants of the particle that sits at site 0
at time 0. Let us denote by N the total number of BRW particles with label
0 that are born before T0. We have E(N2) = C(T0, λ) < +∞ by Claim 4.2.
The location of a newborn particle is uniformly distributed in the translate
of B(R) centered at its parent, thus the probability that it collides with a
fixed particle that is already present is at most 1/|B(R)|. The number of
such potential collisions up to time T0 is bounded by 1

2
N(N − 1), thus we

obtain that the expected number of collisions of particles with label 0 up to
time T0 is at most E(1

2
N(N − 1))/|B(R)|, and this quantity goes to zero as

R→∞, which implies (85) by Markov’s inequality.

Before we prove Lemma 4.7(ii), let us introduce some useful notation.
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Definition 4.8 (R-spread-out random walk with jump rate λ on Zd). Denote
by (Xt)t≥0 the continuous-time random walk on Zd where the holding times
between jumps are i.i.d. with EXP(λ) distribution, and the increments of the
walk are i.i.d. with uniform distribution on B(R). Denote by pλ,Rt (x, y) the
transition kernel of (Xt)t≥0, i.e.,

pλ,Rt (x, y) = P(Xt = y |X0 = x), t ≥ 0, x, y ∈ Zd. (87)

Recalling the notion of Zt(x, y) from Definition 4.1, we note that by [Li99,
Proposition 1.21] we have

E(Zt(x, y)) = e(λ−1)tpλ,Rt (x, y), t ≥ 0, x, y ∈ Zd. (88)

The proof of Lemma 4.7(ii) will follow from the next bound.

Lemma 4.9 (Heat kernel bound for (Xt)). For any λ > 1, T∗ ∈ R+ there
exist C∗ = C∗(λ, T∗) < +∞ and C∗∗ = C∗∗(λ, T∗) < +∞ such that

pλ,Rt (x, y) ≤ C∗

Rd
exp

(
−|x− y|
C∗∗R

)
, 0 ≤ t ≤ T∗, x 6= y ∈ Zd, R ∈ N. (89)

Before we prove Lemma 4.9, let us deduce Lemma 4.7(ii) from it.

Proof of Lemma 4.7(ii). Let T1 := T0 + 1, L :=
∑

z∈Zd
∫ T1

0
Zs(x, z)Zs(y, z) ds.

First we note that E(L | τx,y ≤ T0) ≥
∫ 1

0
e−2s ds ≥ 1

4
because at time τx,y a

particle with label x and a particle with label y share the same location, and
the subsequent lifetimes of these particles are i.i.d. with EXP(1) distribution.
From this we obtain P(τx,y ≤ T0) ≤ 4E(L), thus it is enough to bound

E(L) =
∑
z∈Zd

∫ T1

0

E(Zs(x, z))E(Zs(y, z)) ds
λ>1,(88)

≤

e2(λ−1)T1
∑
z∈Zd

∫ T1

0

pλ,Rs (x, z)pλ,Rs (y, z) ds
(∗)
= e2(λ−1)T1

∫ T1

0

pλ,R2s (x, y) ds, (90)

where (∗) is Chapman-Kolmogorov for (Xt)t≥0. The desired bound (86)
follows from (89) (with T∗ = 2T1) and (90).

Before we prove Lemma 4.9, we introduce some further notation.

Definition 4.10. Denote by (Yn)n∈N the discrete-time R-spread-out random
walk on Zd: the increments of (Yn) are i.i.d. with uniform distribution on B(R).
Denote by qRn (x, y) the transition probabilities of (Yn), i.e.,

qRn (x, y) = P(Yn = y |Y0 = x), n ∈ N0, x, y ∈ Zd. (91)
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The proof of Lemma 4.9 will follow from the next bound. Note that this
bound is very crude, but it will suffice.

Lemma 4.11 (Heat kernel bound for (Yn)). There exist C� < +∞ and
C�� < +∞ such that

qRn (x, y) ≤ Cn
�

Rd
exp

(
−|x− y|

2

C��nR2

)
, n, R ∈ N, x 6= y ∈ Zd. (92)

Before we prove Lemma 4.11, let us deduce Lemma 4.9 from it.

Proof of Lemma 4.9. Let 0 ≤ t ≤ T∗ and x 6= y ∈ Zd.

pλ,Rt (x, y)
(∗)
=

∞∑
n=1

e−λt(λt)n

n!
qRn (x, y)

(92)

≤
∞∑
n=1

(λT∗)
n

n!

Cn
�

Rd
exp

(
−|x− y|2

C��nR2

)
(∗∗)
≤

∞∑
n=0

(λT∗C�)
n

n!Rd
exp

(
−2|x− y|√

C��R
+ n

)
= exp

(
−2|x− y|√

C��R

)
exp (λT∗C�e)

Rd
,

where in (∗) we used that the continuous-time walk (Xt) performs POI(λt)
steps in the time interval [0, t] (cf. Definitions 4.8, 4.10), and in (∗∗) we used

the inequality −b2/n ≤ −2b+ n with b = |x−y|√
C��R

.

Proof of Lemma 4.11. Let us first observe that the coordinates of the d-
dimensional random walk (Yn) evolve independently, therefore we have

qRn (x, y) =
d∏
i=1

q̃Rn (xi, yi), x = (x1, . . . , xd), y = (y1, . . . , yd), (93)

where q̃Rn (xi, yi) denote the transition probabilities of the R-spread-out random
walk on Z. From (93) it follows that it is enough to prove (92) when d = 1. In
the d = 1, R = 1 case (lazy nearest-neighbour random walk on Z) the bounds

C ′′′√
n
1[ |y| ≤

√
n ] ≤ q̃1

n(0, y) ≤ C ′√
n

exp

(
− y2

C ′′n

)
, y ∈ Z, n ∈ N (94)

are classical (cf. [LL10, Section 2]). Using the lower bound of (94) we obtain
q̃R1 (0, y) ≤ Cq̃1

R2(0, y), y ∈ Z for some C < +∞, and taking the n-fold
convolution of both sides of this inequality we obtain

q̃Rn (0, y) ≤ Cnq̃1
nR2(0, y)

(94)

≤ Cn C ′√
nR2

exp

(
− y2

C ′′nR2

)
, y ∈ Z, (95)

from which the d = 1 case of (92) follows.

38



4.4 Branching process facts

Let us collect some formulas that will be relevant to us because of Claim 4.2.

Definition 4.12. Let Zt denote the population size at time t of a branching
process with birth rate λ and death rate 1, starting from Z0 = 1.

Given λ > 1 we introduce the survival probabilities

σ(λ, t) := P(Zt > 0 ) =
λ− 1

λ− e(1−λ)t
, t ≥ 0, (96)

σ(λ) := P(∀ t ≥ 0 : Zt > 0 ) = 1− 1/λ. (97)

Also note that for any λ > 1 and s ∈ [0, 1] we have

E
(
sZt |Zt > 0

)
=

q̃(λ, t)s

1− (1− q̃(λ, t))s
, q̃(λ, t) :=

λ− 1

λe(λ−1)t − 1
. (98)

Remark 4.13. In order to prove (96) and (98), it is enough to note that if
one defines G(t, s) = E(sZt) then G(t, s) solves the PDE

∂tG(t, s) = (λs2 − (λ+ 1)s+ 1)∂sG(t, s), G(0, s) = s, (99)

and that

G(t, s) = (1− σ(λ, t)) + σ(λ, t)
q̃(λ, t)s

1− (1− q̃(λ, t))s
(100)

also solves this PDE.

5 Renormalization

We will use the multi-scale renormalization scheme as in [Ra15], [RV15] and
[RV17], which in turn is a variant of the one introduced in [Sz12]. The idea is
that if we see a percolation crossing event in a large annulus then this implies
that many small and sparsely-located annuli are also crossed.

The renormalization involves the embedding of dyadic trees into Zd. For
n ∈ N, let us denote by T(n) = {1, 2}n the set of binary strings of length n
(in particular, T(0) = ∅). Denote by

Tn =
n⋃
k=0

T(k) (101)

the dyadic tree of depth n. For 0 ≤ k < n and m ∈ T(k), m = (ξ1, . . . , ξk), we
denote by m1 and m2 the two children of m in T(k+1):

mi = (ξ1, . . . , ξk, i), i ∈ {1, 2}. (102)
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Denote by L ∈ N the bottom scale of our renormalization. We define the n’th
scale by

Ln := L · 6n, n ∈ N0. (103)

Definition 5.1. The mapping T : Tn → Zd is a proper embedding of the
tree Tn with root at the origin of Zd if

1. The root is mapped to 0: T (∅) = 0;

2. For any 0 ≤ k ≤ n and any m ∈ T(k) we have T (m) ∈ Ln−kZd;

3. For any 0 ≤ k < n and any m ∈ T(k) the embedding of the children m1

and m2 of m satisfy

|T (m1)− T (m)| = Ln−k, |T (m2)− T (m)| = 2Ln−k. (104)

Let us denote by Λn,L the set of proper embeddings of the tree Tn with bottom
scale L into Zd with root at 0.

Remark 5.2. Let us denote X := ∪m∈T(n){T (m)}. We have |X | = 2n and
diam(X ) � 6n. Heuristically, for large n, the set X ∗ := 6−nX is a fractal

with dimension ln(2)
ln(6)

, because if we blow X ∗ up by a factor of six, we see

two sets which are very similar to the set X ∗ that we started with. Also,

|B(x,R)∩X | � (diam(X )∧R)
ln(2)
ln(6) holds for any x ∈X . The number ln(2)

ln(6)

will show up twice in later calculations, see the end of the proof of Lemma
6.2 and the end of the proof of Lemma 6.17.

We now recall three lemmas about proper embeddings from [Ra15]. Occa-
sionally we will slightly modify the formulation compared to [Ra15] in order
to fit our current purposes. The first lemma bounds the number of proper
embeddings.

Lemma 5.3 (Lemma 3.2 of [Ra15]). There exists a dimension-dependent
constant Cd > 0 such that for every n, L ∈ N we have

|Λn,L| ≤ (Cd)
2n , n ∈ N. (105)

The second lemma relates the notion of proper embeddings to that of crossing
events (see Figure 2 for an illustration). Recall the notion of ∗-connected
paths from Definition 2.1 and the notion of spheres from (15).

Lemma 5.4 (Lemma 3.3 of [Ra15]). If γ is a ∗-connected path in Zd which
crosses the annulus at scale Ln:

{γ} ∩ S(Ln − 1) 6= ∅, {γ} ∩ S(2Ln) 6= ∅,

then there exists T ∈ Λn,L such that γ crosses these bottom-level annuli:

{γ} ∩ S(T (m), L− 1) 6= ∅, {γ} ∩ S(T (m), 2L) 6= ∅ ∀m ∈ T(n). (106)
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Figure 2: Illustration of the relation between the proper embedding T (see
Definition 5.1) and the path γ that appears in Lemma 5.4. The light grey
circles and dark grey circles represent points of the lattices Ln−1 and Ln,
respectively.

Before we state the third lemma, we need some further notation.
For 0 ≤ k ≤ n and m = (ξ1, . . . , ξn) ∈ T(n) we denote by m|k = (ξ1, . . . , ξk) ∈
T(k) the ancestor of m at depth k.
The lexicographic distance of m,m′ ∈ T(n) is defined by

ρ(m,m′) = min{ k ≥ 0 : m|n−k = m′|n−k }. (107)

For any m ∈ T(n) and 0 ≤ k ≤ n we define the set of k’th cousins of m by

Tm,k(n) = {m′ ∈ T(n) : ρ(m,m′) = k }, (108)

see Figure 3 for an illustration. Note that the number of k’th cousins of m is

|Tm,k(n) | ≤ 2k, 0 ≤ k ≤ n. (109)
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Figure 3: An illustration of the subsets Tm,k(n) of leaves of Tn defined in (108).
The dyadic tree on the picture is of depth n = 3 and the leaf denoted by m is
111 ∈ T(n).

The third lemma guarantees that if the lexicographic distance of m and m′ is
big then their embedded images are also far away from each other in Zd.

Lemma 5.5 (Lemma 3.4 of [Ra15]). For all n ∈ N, T ∈ Λn,L, m ∈ T(n),

1 ≤ k ≤ n, m′ ∈ Tm,k(n) , y ∈ B(T (m), 2L) and z ∈ B(T (m′), 2L), we have

|y − z| ≥ Lk−1
(103)
= L6k−1. (110)

6 Proof of main result

In this section we prove Theorem 1.2. Section 6.1 contains the proof of
lim infR→∞ λp(R) ≥ 1

1−pc , which is easier and shorter than the proof of

lim supR→∞ λp(R) ≤ 1
1−pc , which will be given in Section 6.2. But first, let

us state and prove Claim 6.1 and Lemma 6.2, which will be used in both
subsections.

Claim 6.1. Let a, ε, p, q ∈ (0, 1). Let X ∼ Bin(N, q). If q ≤ p ≤
(
ε
2

)1/a
holds

then P (X ≥ aN) ≤ εN .

Proof. In the inequality marked by (∗) we use q ≤ p and 1− q ≤ 1:

P (X ≥ aN) ≤ E
(
p−X

)
/p−aN = (q/p+ 1− q)NpaN

(∗)
≤ (2pa)N ≤ εN . (111)

Recall from Section 5 that we denote by L the bottom scale of our renormal-
ization scheme. Let us recall the notion of a proper embedding T ∈ Λn,L of
the dyadic tree of depth n from Definition 5.1.
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Given some T ∈ Λn,L we will define the finite subset X of Zd by

X = X (T ) =
⋃

m∈T(n)

B(T (m), 2L) (112)

Note that it follows from Lemma 5.5 that for any n ∈ N and any T ∈ Λn,L

the balls B(T (m), 2L), m ∈ T(n) are disjoint, thus |X | = |B(2L)|·2n. (113)

Given such a set X , we consider a joint realization of the labeled BRWs Zt(x, y)
and the infection path indicators Ξt(x, y), where x ∈ X , y ∈ Zd, 0 ≤ t ≤ T0,
which satisfies the properties stated in Lemma 4.4.

Let us recall from Definition 4.3 the notion of the set of labels Xt that are
alive at time t. Recall from Lemma 5.3 the constant Cd that quantifies the
combinatorial complexity of our renormalization scheme. As we have already
discussed in Remark 4.5, we want to control the number |X \ XT0| of labels
that got annihilated by time T0. This is what we do in the next lemma.

Lemma 6.2 (Few collisions if R is large). For any value of λ, L and T0,
there exists R0 = R0(λ, L, T0) ∈ N such that for any R ≥ R0, any n ∈ N and
any T ∈ Λn,L we have

P ( |X \ XT0| ≥ 2n/2 ) ≤ (2Cd)
−2n . (114)

Before we prove Lemma 6.2, let us stress that the same R0 works for all n:
this is because X is spread-out on all scales, cf. Remark 5.2.

Proof of Lemma 6.2. Let us fix the value of λ, L and T0. Given any n ∈ N
and T ∈ Λn,L we define X by (112), and for any s ≥ 1 we can bound

E
(
s|X\XT0 |

) (81)

≤ exp

|X |P(τ0 ≤ T0)s+ |X |max
x∈X

∑
y∈X\{x}

P(τx,y ≤ T0)s2

 .

(115)
We will show that there exists R0 such that for any R ≥ R0 we have

P(τ0 ≤ T0) ≤ (48C2
d |B(2L)|)−1, (116)

∀n ∈ N, T ∈ Λn,L : max
x∈X

∑
y∈X\{x}

P(τx,y ≤ T0) ≤ (576C4
d |B(2L)|)−1. (117)

Before we prove (116) and (117), let us show that (114) follows from them.
First observe that

E
(
(12C2

d)|X\XT0 |
) (113),(115),(116),(117)

≤ exp (2n/2) ≤ 32n/2. (118)
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Now the desired (114) follows using the exponential Chebyshev’s inequality:

P ( |X \ XT0| ≥ 2n/2 ) ≤ E
(
(12C2

d)|X\XT0 |
)
/(12C2

d)2n/2
(118)

≤ (2Cd)
−2n . (119)

It remains to prove (116) and (117). Note that (116) holds by Lemma 4.7(i)
for large enough R. The proof of (117) is more complicated: for any n ∈ N,
T ∈ Λn,L, m ∈ T(n) and x ∈ B(T (m), 2L)

∑
y∈X\{x}

P(τx,y ≤ T0)
(86)

≤ C ′

Rd

∑
y∈X

exp

(
−|y − x|

C ′′R

)
(108),(112)

=

C ′

Rd

n∑
k=0

∑
m′∈Tm,k

(n)

∑
y∈B(T (m′),2L)

exp

(
−|y − x|

C ′′R

)
(109),(110)

≤

C ′

Rd

n∑
k=0

2k|B(2L)| exp

(
−L6k−1

C ′′R

)
≤

C ′

Rd

∫ ∞
−∞

2x+1|B(2L)| exp

(
−L6x−2

C ′′R

)
dx

(∗)
=

C ′2|B(2L)|
Rd ln(6)

(
C ′′R

L6−2

) ln(2)
ln(6)

∫ ∞
0

u
ln(2)
ln(6)
−1e−udu = ĈR

ln(2)
ln(6)
−d (120)

for some Ĉ = Ĉ(L,C ′, C ′′) = Ĉ(λ, L, T0), where in (∗) we performed the

substitution u = L6x−2

C′′R
. Thus (117) holds for large enough R, since ln(2)

ln(6)
< d.

The proof of Lemma 6.2 is complete.

6.1 Lower bound on the percolation threshold

The aim of this subsection is to prove lim infR→∞ λp(R) ≥ 1
1−pc . It is enough

to show that the following proposition holds. Recall the definition of the
percolation event Perc from (16).

Proposition 6.3 (Subcritical behavior). For any λ < 1
1−pc there exists some

R0 = R0(λ) such that if R ≥ R0 then µλ,R(Perc) = 0.

Let us fix some λ < 1
1−pc for the rest of Section 6.1. Recall the notation

A
ξ←→ B from Definition 2.2.

Lemma 6.4 (Annulus crossing). There exists L ∈ N and R0 ∈ N such that
for any n ∈ N and any R ≥ R0 we have

µλ,R

(
B(Ln)

ξ←→ B(2Ln)c
)
≤ 2 · 2−2n , where Ln

(103)
= L · 6n. (121)
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Before proving Lemma 6.4, we first note that Proposition 6.3 follows from it:

Proof of Proposition 6.3. Observing that

Perc ⊆
⋃
m≥1

⋂
n≥m

{B(Ln)
ξ←→ B(2Ln)c}, (122)

one concludes that if Lemma 6.4 holds then µλ,R(Perc) = 0.

It remains to prove Lemma 6.4. Recalling (97) we note that σ(λ) < pc, so let
us fix some p ∈ (σ(λ), pc). Given this value of p we can use the results about
the exponential decay of the cluster radius in subcritical Bernoulli percolation
(cf. [Gr99, Section 5.2]) to choose (and fix for the rest of Section 6.1) L such
that under the product Bernoulli distribution πp with density p we have

πp

(
B(L)

ξ←→ B(2L− 1)c
)
≤ (4Cd)

−2, (123)

where Cd was defined in Lemma 5.3.

It follows from (96) and (97) that t 7→ σ(λ, t) is continuous, moreover
limt→∞ σ(λ, t) = σ(λ), therefore we can choose (and fix for the rest of Section
6.1) T such that

σ(λ, T ) = p. (124)

Let us recall from Definition 2.4 that Ξt(x, y) denotes the indicator of the
event that there is an infection path connecting (x, 0) to (y, t) in the graphical
construction of the contact process. Let us define

ξ∗T (x) := 1
[
∃ y ∈ Zd : ΞT (x, y) > 0

]
, x ∈ Zd. (125)

Having fixed the bottom scale L of our renormalization scheme, let us recall
the notion of a proper embedding T ∈ Λn,L of the dyadic tree of depth n
from Definition 5.1. The following lemma will give the proof of Lemma 6.4.

Lemma 6.5 (Bottom-level annuli crossings in ξ∗T ). Having fixed λ, L and T
as above, there exists R0 ∈ N such that for any R ≥ R0, any n ∈ N and any
T ∈ Λn,L we have

P

 ⋂
m∈T(n)

{
B(T (m), L)

ξ∗T←→ B(T (m), 2L− 1)c
} ≤ 2 (2Cd)

−2n . (126)

Before we prove Lemma 6.5, let us deduce Lemma 6.4 from it.
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Proof of Lemma 6.4. Recall from (19) that if we define ξ∗∞ := limt→∞ ξ
∗
t (x)

then the law of the configuration ξ∗∞ is µλ,R. Also note that ξ∗T (x) ≥ ξ∗∞(x),

thus the equation marked by (∗) below holds, since {B(Ln)
ξ←→ B(2Ln)c} is

an increasing event:

µλ,R

(
B(Ln)

ξ←→ B(2Ln)c
) (∗)
≤ P

(
B(Ln)

ξ∗T←→ B(2Ln)c
)

(∗∗)
≤

P

 ⋃
T ∈Λn,L

⋂
m∈T(n)

{
B(T (m), L)

ξ∗T←→ B(T (m), 2L− 1)c
} (∗∗∗)

≤

∑
T ∈Λn,L

2 (2Cd)
−2n

(105)

≤ (Cd)
2n2 (2Cd)

−2n = 2 · 2−2n , (127)

where (∗∗) holds by Lemma 5.4, (∗ ∗ ∗) holds by the union bound and (126)
(as soon R ≥ R0, where R0 appears in the statement of Lemma 6.5). The
proof of Lemma 6.4 is complete.

It remains to prove Lemma 6.5. Having already fixed L (the bottom scale
of our renormalization scheme), for any proper embedding T ∈ Λn,L we
define the finite subset X of Zd by (112). Note that in order to determine the
outcome of the event that appears in (126), it is enough to observe the random
variables ξ∗T (x), x ∈ X . Given this set X we construct a joint realization
of Zt(x, y) and Ξt(x, y), where x ∈ X , y ∈ Zd, 0 ≤ t ≤ T as in Lemma 4.4.
Recall from (77) that ZT (x) denotes the number of BRW particles with label
x at time T , where x ∈ X . We define a random configuration of zeros and
ones (ζ(x))x∈X by letting

ζ(x) := 1 [ 0 < ZT (x) ] = 1
[
∃ y ∈ Zd : ZT (x, y) > 0

]
, x ∈ X , (128)

thus ζ(x) is the indicator of the event that the number of BRW particles with
label x is nonzero at time T . Let us define the random variable

Yn :=
∑

m∈T(n)

1
[
B(T (m), L)

ζ←→ B(T (m), 2L− 1)c
]
, (129)

thus Yn is the number of bottom-level annuli crossed by ζ. Let us state a
lemma, which (together with Lemma 6.2) will give the proof of Lemma 6.5.

Lemma 6.6 (Bottom-level annuli crossings in ζ). Having fixed λ, L and T
as above, for any n ∈ N and any T ∈ Λn,L we have

P (Yn ≥ 2n/2) ≤ (2Cd)
−2n . (130)
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Proof. The random variables (ζ(x))x∈X are i.i.d. by Claim 4.2. Note that
E(ζ(x)) = σ(λ, T ) = p by Claim 4.2, (96) and (124), thus Yn ∼ BIN(2n, q)
with q ≤ (4Cd)

−2 (cf. (123)). Choosing N = 2n, a = 1/2, p = (4Cd)
−2

and ε = (2Cd)
−1 in Claim 6.1, the desired inequality (130) follows, since

p ≤
(
ε
2

)1/a
indeed holds.

Proof of Lemma 6.5. Having already fixed λ, L and T as above, let us choose
R0 = R0(λ, L, T ) as in Lemma 6.2. In order to prove Lemma 6.5, it is enough
to show that the inclusion⋂
m∈T(n)

{
B(T (m), L)

ξ∗T←→ B(T (m), 2L− 1)c
}
⊆ {|X \XT |+Yn ≥ 2n} (131)

holds, because (131) together with Lemma 6.2, Lemma 6.6 and the union
bound give (126) for any R ≥ R0.

Note that by Lemma 4.4 (cf. the definitions (125) and (128)) we have ξ∗T (x) =

ζ(x) for all x ∈ XT , therefore if B(T (m), L)
ξ∗T←→ B(T (m), 2L− 1)c holds for

some m ∈ T(n) then either there exists a vertex x ∈ B(T (m), 2L) \ XT or

we have B(T (m), L)
ζ←→ B(T (m), 2L− 1)c. Now taking into consideration

that |T(n)| = 2n and that the union in the definition (112) of X is disjoint (cf.
(113)), we obtain (131). The proof of Lemma 6.5 is complete.

The proof of lim infR→∞ λp(R) ≥ 1
1−pc is complete.

6.2 Upper bound on the percolation threshold

The aim of this subsection is to prove lim supR→∞ λp(R) ≤ 1
1−pc .

It is enough to show that the following proposition holds.

Proposition 6.7 (Supercritical behavior). For any λ > 1
1−pc there exists

some R1 = R1(λ) such that if R ≥ R1 then µλ,R(Perc) = 1.

Let us fix some λ > 1
1−pc for the rest of Section 6.2.

For any x ∈ Zd and L ∈ N we will define the event HL(x) involving the
restriction of the configuration ξ to the box with center x and radius L which
occurs if the percolation configuration restricted to the box B(x, L) is “locally
supercritical”. More precisely, let HL(x) denote the set of configurations
ξ ∈ {0, 1}Zd that satisfy

HL(x) =

 ξ ∈ {0, 1}Zd : ξ|B(x,L) has a unique open cluster of
diameter greater than or equal to L, moreover
this cluster intersects all the faces of B(x, L)

 . (132)
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Remark 6.8. The event HL(x) is not monotone in the variable ξ, so we
cannot use stochastic domination to compare the probability of HL(x) under
various measures (like we did in the inequality marked by (∗) in (127)).

Recall that the constant Cd was defined in Lemma 5.3 and that σ(λ) was
defined in (97).

Claim 6.9 (Choice of L). Having already fixed λ as above, we can choose
L ∈ N (and fix it for the rest of Section 6.2) such that under the product
Bernoulli measure πσ(λ) with density σ(λ) we have

πσ(λ) [ ξ ∈ HL(0)c ] < (4Cd)
−6. (133)

Proof. By (97) our assumption λ > 1
1−pc implies σ(λ) > pc. The local

supercriticality event defined in (132) is formulated in terms of Bernoulli site
percolation, and it follows from [Gr99, Theorem (7.61)] that if we consider the
analogous event H∗L(0) for Bernoulli bond percolation then πp (ξ ∈ H∗L(0))→ 1
holds as L→∞ for any p above the Bernoulli bond percolation threshold of
Zd. The proof is based on a block argument originally developed in [Pi96]
and [DP96] which, as mentioned in the latter reference, works equally well for
site percolation. We thus omit further details of the proof of Claim 6.9.

Having fixed the bottom scale L of our renormalization scheme, let us recall
the notion of a proper embedding T ∈ Λn,L of the dyadic tree of depth n from
Definition 5.1. The following lemma will give the proof of Proposition 6.7.

Lemma 6.10 (Bottom level local supercriticality under µλ,R). Having fixed
λ and L as above, there exists R1 ∈ N such that for any R ≥ R1, any n ∈ N
and any T ∈ Λn,L we have

µλ,R

 ⋂
m∈T(n)

{ ξ ∈ HL(T (m))c }

 ≤ 5 (2Cd)
−2n . (134)

Before we prove Lemma 6.10, let us deduce Proposition 6.7 from it.

Proof of Proposition 6.7. Let us consider R ≥ R1, where R1 is defined in
Lemma 6.10. Given a percolation configuration ξ ∈ {0, 1}Zd we will define an
auxiliary coarse-grained percolation configuration η ∈ {0, 1}Zd by letting

η(z) := 1 [ ξ ∈ HL(Lz) ] , η(z) := 1− η(z), z ∈ Zd. (135)

First we show that in order to prove µλ,R(ξ ∈ Perc) = 1 (i.e., that a configu-
ration ξ with distribution µλ,R percolates, cf. (16)), it is enough to show that
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the corresponding η percolates. Indeed, if η ∈ Perc, i.e., if there is a sequence
of vertices z1, z2, . . . ∈ Zd which forms an infinite nearest neighbour simple
path (cf. Definition 2.1) and η(zi) = 1 for each i ∈ N, then by (132) and (135),
for each i ∈ N the ball B(Lzi, L) contains a unique special ξ-cluster with
a big diameter, moreover the balls B(Lzi, L) and B(Lzi+1, L) overlap in a
way that (132) guarantees that their unique special ξ-clusters must intersect,
thus there is a ξ-cluster which intersects B(Lzi, L) for each i ∈ N, therefore ξ
percolates.

It remains to show µλ,R(η ∈ Perc) = 1. Recalling the notation of ∗-
connectedness from Definition 2.2 and the notion of spheres from (15), we
will show that it is unlikely to see a ∗-connected η-closed path crossing a large
annulus:

µλ,R

(
S(6n − 1)

∗η←→ S(2 · 6n)
)
≤ 5 · 2−2n , n ∈ N. (136)

Before we prove (136), let us first deduce µλ,R(η ∈ Perc) = 1 from it using a
variant of the classical Peierls argument, see [Pei36] and [Gr99, Section 1.4].
Let us consider a copy F of Z2 inside Zd for which 0 ∈ F . Denote by An
the event that S(6n) is connected to infinity by an η-open nearest neighbour
simple path that lies within F . For every n ∈ N we have

µλ,R (Acn)
(∗)
≤ µλ,R

 ∞⋃
k=n

⋃
|z|≤12, z∈F

{
S(6kz, 6k − 1)

∗η←→ S(6kz, 2 · 6k)
}

(136)

≤
∞∑
k=n

532−2k , (137)

where (∗) holds because if the set of sites z′ ∈ F for which z′
η←→ S(6n)

holds is finite then S(6n − 1) is surrounded by a ∗-connected η-open path (cf.
Definition 2.1) that lies within F , cf. Definition 4, Definition 7 and Corollary
2.2 of [K82]. We obtain µλ,R(η ∈ Perc) = 1 by letting n→∞ in (137).
It remains to show (136):

µλ,R

(
S(6n − 1)

∗η←→ S(2 · 6n)
) (∗∗)
≤

∑
T ∈Λn,1

µλ,R

 ⋂
m∈T(n)

{ η(T (m)) = 1 }


(∗∗∗)
≤ (Cd)

2n5 (2Cd)
−2n = 5 · 2−2n , n ∈ N, (138)

where (∗∗) holds by the L = 1 case of Lemma 5.4 and the union bound, while
(∗ ∗ ∗) follows using Lemma 5.3, (135) and Lemma 6.10 together with the
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fact that T ∈ Λn,1 if and only if LT ∈ Λn,L, cf. Definition 5.1. The proof of
Proposition 6.7 is complete.

It remains to prove Lemma 6.10.

Remark 6.11. In our subcritical proof (i.e., Section 6.1), we fixed the time
horizon T and defined a configuration ξ∗T in (125) whose law stochastically
dominates µλ,R, and later in the proof of Lemma 6.5 we have shown that the
configuration ξ∗T is actually quite similar to the i.i.d. configuration ζ defined in
(128). However, as we have already discussed in Remark 6.8, now we cannot
resort to stochastic domination in a way we did in Section 6.1. This time
we will show that one can choose T such that the law of ζ is a good enough
approximation of µλ,R to yield Lemma 6.10. We will argue that if there is an
infection path from x reaching up to time T , then actually there are many
such paths, and at least one of them can be continued to infinity with high
probability. We will prove this by placing an independent copy of the upper
invariant configuration ξ∗∗ at time T + 1 (which represents the starting points
of infection paths from T + 1 to infinity) and using that the coarse-grained
boxes associated to ξ∗∗ are mostly good (cf. Definition 3.2) by Theorem 3.3.
The time interval [T, T + 1] is needed because we will require our infection
paths (more precisely, the BRW particles at time T with label x) to perform
one jump in [T, T + 1]. We need this jump because the definition of good boxes
only guarantees that the empirical density of ξ∗∗ is higher than α in translates
of the box [0, R)d, and a jump of range R allows us pick a uniform sample
from a translate of [0, R)d that contains a particle with label x at time T .

Our next goal is to fix a time horizon T . Recall that we defined the constant
α = α(λ, d) ∈ (0, 1) in Proposition 3.1 (and that the same α appears in
Theorem 3.3). Having already fixed the value of λ, let us define the constant
p∗ ∈ (0, 1) by

p∗ := 1− (1− e−λ)e−2α/3d. (139)

Recall the notion of the branching process (Zt) and σ(λ, t) from Definition
4.12 and (96). The inequality (140) below is just a variant of (133). The
inequality (141) below quantifies the heuristic that after a long time T , a
supercritical branching process has either already died out (i.e., ZT = 0) or
otherwise the population ZT at time T is very big.

Claim 6.12 (Choice of T ). Having already fixed λ and L, we can choose
T ∈ R+ (and fix it for the rest of Section 6.2) such that the following
inequalities both hold:

πσ(λ,T ) [ ξ ∈ HL(0)c ] ≤ (4Cd)
−6, (140)

E
(
pZT∗ 1[ 0 < ZT ]

)
≤
(
2|B(2L)|+1Cd

)−9
. (141)
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Proof. The function p 7→ πp [ ξ ∈ HL(0)c ] is continuous (in fact it is a poly-
nomial), since the event {ξ ∈ HL(0)c} only depends on ξ(x), x ∈ B(L). Also
note that limt→∞ σ(λ, t) = σ(λ) by (96) and (97), thus (140) holds by (133)
for large enough T .

Using λ > 1, (96) and (98) we see that limt→∞ E
(
pZt∗ 1[ 0 < Zt ]

)
= 0, so

(141) holds for large enough T . The proof of Claim 6.12 is complete.

Remark 6.13. At this point the choice of T in Claim 6.12 seems unmotivated.
We decided to fix T early in the proof in order to make it clear that there is
no circularity in the definition of the parameters λ, L, T and R. We will use
(140) later on to prove (152) like we have already used (123) to prove (130).
We will use (141) later in the proof of Lemma 6.16 (cf. (161)).

Having already fixed L (the bottom scale of our renormalization scheme), for
any proper embedding T ∈ Λn,L we define the finite subset X of Zd by (112).
Note that in order to determine the outcome of the event that appears in
(134), it is enough to observe the random variables ξ(x), x ∈ X .

Definition 6.14. Let us consider

• the coupling of Zt(x, y) and Ξt(x, y), x ∈ X , y ∈ Zd, 0 ≤ t ≤ T + 1, cf.
Lemma 4.4,

• an independent {0, 1}Zd -valued random variable (ξ∗∗(x))x∈Zd with µλ,R
distribution.

Using these ingredients, we construct

ξ∗(x) := 1
[
∃y ∈ Zd : ΞT+1(x, y) > 0 and ξ∗∗(y) = 1

]
, x ∈ X , (142)

ζ∗(x) := 1
[
∃y ∈ Zd : ZT+1(x, y) > 0 and ξ∗∗(y) = 1

]
, x ∈ X , (143)

ζ(x) := 1 [ 0 < ZT (x) ] = 1
[
∃ y ∈ Zd : ZT (x, y) > 0

]
, x ∈ X . (144)

Remark 6.15. We will show that (ξ∗(x))x∈X has the upper invariant distri-
bution µλ,R and (ζ(x))x∈X has product Bernoulli distribution πσ(λ,T ). Loosely
speaking, we want to show that ξ∗ and ζ are close, and we will achieve this
by showing that ζ∗ is close to both ξ∗ and ζ.

Note that it follows from (143) and (144) that

ζ(x) ≥ ζ∗(x), thus ζ(x)− ζ∗(x) = ζ(x)(1− ζ∗(x)), x ∈ X . (145)

The proof of Lemma 6.10 will easily follow from the next lemma.
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Lemma 6.16 (ζ and ζ∗ are close). Having already fixed λ, L and T as above,
there exists R2 = R2(λ, L, T ) ∈ N such that for any R ≥ R2, n ∈ N and
T ∈ Λn,L we have

P

(∑
x∈X

(ζ(x)− ζ∗(x)) ≥ 2n/3

)
≤ 3 (2Cd)

−2n . (146)

Before we prove Lemma 6.16, let us deduce Lemma 6.10 from it.

Proof of Lemma 6.10. We first note that

the law of (ξ∗(x))x∈X is the same as the restriction of µλ,R to X , (147)

as we now explain. Recalling the graphical construction of Section 2.3, we
may think about ξ∗∗(y) as the indicator of the event that there is an infection
path from (y, T + 1) to infinity (cf. Claim 2.5) and ΞT+1(x, y) as the indicator
of the event that there is an infection path from (x, 0) to (y, T + 1) (cf. (17)).
With this interpretation, ξ∗(x) (defined by (142)) becomes the indicator of
the event that there exists an infection path from (x, 0) to infinity, thus (147)
holds by Claim 2.5. We thus have

µλ,R

 ⋂
m∈T(n)

{ ξ ∈ HL(T (m))c }

 (147)
= P

 ⋂
m∈T(n)

{ ξ∗ ∈ HL(T (m))c }

 .

(148)
Let Zn :=

∑
m∈T(n) 1 [ ζ ∈ HL(T (m))c ], i.e., Zn denotes the number of bottom-

level boxes in which local supercriticality fails for ζ. Next we will prove that
the inclusion⋂
m∈T(n)

{ ξ∗ ∈ HL(T (m))c } ⊆ {|X \ XT+1|+
∑
x∈X

(ζ(x)− ζ∗(x)) + Zn ≥ 2n}

(149)
holds. Indeed: first recall that ζ(x) ≥ ζ∗(x) for any x ∈ X (cf. (145)).
Also note that by Lemma 4.4 (cf. the definitions (142) and (143)) we have
ξ∗(x) = ζ∗(x) for all x ∈ XT+1. Using these observations we will also show
that if ξ∗ ∈ HL(T (m))c holds for some m ∈ T(n) then at least one of the
following three events must happen:

(i) there exists x ∈ B(T (m), 2L) \ XT+1,

(ii) there exists x ∈ B(T (m), 2L) for which ζ(x) = 1 and ζ∗(x) = 0,

(iii) ζ ∈ HL(T (m))c holds.
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Indeed, if (i) and (ii) does not occur then we have ξ∗(x) = ζ∗(x) = ζ(x)
for all x ∈ B(T (m), 2L), therefore (iii) must hold by our assumption that
ξ∗ ∈ HL(T (m))c holds. Taking into consideration that |T(n)| = 2n and that
the union in the definition (112) of X is disjoint (cf. (113)), we obtain (149).

It remains to bound the probability of the event on the r.h.s. of (149). If we
let R1 := R0 ∨R2 (where R0 and R2 appear in the statements of Lemmas 6.2
and 6.16, respectively), then for any R ≥ R1, n ∈ N and T ∈ Λn,L we have

P ( |X \ XT+1| ≥ 2n/2 )
(114)

≤ (2Cd)
−2n , (150)

P

(∑
x∈X

(ζ(x)− ζ∗(x)) ≥ 2n/3

)
(146)

≤ 3 (2Cd)
−2n , (151)

P (Zn ≥ 2n/6) ≤ (2Cd)
−2n , (152)

where (152) can be proved analogously to (130) using that Zn ∼ BIN(2n, q)
with q ≤ (4Cd)

−6 (cf. (140)) and choosing N = 2n, a = 1/6, p = (4Cd)
−6 and

ε = (2Cd)
−1 in Claim 6.1, since p ≤

(
ε
2

)1/a
. Using the inequalities (150)-(152)

together with (148) and (149), the desired inequality (134) follows by the
union bound.

It remains to prove Lemma 6.16. We proceed with making the ideas of
Remark 6.11 rigorous.

Recall from Definition 3.2 that the box κRz+ [0, κR)d (where z ∈ Zd) is good
for ξ∗∗ if each of its sub-boxes of form Rz′ + [0, R)d (where z′ ∈ Zd) contains
at least αRd infected sites in the configuration ξ∗∗. Somewhat simplifying the
notation introduced in (23), we define the configurations ω and ω of zeros
and ones on the coarse-grained lattice by

ω(z) := 1
[
κRz + [0, κR)d is good for ξ∗∗

]
, ω(z) := 1− ω(z), z ∈ Zd.

(153)
Let us define the indicators ε(x) and ε(x) for any x ∈ X by

ε(x) := 1
[
∃y : ZT (x, y) > 0 and ω

(⌊ y

κR

⌋)
= 1

]
, ε(x) := 1−ε(x). (154)

Thus ε(x) is the indicator of the bad event that there is a BRW particle with
label x in a bad box at time T . The following lemma will be used in the proof
of Lemma 6.16.

Lemma 6.17 (Few particles land on bad boxes). Having already fixed λ, L
and T as above, there exists R2 = R2(λ, L, T ) ∈ N such that for any R ≥ R2,
any n ∈ N and any T ∈ Λn,L we have

P

(∑
x∈X

ε(x) ≥ 2

9
2n

)
≤ 2 (2Cd)

−2n . (155)
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Before we prove Lemma 6.17, let us deduce Lemma 6.16 from it.

Proof of Lemma 6.16. Let us choose R2 = R2(λ, L, T ) as in Lemma 6.17 and
let us consider any R ≥ R2, n ∈ N and any T ∈ Λn,L. Let

Y ′n :=
∑
x∈X

(ζ(x)− ζ∗(x)) ε(x), s :=
(
2|B(2L)|+1Cd

)9
. (156)

It is enough to prove

E
(
sY
′
n

)
≤ 2|B(2L)|2n , (157)

because then P
(
Y ′n ≥ 1

9
2n
)
≤ (2Cd)

−2n follows by the exponential Chebyshev’s
inequality, and this bound together with (155) implies (146).
In order to prove (157), we define the sigma-algebra G generated by the
random variables (Zt(x, y)), x ∈ X , y ∈ Zd, 0 ≤ t ≤ T and (ξ∗∗(y))y∈Zd .
Note that it follows from the definitions (144), (153) and (154) that

(ζ(x))x∈X , (ω(z))z∈Zd , (ε(x))x∈X are all G-measurable. (158)

Observe that

ζ∗(x), x ∈ X are conditionally independent given G, (159)

since the BRW particles used in the definition of ζ∗(x), x ∈ X (cf. (143))
reproduce and die independently from each other and ξ∗∗ on [T, T + 1] (cf.
Definitions 4.1 and 6.14). Recalling the definitions of p∗ from (139) and ZT (x)
from (77), we will prove

E ((ζ(x)− ζ∗(x)) ε(x) | G) ≤ pZT (x)
∗ ζ(x), x ∈ X . (160)

Before we show (160), let us deduce (157) from it:

E
(
sY
′
n

)
(156)
= E

(
E

(∏
x∈X

s(ζ(x)−ζ∗(x))ε(x)
∣∣G)) (158),(159)

=

E

(∏
x∈X

E
(
s(ζ(x)−ζ∗(x))ε(x)

∣∣G)) (145),(160)

≤ E

(∏
x∈X

(
spZT (x)
∗ ζ(x) + 1

)) (144)
=

∏
x∈X

E
(
spZT (x)
∗ 1 [ 0 < ZT (x) ] + 1

) (141),(156)

≤
∏
x∈X

(1 + 1)
(113)
= 2|B(2L)|2n . (161)

It remains to show (160). We begin by observing that

E ((ζ(x)− ζ∗(x)) ε(x) | G)
(145),(158)

= E (1− ζ∗(x) | G) ζ(x)ε(x)
(143)
=

P
(
∀y′ ∈ Zd : ZT+1(x, y′) · ξ∗∗(y′) = 0

∣∣G ) ζ(x)ε(x). (162)
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The goal is to upper bound the r.h.s. of (162) by p
ZT (x)
∗ ζ(x). At time T there

are ZT (x) BRW particles with label x, so it is enough to show that if ε(x) = 1
then each of these particles, with probability at least 1− p∗, independently
from the others, will produce an offspring which is located at a site with
positive ξ∗∗ value at time T + 1. In order to show this, first observe that if
ε(x) = 1 then for any y the condition ZT (x, y) > 0 implies ω

(
b y
κR
c
)

= 1 (cf.
(154)), which in turn implies

∑
y′∈B(y,R) ξ

∗∗(y′) ≥ αRd (cf. (153)). So if there
is a particle at time T at location y, which

(i) does not die in [T, T + 1],

(ii) produces at least one child in [T, T + 1],

(iii) this child lands at a site y′ with ξ∗∗(y′) = 1,

(iv) this child does not die until T + 1,

then ZT+1(x, y′) · ξ∗∗(y′) > 0. Now (i) occurs with probability e−1, given this
(ii) occurs with probability 1− e−λ, given this (iii) occurs with probability at
least αRd/|B(R)| ≥ α/3d, given this (iv) occurs with probability at least e−1.
Altogether, the probability that (i)-(iv) all occur is at least 1− p∗ (cf. (139)).
Since in [T, T + 1] the BRW particles reproduce and die independently from
each other and G, we indeed obtain that the r.h.s. of (162) is upper bounded
by the r.h.s. of (160). The proof of Lemma 6.16 is complete.

It remains to prove Lemma 6.17. Given some r ∈ N let us define

δr(x) := 1

0 <
∑

y∈Zd\B(x,rκR)

ZT (x, y)

 , δr(x) := 1− δr(x), x ∈ X , (163)

thus δr(x) is the indicator of the bad event that a particle with label x travels
too far from x. In the next lemma we control the number of x ∈ X for which
this bad event occurs. This bound will be useful in the proof of Lemma 6.17.

Lemma 6.18 (Few particles travel too far). Having fixed λ, κ, L and T as
above, we can choose r ∈ N (and fix it for the rest of Section 6.2) such that
for any R ∈ N, any n ∈ N and any T ∈ Λn,L we have

P

(∑
x∈X

δr(x) ≥ 2n/9

)
≤ (2Cd)

−2n . (164)
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Proof. The random variables
(
δr(x)

)
x∈X are i.i.d., since the BRWs with

different labels are independent (cf. Definition 4.1), therefore∑
x∈X

δr(x) ∼ BIN
(
|B(2L)|2n,E

(
δr(x)

))
by (113). The inequality (164) will follow by choosing N = |B(2L)|2n,
a = (9|B(2L)|)−1, p = E

(
δr(x)

)
and ε = (2Cd)

−1/|B(2L)| in Claim 6.1 if we

show p ≤
(
ε
2

)1/a
, i.e., E

(
δr(x)

)
≤
(
2|B(2L)|+1Cd

)−9
. Thus we bound

E
(
δr(x)

) (163)

≤
∑

y∈Zd\B(x,rκR)

E (ZT (x, y))
(88)
= e(λ−1)TP (XT > rκR) , (165)

where (Xt) denotes the continuous-time R-spread-out random walk on Zd
with jump rate λ with X0 = 0 (cf. Definition 4.8). If we denote by NT

the number of jumps that (Xt) performs on [0, T ] then we have NT ∼
POI(λT ) and P (XT > rκR) ≤ P (NT > rκ), so if we choose r big enough that

P (NT > rκ) ≤ e(1−λ)T
(
2|B(2L)|+1Cd

)−9
holds then the statement of Lemma

6.18 also holds with the same choice of r.

Proof of Lemma 6.17. We have already fixed r in the statement of Lemma
6.18. It is enough to show that

∃R2 ∈ N : ∀R ≥ R2, n ∈ N, T ∈ Λn,L : P

(∑
x∈X

δr(x)ε(x) ≥ 2n

9

)
≤ (2Cd)

−2n ,

(166)
because (164) and (166) together give the desired (155).
In order to prove (166), we need some notation. For any z ∈ Zd and x ∈ X
we say that z endangers x and denote

z
R→ x if

(
zκR + [0, κR)d

)
∩B(x, rκR) 6= ∅. (167)

Let us also introduce Z = Z(T , R) ⊂ Zd and K = K(T , R) ∈ N by

Z := { z ∈ Zd : ∃x ∈ X : z
R→ x }, K := max

z∈Zd

∑
x∈X

1
[
z

R→ x
]
. (168)

Note that we did not emphasize the dependence of Z and K on λ, κ, L, T
and r, because the values of these constants have already been fixed. Next
we observe that it follows from (154), (163), and (168) that

δr(x)ε(x) ≤ 1
[
∃ z ∈ Z : z

R→ x and ω(z) = 1
]
, x ∈ X . (169)
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We can therefore proceed with the proof of (166) by bounding

∑
x∈X

δr(x)ε(x)
(169)

≤
∑
x∈X

∑
z∈Z

1
[
z

R→ x
]
ω(z)

(168)

≤ K
∑
z∈Z

ω(z). (170)

It follows from Theorem 3.3 and (153) that∑
z∈Z

ω(z) is stochastically dominated by BIN(|Z|, qR) , (171)

where qR = exp
(
−γRd

)
if R ≥ R∗∗ = R∗∗(λ). Next we will show that

∃C∗ :∀R ∈ N, n ∈ N, T ∈ Λn,L : |Z| = |Z(T , R)| ≤ C∗2n, (172)

∃C∗∗ :∀R ∈ N, n ∈ N, T ∈ Λn,L : K = K(T , R) ≤ C∗∗R
ln(2)
ln(6) . (173)

We do not emphasize the dependence of C∗ and C∗∗ on λ, κ, L, T and r,
because the values of these constants have already been fixed. We begin with
the proof of (172):

|Z|
(168)

≤
∑
z∈Zd

∑
x∈X

1
[
z

R→ x
]
≤ |X |max

x∈Zd

∑
z∈Zd

1
[
z

R→ x
] (113),(167)

≤

|B(2L)|2n max
x∈Zd
|κRZd ∩B(x, (r + 1)κR)| ≤ |B(2L)|2n(2r + 3)d. (174)

In order to prove (173), we first bound

K
(112),(113),(168)

= max
z∈Zd

∑
m′∈T(n)

∑
x∈B(T (m′),2L)

1
[
z

R→ x
] (167)

≤

|B(2L)|max
z∈Zd

∑
m′∈T(n)

1 [ |zκR− T (m′)| ≤ (r + 1)κR + 2L ]
(∗)
≤

|B(2L)| max
m∈T(n)

∑
m′∈T(n)

1 [ |T (m)− T (m′)| ≤ 2(r + 1)κR + 4L ] , (175)

where (∗) follows from the triangle inequality. Next we show that the r.h.s. of
(175) can be upper bounded by |B(2L)|2k0 , where k0 is the smallest integer
for which L6k0−1 > 2(r + 1)κR + 4L. Indeed, if ρ(m,m′) ≥ k0 (cf. (107))
then |T (m) − T (m′)| ≥ Lk0−1 = L6k0−1 by Lemma 5.5, and the number of
m′ ∈ T(n) for which ρ(m,m′) < k0 is less than or equal to 2k0 , cf. (107). From
these bounds the inequality (173) easily follows using a bit of calculus.
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By (170), (171), (172) and (173) we see that in order to prove the desired
(166), it is enough to show that there exists R2 ∈ N such that for all R ≥ R2

and n ∈ N we have

P
(
C∗∗R

ln(2)
ln(6)Z ′n ≥

2n

9

)
≤ (2Cd)

−2n , where Z ′n ∼ BIN(C∗2n, qR). (176)

We want to apply Claim 6.1 with N = C∗2n, a = (9C∗∗R
ln(2)
ln(6)C∗)−1, p = qR =

exp
(
−γRd

)
and ε = (2Cd)

−1/C∗ , so we need p ≤
(
ε
2

)1/a
, i.e., exp

(
−γRd

)
≤

(2C
∗+1Cd)

−9C∗∗R
ln(2)
ln(6)

, but this inequality clearly holds for large enough R, since
ln(2)
ln(6)

< d. The proof of Lemma 6.17 is complete.

The proof of lim supR→∞ λp(R) ≤ 1
1−pc is complete.

Remark 6.19. Let us sketch how the methods of Section 6.2 can be used
to show that for any λ > 1 the sequence of probability measures (µλ,R)∞R=1

weakly converges to the Bernoulli product measure πσ(λ) (cf. (97)) as R→∞.
It is enough to show that for any finite subset X of Zd and any ε > 0 the
total variation distance dTV(µλ,R|X , πσ(λ)|X ) is less than or equal to ε if R
is large enough. Similarly to Claim 6.12, let us fix T big enough so that
dTV(πσ(λ)|X , πσ(λ,T )|X ) ≤ ε/2 (cf. (96)) and E

(
pZT∗ 1[ 0 < ZT ]

)
≤ ε

8|X | (cf.

Definition 4.12 and (139)). It remains to show dTV(µλ,R|X , πσ(λ,T )|X ) ≤ ε/2.
Given our X , let us define ξ∗(x), ζ∗(x) and ζ(x) for all x ∈ X as in Definition
6.14. It is enough to prove that P(∃x ∈ X : ξ∗(x) 6= ζ(x) ) ≤ ε/2 holds if R
is big enough, since ξ∗|X ∼ µλ,R|X and ζ|X ∼ πσ(λ,T )|X . It is enough to show
that P(ξ∗(x) 6= ζ∗(x)) ≤ ε

4|X | and P(ζ∗(x) 6= ζ(x)) ≤ ε
4|X | hold for every x ∈ X

if R is big enough. Similarly to the proof of Lemma 6.10, we have

P(ξ∗(x) 6= ζ∗(x)) ≤ P(∃ y ∈ Zd : ΞT+1(x, y) 6= ZT+1(x, y))
(80)

≤

P(x /∈ XT+1)
(78),(79)

≤ P(τx ≤ T + 1) +
∑

y∈X\{x}

P(τx,y ≤ T + 1),

and the r.h.s. is smaller than ε
4|X | if R is large enough by Lemma 4.7.

Recalling the definition of the indicators ε(x) and ε(x) from (154), we have

P (ζ∗(x) 6= ζ(x))
(145)

≤ E [(ζ(x)− ζ∗(x))ε(x)] +E [ε(x)] ≤ ε

8|X |
+

ε

8|X |
=

ε

4|X |

if R is large enough, since E [(ζ(x)− ζ∗(x))ε(x)] ≤ E
(
pZT∗ 1[ 0 < ZT ]

)
≤ ε

8|X |
holds by (160) and our assumptions on T , while one can show that E [ε(x)] ≤
ε

8|X | holds if R is large using similar (but simpler) ideas as the ones that we
used to prove Lemma 6.17.
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7 Appendix: Liggett-Steif stochastic domina-

tion for discrete time

Fix p ∈ (0, 1) and recall from Definition 3.5 the notion of the discrete-time
process (ηn)n≥0 with parameter p. Also recall from Definition 3.7 the notion
of νp, the upper invariant measure of this process. Our goal in this section
is to prove Theorem 3.9 by recalling the steps of the proof of the analogous
result for the upper invariant measure of the contact process in [LS06].
By Claim 3.6, it suffices to prove Theorem 3.9 for the case d = 1, so we
assume this from now on.

7.1 Downward FKG property

One of the ingredients of the proof of Theorem 3.9 is Proposition 7.2 below.
If η ∈ {0, 1}Z and Λ ⊆ Z, we say that η ≡ 0 on Λ if η(z) = 0 for all z ∈ Λ.

Definition 7.1. Let µ be a probability measure on ({0, 1}Z,F).

1. µ is called positively associated if, for any two F-measurable and
increasing sets B,B′ ⊂ {0, 1}Z, we have µ(B ∩B′) ≥ µ(B)µ(B′).

2. µ is called downward FKG if, for any finite Λ ⊂ Z, the conditional
measure µ(· | η ≡ 0 on Λ) is positively associated.

Proposition 7.2. The measure νp is downward FKG.

Note that the continuous-time analogue of this result (i.e., that the upper
invariant measure of the contact process on Z is downward FKG) is proved
in [vdBHK06], see equation (20) therein. As it is pointed out in the remark
after [LS06, Theorem 2.1], the paper [vdBHK06] is mainly devoted to the
discrete time setting, and the continuous time results are deduced from them.
We decided to omit the details of the proof of Proposition 7.2, which can be
deduced from [vdBHK06, Theorem 3.1] analogously to [vdBHK06, (20)].

7.2 Liggett’s auxiliary renewal measure

We now follow [Li95] to give a number of definitions. Define the function F :
N→ R by letting

F (1) = 1 and F (k) = − 2

(a− b)2

k∑
j=0

cjck−ja
2jb2(k−j), k > 1,
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where

a =
1− p+

√
1− p

p
, b =

1− p−
√

1− p
p

, ck =
(2k)!

4k(k!)2(2k − 1)
, k ≥ 0.

(177)
The following proposition is a special case of [Li95, Proposition 2.1] so we
omit the proof.

Proposition 7.3. If p ≥ 3
4

then F is positive and non-increasing, moreover
the inequality

∑
k F (k) <∞ also holds.

The following estimate will also be useful.

Lemma 7.4. For any k ≥ 2 we have

F (k) ≤ 4

(a− b)2
a2k.

Proof. Note that a ≥ 0, b < 0 with a ≥ |b|, c0 = −1 and ck ∈ [0, 1] for k ≥ 1
(since

(
2k
k

)
≤ 4k). Hence, in the sum in the definition of F (k), the first and

last terms are negative and the other terms are non-negative, and we have

F (k) ≤ − 2

(a− b)2
(c0cka

0b2k + ckc0a
2kb0) ≤ 4

(a− b)2
a2k.

Definition 7.5. By Proposition 7.3, we can define the probability distribu-
tion ψ on N by setting ψ([n,∞)) = F (n), and also the (unique) translation
invariant renewal measure Ψ on {0, 1}Z with the property that the distance
between two successive 1’s are independent and with distribution ψ. We denote
by η′ the random element of {0, 1}Z with distribution Ψ.

If k ≤ ` ∈ Z, let us denote [k, `] := {k, . . . , `}. Our next Proposition will
easily follow from the results of [Li95].

Proposition 7.6. Assume p ≥ 3
4
. For any k ∈ N,

Ψ( η′ ≡ 0 on [0, k] ) ≥ νp( η ≡ 0 on [0, k + 1] ).

Before we prove Proposition 7.6, we state a corollary, which will be a key
ingredient of Theorem 3.9. Recall the definition of θ2(p) from (26).

Corollary 7.7. If p ≥ 3
4

then lim infk→∞ νp( η ≡ 0 on [0, k] )1/k ≤ 1− θ2(p).

60



The proof of Corollary 7.7 easily follows from Proposition 7.6, the formula
Ψ( η ≡ 0 on [0, k − 1] ) = Ψ(η(0) = 1)

∑∞
i=1 F (k + i), Lemma 7.4 and the fact

that a2 = 1− θ2(p), cf. (177). We omit the details.
Before we prove Proposition 7.6, let us introduce some further notation.

Definition 7.8. We take a probability space with probability measure Pp,Ψ
under which (i) the independent Bernoulli(p) random variables Z(z, n), z ∈
Z, n ∈ N required for the definition of the oriented percolation process (cf.
Definition 3.5) and (ii) independently a random configuration η′ with distri-
bution Ψ are both defined. Given some A ⊆ Z, denote by (ηAn ) the oriented
percolation process started from initial state η0(z) = 1[ z ∈ A ].

The proof of Proposition 7.6 will follow from the next lemma.

Lemma 7.9. For any k ∈ N, and any p ≥ 3
4

we have

lim
n→∞

Pp,Ψ
(
η[0,k]
n ∩ η′ = ∅

)
= νp ( η ≡ 0 on [0, k + 1] ) . (178)

Notice that we have k on the l.h.s., but k + 1 on the r.h.s. The proof of
Lemma 7.9 follows from standard arguments of time reversal and duality for
oriented percolation. We include a proof for completeness, but postpone it to
Section 7.4.

Proof of Proposition 7.6. We start by noting that the transition rules of
our process (ηn)n≥0 with parameter p are the same as the ones of the pro-
cess (An)n≥0 of [Li95], with parameters q = p in the notation of that paper
(see the beginning of the Introduction there). The assumption for the afore-
mentioned Proposition 2.1 of [Li95] is that p > 1

2
and q ≥ 4p(1− p), which

when p = q means simply that p ≥ 3
4
.

Equation (1.4) in [Li95] gives (∗) below for any finite subset A of Z:

Ψ( η′ ∩ A = ∅ ) = Pp,Ψ( η′ ∩ ηA0 = ∅ )
(∗)
≥ Pp,Ψ( η′ ∩ ηA1 = ∅ ).

This can be iterated to yield Ψ( η′ ∩ A = ∅ ) ≥ Pp,Ψ( η′ ∩ ηAn = ∅ ), n ∈ N.
Applying this to A = [0, k] and using (178), we obtain Proposition 7.6.

7.3 νp dominates product Bernoulli

The goal of Section 7.3 is to prove Theorem 3.9. The key ingredients are
Proposition 7.2, Corollary 7.7 and the following result, which is a variant of
[LS06, Proposition 2.2].

61



Lemma 7.10. If ν is a probability measure on ({0, 1}Z,F) with the downward
FKG property (cf. Definition 7.1) and

lim inf
k→∞

ν( η ≡ 0 on [0, k] )1/k ≤ 1− θ (179)

holds for some θ ∈ (0, 1), then ν( η(0) = 1 | η ≡ 0 on [1, k] ) ≥ θ, k ∈ N

We omit the proof, which is a step-by-step replica of the proof of [LS06,
Proposition 2.2]. Note that by Proposition 7.2 and Corollary 7.7 we can apply
Lemma 7.10 with ν = νp and θ = θ2(p), from which the next lemma follows.

Lemma 7.11. Let Λ,Λ′ ⊂ N be disjoint and finite. Then,

νp( η(0) = 1 | η ≡ 0 on Λ, η ≡ 1 on Λ′ ) ≥ θ2(p).

Proof. This can be obtained as an immediate consequence of Lemma 7.10
and another application of Proposition 7.2, so we omit the details (see the
proof of Proposition 2.3 in [LS06]).

Proof of Theorem 3.9. As observed in [LS06], a coupling between νp and the
Bernoulli product measure πθ2(p) which establishes the required domination
can now be constructed sequentially, using Lemma 7.11. This completes the
proof of Theorem 3.9.

7.4 Oriented paths and duality: proof of Lemma 7.9

As already mentioned, the proof of Lemma 7.9 will depend on standard
tools of time reversal and duality. Rather than considering a time reversal
of the process (ηn) itself, it will be more convenient to pass to an auxiliary
process (η̂n), and then consider its dual process (ˆ̂ηn).
In order to define these processes, recall the Bernoulli(p) random variables

{Z(z, n) : z ∈ Z, n ∈ N0} (180)

used in the definition of (ηn), see (24). Let us introduce notation to refer to
the oriented site percolation paths produced from Z(·, ·).

Definition 7.12. Given w, z ∈ Z and m ≤ n ∈ N0, we write (w,m) (z, n)
if there exists a sequence w = z0, z1, . . . , zn−m = z such that

zi+1 − zi ∈ {−1, 0}, i ∈ {0, . . . , n−m− 1}
and Z(zi,m+ i) = 1, i ∈ {0, . . . , n−m}.
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(Note that, with this notation, (z, n) (z, n) if and only if Z(z, n) = 1).
Given η ∈ {0, 1}Z, define S(η) ∈ {0, 1}Z by

[S(η)](z) = max(η(z), η(z + 1)), z ∈ Z.

It follows from (24) that, given an initial configuration η0 ∈ {0, 1}Z, we have

ηn(z) = 1 [ ∃z′ : [S(η0)](z′) = 1 and (z′, 1) (z, n) ] , n ≥ 1, z ∈ Z.
(181)

We now define a process (η̂n)n≥0 on {0, 1}Z for arbitrary η̂0 by setting

η̂n(z) = 1 [∃z′ : η̂0(z′) = 1 and (z′, 0) (z, n) ] , n ≥ 1, z ∈ Z. (182)

Note that the evolution of (η̂n) is given by

η̂1(z) = Z(z, 1) ·max (Z(z, 0) · η̂0(z), Z(z + 1, 0) · η̂0(z + 1)) , (183)

η̂n+1(z) = Z(z, n+ 1) ·max (η̂n(z), η̂n(z + 1)) , n ≥ 1 (184)

that is, apart from the first step, the evolution of (η̂n) follows the same rule as
that of (ηn). The following observation, which follows from comparing (181)
and (182), will be useful.

Claim 7.13. For any η ∈ {0, 1}Z and n ≥ 1, the law of ηn given η0 = η is
equal to the law of η̂n−1 given η̂0 = S(η).

Recall the notation of the probability measure Pp,Ψ from Definition 7.8, under
which we can define the process (η̂A

′
n ), where A′ = { z ∈ Z : η′(z) = 1}, so

that η̂A
′

0 = η′, where η′ is independent from Z(z, n), z ∈ Z, n ∈ N and the law
of η′ is the renewal measure Ψ of Definition 7.5.

Lemma 7.14. For any k ∈ N,

lim
n→∞

Pp,Ψ

(
η̂A
′

n ≡ 0 on [0, k]
)

= νp( η ≡ 0 on [0, k] ). (185)

In other words, the law of η̂A
′

n and the law of η̂Zn converge weakly to the same
limit νp as n→∞. We omit the details of the proof, which can be derived
from the fact that η′ has positive density using the results of [D84].
We now introduce yet another process (ˆ̂ηn)n≥0 by taking ˆ̂η0 ∈ {0, 1}Z arbi-
trarily and setting

ˆ̂η1(z) = Z(z, 1) ·max
(
Z(z, 0) · ˆ̂η0(z), Z(z − 1, 0) · ˆ̂η0(z − 1)

)
,

ˆ̂ηn+1(z) = Z(z, n+ 1) ·max
(
ˆ̂ηn(z), ˆ̂ηn(z − 1)

)
, n ≥ 1.
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That is, (ˆ̂ηn) is defined in the same way as (η̂n), except that the direction
of propagation is inverted. In particular, (ˆ̂ηn) satisfies a similar property
as (182), except that the percolation paths in the definition of ‘ ’ should be
replaced by paths that move to the right rather than to the left. With this
observation at hand, one easily verifies the following duality relation.

Claim 7.15. For any η̄, ¯̄η ∈ {0, 1}Z and n ≥ 1, we have

Pp( η̂n ∩ ¯̄η = ∅ | η̂0 = η̄ ) = Pp( ˆ̂ηn ∩ η̄ = ∅ | ˆ̂η0 = ¯̄η ).

Proof of Lemma 7.9. For any k, n ∈ N we have

Pp,Ψ
(
η[0,k]
n ∩ η′ = ∅

)
= Pp,Ψ

(
η̂

[−1,k]
n−1 ∩ η′ = ∅

)
= Pp,Ψ

(
ˆ̂ηA
′

n−1 ∩ [−1, k] = ∅
)
,

where the first equality follows from Claim 7.13 and the second from Claim 7.15.
Next, by translation invariance and symmetry considerations, the right-hand
side above is equal to Pp,Ψ

(
η̂A
′

n−1 ∩ [0, k + 1] = ∅
)
. Taking n→∞, Lemma 7.9

follows using Lemma 7.14.
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